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Abstract. In the study presented in this paper, we investigate students’ concepts of 
eigenvectors in an early stage of their education on linear algebra. The different 
descriptions used by the students for eigenvectors are analysed with respect to both their 
chosen representations of the mathematical objects (algebraic, geometric, or abstract), 
and the indicators of formalism used in these descriptions. We find that while the modes 
of description presented to them seem to influence their own choice of description, 
students still show their ability to switch between different representations and 
descriptions and provide individual concept images. However, some shortcomings 
concerning formalism and preciseness of their descriptions indicate that some 
mathematical properties and logical relations in the context of learning about 
eigentheory require particular attention in teaching and learning activities.   

Keywords: Teaching and learning of linear and abstract algebra, teaching and 
learning of specific topics in university mathematics, eigentheory, concept image, 
modes of description. 

INTRODUCTION 

Linear algebra is of great use in many fields such as science and mathematics (Wawro 

et al., 2018). Over the last few decades, the problems in teaching and learning of linear 

algebra have received increasing attention by researchers in mathematics education 

(Dorier & Sierpinska, 2001). Eigentheory, the domain of mathematics concerning 

eigenvectors, eigenvalues and eigenspaces, is often described as a useful set of 

concepts across disciplines (Wawro et al., 2018). However, as students need to work 

with several key ideas simultaneously, eigentheory can be conceptually complex. In 

ℝ2 and ℝ3, eigenvectors can be understood geometrically as arrows that are scaled by 

the transformation or algebraically as the solutions to the eigenequation, but students 

may not be able to understand these interpretations from the start (Hillel, 2000; Wawro 

et al., 2019). Dorier and Sierpinska (2001) suggest that the many representations might 

contribute to the difficulties faced by students learning linear algebra. Wawro et al. 

(2018, p. 275) claim that research on the teaching and learning of eigentheory is “a 

fairly recent endeavour and is far from exhausted”. In accordance with that, this study 

aims to contribute to the research on students’ understanding of the concepts of 

eigenvectors and eigenvalues, by investigating which characterisation of eigenvectors 

and eigenvalues the participants chose in an early stage of their education on linear 

algebra. We work with the following overarching research question:  

What characterises the students’ conceptions of eigenvectors and eigenvalues? 

 

 



THEORY 

Concept image and concept definition 

To describe our insight into the conceptions that the participants of our study had in the 
field of eigentheory, we make use of the terms concept image and concept definition, as 
introduced by Tall and Vinner (1981). The concept definition is a verbal definition that 
explains the concept in a precise and non-circular way (Vinner, 1983). According to Tall 
and Vinner (1981), it may be the result of rote learning of a formal concept definition, 
that is, a definition accepted by the mathematical community, often presented in lectures 
and textbooks. Alternatively, it can be the students’ own reconstruction of it, that is, his 
or her personal concept definition (Tall & Vinner, 1981). For many people, there is also 
the concept image (Vinner, 1983). Tall and Vinner (1981) describe the concept image as 
consisting of all the cognitive structures associated with a concept. It can be non-verbal, 
but it might be translated into words. Thus, the concept image may consist of various 
representations as well as examples and non-examples associated with a concept. It is 
individual and dynamic, in contrast to a formal concept definition, which can be 
considered objective and constant (Tall & Vinner, 1981). One’s concept image and 
concept definition may be more or less overlapping, contradictory or for some people, 
the concept image may be non-existent. According to Vinner (2002, p. 69), having a 
concept image is a necessary condition for understanding: «To understand, so we 
believe, means to have a concept image.». Given this, we argue that describing the 
students’ concept image can, to some extent, provide information of their understanding 
of these concepts. Using this terminology, the overarching research question could be 
rephrased as follows:  

What characterises the students’ concept images and concept definitions of 

eigenvectors and eigenvalues? 

