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A Unified Approach to Direct Kinematics of Some Reduced 
Motion Parallel Manipulators

After discussing the Study point transformation operator, a unified way to formulate kinematic problems, using “points moving on 
planes or spheres” constraint equations, is introduced. Application to the direct kinematics problem solution of a number of different 
parallel Schönflies motion robots is then developed. Certain not widely used but useful tools of algebraic geometry are explained and 
applied for this purpose. These constraints and tools are also applied to some special parallel robots called “double triangular” to 
show that the approach is flexible and universally pertinent to manipulator kinematics in reducing the complexity of some previously 
achieved solutions. Finally a novel two-legged Schönflies architecture is revealed to emphasize that good design is not only essential to 
good performance but also to easily solve kinematic models. In this example architecture, with double basally actuated legs so as to 
minimize moving mass, the univariate polynomial solution turns out to be simplest, i.e., of degree 2.
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1 Introduction

This paper was originally intended only to revisit, with refor-

mulation using Study parameters, the direct kinematic �DK�
analysis of two special parallel mechanisms, so-called double tri-

angular manipulators �DTMs�. These parameters, eight homoge-

neous coordinates of kinematic image space, are also called the

elements of a dual quaternion. Double triangular mechanisms in-

clude a planar, a spherical, and a full six degree of freedom �DOF�
spatial type, all introduced by Daniali and co-workers �1,2�. This

re-investigation of limited scope produced simplifications in solu-

tion and some insight that emboldened the authors to go farther

afield and include a number of unrelated but possibly more prac-

tical parallel manipulators under the unifying umbrella of these

analytical tools. The extended work reported herein concentrates

on so-called Schönflies 4DOF manipulators, characterized by four

distinctly different architectures and investigated by Nabat et al.

�3�, Angeles et al. �4�, Gauthier �5�, and Zsombor-Murray �6�,
respectively, that admit all three translational degrees and one ro-

tation about a fixed axis. A treatment of spherical DTM DK analy-

sis is included. Note that if one is given a 4DOF manipulator, like

those confined to Schönflies motions, then the DK is completely

specified with four constraint equations. Furthermore, in this pa-

per, these equations describe points, transformed via kinematic

mapping, to lie on planes or spheres. The main purpose is to

investigate various parallel manipulator architectures and show

how their DK is modeled with different combinations of con-

straints of this type. In every case the main result is a univariate

polynomial of degree 2, 4, or 8, and a linear back substitution

process to unambiguously evaluate all other unknown parameters.

The relation between combinations and the degree of the univari-

ate polynomial solution is explained.

The general Euclidean displacement � in 3-space can be de-

scribed by

q = Mp �1�

Here M is the 4�4 matrix

M = �
t0 0 0 0

t1 x0
2 + x1

2 − x2
2 − x3

2 2�x1x2 − x0x3� 2�x1x3 + x0x2�

t2 2�x1x2 + x0x3� x0
2 − x1

2 + x2
2 − x3

2 2�x2x3 − x0x1�

t3 2�x1x3 − x0x2� 2�x2x3 + x0x1� x0
2 − x1

2 − x2
2 + x3

2
�
�2�

where t0 is the nonzero condition

t0 = x0
2 + x1

2 + x2
2 + x3

2
� 0 �3�

and the rest of the first column are translational components in the

respective x-, y-, and z-direction.

t1 = 2�x0y1 − x1y0 + x2y3 − x3y2�

t2 = 2�x0y2 − x2y0 + x3y1 − x1y3� �4�

t3 = 2�x0y3 − x3y0 + x1y2 − x2y1�

The variables xi, yi, i=0. . .3 are elements of the Study parameter

vector, s, in dual quaternion components

s = �x0,x1,x2,x3,y0,y1,y2,y3�⊤

that must satisfy the so-called Study condition expressed as

x0y0 + x1y1 + x2y2 + x3y3 = 0 �5�

Finally p and q are homogeneous point coordinate vectors of a

point P and its image Q under �.

p = �
p0

p1

p2

p3

�, q = �
q0

q1

q2

q3

�
The rest of the paper is organized as follows: Section 2 contains

the general formulation of planar and spherical constraints in
terms of Study parameters. In Secs. 3–5 we demonstrate the ap-
plicability of the method by treating some manipulator classes
pertaining to the types mentioned above.
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2 Planar and Spherical Constraints

In general, a kinematic mapping approach to any problem in-
volves the selection of a set of point, plane, and/or line elements,
all on a chosen subassembly, called EE, because it often pertains
to and is short for “end effector,” of the mechanism in question,

and displacing these according to some parameters, xi and yi, to be
determined so that the selected elements fall on appropriate con-
straint surfaces on the remaining portion of the mechanism, called
FF to indicate base or “fixed frame.” In what follows only point
elements and planar or spherical constraint surfaces will be used.
Notwithstanding these restrictions it will be seen that a rich vari-
ety of mechanical situations can be dealt with.