However, as an individual’s concept image may be vast and multi-faceted, it is our 
perspective that it cannot be described in full detail in the scope of this study. Thus, we 
find it necessary to restrict our inquiry of students’ concept images to specific aspects of 
them. In the following, we will explain our interpretation of Hillel's modes of 
description, the aspect of formalism, and how these ideas have helped in shaping two 
supporting research questions. 

Modes of description 

Hillel (2000) explains that a typical course in linear algebra applies several modes of 
description to objects and operations, as well as the transfers between them. These 
include the abstract, the algebraic and the geometric mode, and they can be applied to 
vector spaces of all dimensions. Within them, vectors and transformations have different 
terminology, notation, and representations associated with them. The abstract mode of 
description uses formal language and concepts from the general 𝑛-space like dimension, 
kernel and vector space. The algebraic mode concerns the concepts from the more 
specific theory of ℝ𝑛. Here, vectors are 𝑛-tuples and key topics include matrices, rank 
and solving linear systems. In the geometric mode, vectors can be considered as arrows, 
directed line segments or points, and transformations can be understood as 



corresponding to spatial actions, like rotations and translations. In this mode, key 
concepts like orthogonality can be visualised in 2- and 3-space but are used 
metaphorically in the general part of theory (Hillel, 2000). 

The modes are different but not entirely disjoint. According to Hillel (2000), teachers 
make shifts within and between modes easily and frequently during lectures. However, 
several researchers have suggested that students struggle to work with these transfers 
(e.g. Lapp et al., 2010; Sierpinska, 2000; Stewart 2018). In particular, when working 
with ℝ𝑛, moving from the abstract to the algebraic mode can be a particularly confusing 
shift for students (Dorier & Sierpinska, 2001; Hillel, 2000). Hillel (2000) notes that the 
ability to understand how vectors and transformations can be represented differently 
within and between modes is key to understanding linear algebra. To further explore this 
aspect of students’ concept images, identifying possible preferences and challenges they 
may have with these modes and transfers, we add a supporting research question:  

1. What modes of description do the students use to explain the concepts of 
 eigenvector and eigenvalue? 

The aspect of formalism 

Another great challenge for students learning linear algebra is its formal character 
(Dorier, 2017). According to Dorier (2017), Robert and Robinet conducted research in 
France in the 1980s, showing that students felt overwhelmed by the many new 
definitions and theorems, and the students expressed concern with the use of formalism. 
Dorier et al. (2000) have researched students' difficulties with the generalised part of 
linear algebra, and they call this the obstacle of formalism. According to Dorier and 
Sierpinska (2001), students also have difficulties with understanding formal concepts in 
relation to their geometric interpretations. However, it is our perspective that the aspect 
of formalism needs further conceptualisation. In our study, we chose to define and 
identify particular elements of mathematical statements as “indicators of (lacking) 
formalism”, as will be worked out in the next section. To further explore the aspect of 
formalism, we pose an additional supporting research question:  

2. What indicators of lacking formalism can be found in the students’ 
explanations of the concepts of eigenvector and eigenvalue? 

In this context, we would like to stress that we do not use the term “lacking” in any 
normative sense here, but only in the function of indicating the absence of something.  

METHODOLOGY 

Setting and participants 

This study took place at the Norwegian University of Science and Technology in 
Trondheim with first- and second-year students in a basic linear algebra course. The 
students were majoring in mathematics and mathematics education. The teaching of this 
course included weekly lectures where the teacher presented key definitions, theorems 
and relevant examples using the blackboard and/or PowerPoint presentations. In 
addition, there were optional weekly exercise classes where the students could discuss 
tasks from the homework with each other and teaching assistants. To gain access to the 
exam, students had to complete and submit a minimum of eight out of twelve of these 



exercise sets and have them graded by a teaching assistant. Out of the 243 students who 
were enrolled in the course, 52 consented to participate in our study. We admit that our 
results may not be representative for the student body in the course, yet we argue that it 
is sufficient to say something about trends within the group of participants.  

To understand the students' concept images and concept definitions of eigenvectors and 

eigenvalues, we designed four tasks as part of the students’ weekly homework and 

collected the written works of the students. In addition to explaining the concepts of 

eigenvector and eigenvalue in their own terms, students were asked to determine whether 

and why statements about eigenvectors and eigenvalues are true or false, as well as use 

graphic representations to determine whether a given vector is an eigenvector 

corresponding to a matrix, and why/why not. These tasks were designed specifically to 

have students’ work with multiple representations of eigenvectors, and consequently 

modes of description, and to test their abilities to move between them. The students were 

allowed to work on the exercises for one week and all aids were permitted. In this paper, 

we will only present our analyses of the first task and our focus is on part a): «For parts 

a) and b), explain in your own words. You may also use drawings. a) What is an 

eigenvector? b) What is an eigenvalue?». The purpose of this open phrasing was to elicit 

student thinking and learn about their concept images and concept definitions.  

Method of analysis  

The students’ written works were collected through the digital learning platform 
Blackboard, that was used for the organisation of the whole course, and analysed 
qualitatively using a thematic coding approach in two rounds, each having a first and a 
second level. The coding in the first round was inspired by Wawro et al (2019). In the 
first level, descriptive codes were constructed inductively from single words or short 
phrases in the students’ written answers. Codes such as «scalar multiple» or 
«transformation» were assigned to trace the modes of description in the students’ 
answers. In the second level, codes were grouped into themes corresponding to Hillel’s 
(2000) modes of description in an interpretative process.  

For the coding in the second round, the students’ explanations of the concept were 
compared to an “ideal” formal concept definition from the textbook used in the course, 
that is, Elementary Linear Algebra (2020, p. 291) by Anton Kaul:  

 If 𝐴 is an 𝑛 × 𝑛 matrix, then a nonzero vector 𝒙 in ℝ𝑛is called an eigenvector of 

𝐴 (or of the matrix operator 𝑇𝐴) if 𝐴𝒙 is a scalar multiple of 𝒙, that is, for some 

scalar 𝜆. The scalar is called an eigenvalue of 𝐴 (or of 𝑇𝐴), and 𝒙 is said 

to be an eigenvector corresponding to 𝜆.  

This definition contains all necessary specifications of the used symbols and precise 
relations between the occurring concepts and was therefore considered as fulfilling the 
highest relevant standard for formalism in the context of our study. We compared the 
answers of the students with this definition and identified which if these specifications 
were missing. These “lacks” were considered as “indicators of lacking formalism”, and 
the categories obtained in this process are listed in the next section.  



RESULTS AND ANALYSIS  

Various modes of description 

In this section, examples from students’ works will be presented, together with their 
codes and how they were categorised as relating to the abstract, algebraic or geometric 
mode of description. For the purpose of this analysis, the tasks and the students’ answers 
were translated from Norwegian to English. As the modes are not specific to eigentheory 
and the students gave only short explanations, it was necessary to make our own 
interpretation of this classification and restrict our analysis to single words or short 
phrases used by students. The codes, their explanation and prevalence obtained in the 
first round of coding are given in table 1. From a mathematician's point of view, many 
of these codes are interchangeable. However, we argue that this is not necessarily 
obvious to students and that realising some of these are interchangeable is related to 
having an advanced concept image. Some answers are complex, using both symbols and 
natural language, or connecting the concept of eigenvector to other concepts, while 
others are more condensed. Consequently, some answers were assigned multiple codes, 
while others were given only one or two.  

Algebraic modes of description: Answers that describe eigenvectors by writing a 
symbolic definition similar to the one from the textbook, i.e. 𝐴𝒙 = 𝜆𝒙, were considered 
as using an algebraic mode of description. This was also the case for answers that 
rephrase this relation in natural language, i.e., a discursive definition of eigenvectors. 
From table 1, it is evident that most students described eigenvectors using the symbolic 
definition, a discursive definition or a combination of the two. For example, one student 
wrote: «A vector 𝒙 is an eigenvector if you can write 𝐴𝒙 = 𝜆𝒙, where 𝐴 is a matrix and 
𝜆 is a scalar. More thoroughly explained, 𝒙 is an eigenvector if a matrix multiplied by 
the vector returns the vector scaled by 𝜆.». In this example, the first sentence defines the 
concept of eigenvector as vectors fulfilling the eigenequation. In the second sentence, 
the student tries to elaborate by explaining the equation in natural language. As the 
answer gives both a symbolic and a discursive definition, it was coded accordingly and 
categorised as having an algebraic mode of description.  

Abstract modes of description: Answers that relate eigenvectors to concepts from the 
more general part of theory were considered to have an abstract mode of description. 
Table 1 indicates that fewer answers were assigned these codes, as compared to the codes 
corresponding to the algebraic mode. Out of the abstract codes, «transformation» is the 
most recurrent within the data material, with 15 compared to 1–3 occurrences. The 
following answer was coded as «vector space», «image» and «transformation»: «An 
eigenvector 𝑣 ≠ 0 is a vector in the vector space that doesn’t change direction when it’s 
imaged by a linear transformation. This means that if a square matrix is multiplied with 
this vector, the resulting vector will be a scalar multiple of the eigenvector.». By 
describing eigenvectors in relation to multiple concepts from the more formal and 
general part of theory, the answer contains several elements corresponding to an abstract 
mode of description. As the student described an eigenvector as «not changing direction» 
(i.e., maintaining direction) and as a «scalar multiple», the answer also has elements from 
the geometric mode, and was additionally categorised accordingly.   



Table 1: The table explains the 13 codes, how often they occur in the answers of the 52 

students and their corresponding modes of description.  

Mode of 

description 

Code  Explanation  Occurrence 

Algebraic  Discursive definition Using natural language to explain the eigenequation, 𝐴𝒙 = 𝜆𝒙. 35 

Symbolic definition Description with the eigenequation, 𝐴𝒙 = 𝜆𝒙. 31 

Linear system  Connects eigenvectors to the solution of a linear system. 1 

Linear  Describing 𝐴𝒙 and 𝒙 as linear.  1 

Abstract  Transformation  Description related to the concept of transformation, using the 

words «transforming», «transformation» etc. 

15 

Span  Description related to the concept of span, using the words 

«spanning», «spans» etc. 

3 

Image  Description related to the concept of image, using the words 

«image», «imaging» etc. 

3 

Vector space  Description related to the concept of vector space, using the 

phrasing «an element of a vector space» or similar. 

2 

Transformation 

definition 

Description with the eigenequation in terms of a 

transformation, e.g. 𝑇(𝒙)  = 𝜆𝒙. 

1 

Geometric  Scalar multiple  Description using the words «scalar multiple», «scaling» etc. 21 

Maintains direction Describing eigenvectors as vectors that do not change direction. 12 

Dynamic changes in 

size 

Dynamic description, using words like «stretching», 

«shrinking» etc. 

5 

Figure  Included a figure or sketch.  5 

Geometric modes of description: Students who described eigenvectors by referring to 
some visual representation in ℝ2or ℝ3 were considered as using a geometric mode of 
description. This includes answers that described eigenvectors as maintaining direction 
or as being scaled under a transformation (or matrix multiplication), as well as answers 
where the student made some sketch showing the relation between the matrix, the 
eigenvector and the eigenvalue. An answer that was coded as both «maintains direction» 
and «dynamic changes in size» is the following: «An eigenvector is a vector such that 
when multiplied by a matrix [it] won’t change direction, but only length.». In this 
example, the student correctly described how a matrix may change the length of an 
eigenvector and how its direction is preserved (however, the option of flipping the vector 
was not apparent in the students’ answer).  

 



Indicators of lacking formalism  

The aspect of formalism was evaluated by comparing what was missing from the 
students’ description of the concepts to the formal concept definition in their textbook. 
Table 2 gives an indication about which lacks were most prevalent in the dataset. The 
most common lacks among the students’ answers appear to be not to mention the 
dimensions of the eigenvector 𝒙 (omitted by 42 students), the matrix 𝐴 (omitted by 28 
students) or specify that 𝒙 may not be equal to the zero vector (omitted by 36 students). 
From table 2, it is noticeable that the works of most of the students showed several lacks 
when compared to the formal definition. In the following example, the student correctly 
explained eigenvector and eigenvalue by referring to the symbolic definition, but the 
answer has lacks: «An eigenvector is a vector 𝒙 that can solve 𝐴𝒙 = 𝜆𝒙, where 𝐴 is a 
matrix and 𝜆 is called the eigenvalue.». The student did not specify the dimensions of 
neither the vector («L/vector dimension») nor the matrix («L/matrix dimension»), did 
not rule out the eigenvector to be equal to the zero vector («L/nonzero eigenvector»), did 
not state that 𝜆 is a scalar («L/eigenvalue unknown») and did not explicitly state that the 
eigenvector and eigenvalue correspond to the specific matrix («L/eigenvalue vector» and 
«L/vector-matrix»). In our analysis, we found several examples where it remains unclear 
whether the student was aware of the connection between the matrix, the eigenvector 
and the eigenvalue. For instance, one student wrote «An eigenvector 𝒙 is a vector that is 
scaled when multiplied by a matrix.». This could either indicate that the student thought 
of an eigenvector as corresponding to a specific matrix, or a misconception that an 
eigenvector is scaled by every matrix. In another case, the student did not mention the 
matrix at all: «An eigenvector is a vector that can be scaled but does not change 
direction.». Furthermore, three students gave answers where it is ambiguous if they were 
aware of all the ways a matrix may act upon its eigenvector(s). For instance, one student 
wrote: «An eigenvector is a vector that is stretched either in a positive or negative 
direction [...].». This could indicate the idea of an eigenvector as only being stretched 
(not shrunk etc.) when multiplied by the corresponding matrix.   

Use of visual representations: In ℝ2 and ℝ3, eigenvectors and eigenvalues have visual 
representations. The task asked the students to explain eigenvectors and eigenvalues, but 
they were also encouraged to draw a sketch to illustrate the concepts. Out of the 52 
students that participated in this study, only five drew a sketch supplementing their 
verbal description. Figures 1 and 2 give two examples of such sketches. In figure 1, the 
student drew a coordinate system and multiple arrows pointing in opposite directions to 
each other. In figure 2, the student drew the eigenvector 𝒙 and the vector 𝐴𝒙 in a 
coordinate system with scales, as well as the equations 𝐴𝒙 = 𝜆𝒙 and 𝐴𝒙 = −2𝒙, 
thereby indicating the relationship between the matrix, the eigenvector and the 
eigenvalue 𝜆 =  −2. Given this, the sketch in figure 2 is more detailed than the sketch 
in figure 1. However, as the sketch in figure 1 is not restricted to a particular 
eigenvector and eigenvalue, it could be interpreted as more general and dynamic. The 
student wrote that «An eigenvector says about how much [sic] matrix stretches/shrinks 
things in a direction. The eigenvalue is how much [sic] eigenvector stretches/ 
shrinks.». This answer could indicate a developing concept image where the student is 
able to connect the concept of eigenvector to the geometric idea of scaling. The usage 



of very informal language here, for instance the usage of the term "things", leaves it 
unclear what object the student thought is being stretched.  

Table 2: The table explains the seven codes for lacks and how often they occur in the 

answers of the 52 students.  

Code  Explanation  Occurrence 

L/vector 

dimension  

The student does not specify the dimension of the eigenvector.  42 

L/nonzero 

eigenvector  

The student does not specify that the eigenvector cannot be equal to the zerovector. 36 

L/matrix 

dimension  

The student does not specify that the matrix needs to be square.  28 

L/eigenvalue-

vector  

The student does not specify that the eigenvalue and eigenvector form a corresponding 

pair. 

27 

L/vector-matrix  The student does not connect the eigenvector to a specific matrix.  23 

L/eigenvalue 

unknown  

The student does not specify that the eigenvalue is a scalar.  7 

L/act  The student does not describe the possible ways (i.e. stretching, shrinking, leaving 

unchanged, rotating by 180 degrees) in which the matrix may act upon its eigenvector(s). 

3 

L/matrix  The student does not mention matrix or linear transformation at all.  1 

DISCUSSION AND CONCLUSION  

The purpose of this study was to gain more insight into students’ descriptions of 
eigenvectors. Most of the students used an algebraic mode of description, which is also 
the mode the book and the lecture set their focus on. However, several students 
implemented multiple modes in their answers, indicating the development of their 
concept images. While the usage of only one mode of description in their answer cannot 
be considered as a proof of a concept image on a low level of development, we do think 
that an answer including several modes of descriptions and, even more significantly, 
some meaningful connections between these modes, can be considered as a strong sign 
of a further developed concept image. Only a handful of students included a sketch in 

Figure 1: Student sketch apparently 

depicting the act of scaling.  

 

Figure 2: Student sketch showing the correspondence 

between the matrix, its eigenvector and eigenvalue. 



their answer, despite there being an explicit suggestion to use drawings. This could be 
because the majority overlooked it, ignored it or perhaps because they did not know how 
to provide an appropriate sketch. Furthermore, few students connected the concept of 
eigenvector to the more abstract concepts of image, span or vector space. Of the students 
who did describe eigenvectors using concepts from the more formal part of theory, the 
majority used the concept of transformation. However, we wonder if students are aware 
of the nuances that distinguish a matrix from a transformation.   

The works of the students presented a variety of lacks that may or may not result from 
flawed concept images. However, the results obtained in this study do not allow us to 
say for certain that these specific students had such misconceptions. It is also difficult to 
tell to which extent the rather open formulation of our task influenced the formalism of 
the answers given by the students. Concerning formalism, we got the impression that 
students are not used to focusing on this aspect in their weekly homework. If a higher 
level of formalism in the students’ works is indeed desired by teachers, it may be 
constructive to target this shortage by emphasising why formalism is required in 
mathematical contexts. Furthermore, a discussion (either teacher-student or student-
student) or task about «what if» could be productive. For example: «What would happen 
if we allowed the zero vector to be an eigenvector?». 

Our analysis showed that several students gave a discursive rephrasing (as described in 
table 1) of the eigenequation (i.e. 𝐴𝒙 = 𝜆𝒙), omitting aspects of the formal concept 
definition such as the correspondence between the eigenvector, eigenvalue and its 
matrix. Other students defined eigenvectors without mention of the matrix or 
transformation at all. As eigenvectors are derived from their corresponding matrix (or 
transformation), these answers were interpreted as incomplete. However, whether such 
incomplete definitions were due to a lack of formalism, some losses caused by the 
translation from a (possibly non-verbal) concept image to a written description or actual 
misconceptions remains unclear. In future studies, we will work with similar research 
questions and address the challenges presented in this paper. We acknowledge that it can 
be problematic to characterise students’ concept images from their written answers 
alone. We believe that by also analysing the students’ answers to the other tasks we 
designed and conducting interviews with students, we can gain deeper insight into their 
concept images, and consequently, their procedural and conceptual understanding of 
eigenvectors and eigenvalues. Building on this, we aim to develop tasks that explicitly 
address changes between different representations and modes of description.   
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