2.1 Planar Constraints. Given the transformation relation,
Eq. �1�, consider a planar surface constraint equation. This can be
written as

e⊤q = e⊤Mp = e0q0 + e1q1 + e2q2 + e3q3 = 0 �6�

with

e = �
e0

e1

e2

e3

�
denoting the homogeneous coordinate vector of the constraint

plane � in the fixed frame and

p = �
1

p1

p2

p3

�
that of the point P in the moving frame whose image Q has to lie

in �.

Only normalized homogeneous point coordinates �p0=1� are

used throughout to maintain points in Euclidean space. Then p1,

p2, and p3 are the Cartesian coordinates of P in the moving, end
effector frame EE.

Equation �6� is a homogeneous quadratic constraint equation in

terms of Study parameters x0, x1, x2, x3, y0, y1, y2, and y3. It can
be compactly written as follows:

s⊤Cs = 0 �7�

Here C is an 8�8 matrix of the form

C = �A B

B⊤ O
� �8�

with 4�4 blocks A, O, and B where O is a zero block while A is

symmetric and B is skew-symmetric. They can be written as
follows:

A = �
e0 + e1p1 + e2p2 + e3p3 e3p2 − e2p3 e1p3 − e3p1 e2p1 − e1p2

e3p2 − e2p3 e0 + e1p1 − e2p2 − e3p3 e2p1 + e1p2 e1p3 + e3p1

e1p3 − e3p1 e2p1 + e1p2 e0 − e1p1 + e2p2 − e3p3 e3p2 + e2p3

e2p1 − e1p2 e1p3 + e3p1 e3p2 + e2p3 e0 − e1p1 − e2p2 + e3p3

� �9�

B = �
0 e1 e2 e3

− e1 0 e3 − e2

− e2 − e3 0 e1

− e3 e2 − e1 0
� �10�

2.2 Spherical Constraints. A spherical constraint on the po-

sition of an image point Q�q0 ,q1 ,q2 ,q3� is a condition of the form

q1
2 + q2

2 + q3
2 + e1q0q1 + e2q0q2 + e3q0q3 + e0q0

2 = 0 �11�

where ei=−2mi, i=1,2 ,3, and e0=m1
2+m2

2+m3
2−r2 with mi being

the center coordinates of the sphere � under consideration and r
denoting its radius.

Notice that symbols ei, i=0,1 ,2 ,3 are used to denote both
plane and sphere parameters to emphasize that these play the same
role in formulating the constraint equation developed in either
case.

Since condition �11� is quadratic in qi and qi themselves are
quadratic in the Study parameters, an a priori quartic constraint on

qi is obtained. However, by applying a method due to Ref. �7�,1

this is thus reduced to a quadratic equation: Four times the square
of Study condition �3� is added to implicit equation �11� to obtain
a polynomial that is the product of

x0
2 + x1

2 + x2
2 + x3

2

and a homogeneous quadratic factor f in the eight Study param-
eters

q1
2 + q2

2 + q3
2 + e1q0q1 + e2q0q2 + e3q0q3 + e0q0

2 + 4�x0y0 + x1y1

+ x2y2 + x3y3�2 = �x0
2 + x1

2 + x2
2 + x3

2� · f�s⊤�

Since x0
2+x1

2+x2
2+x3

2
�0 and x0y0+x1y1+x2y2+x3y3=0 the con-

straint equation imposed by a sphere constraint is

f�s⊤� = 0

Compressing coefficients, a compact matrix form is obtained as

f�s⊤� = s⊤C�s = 0

The resulting 8�8 matrix C� is abbreviated to block form as

C� = �A + �p1
2 + p2

2 + p3
2�I B�

B�⊤ 4I
� �12�

where A is the 4�4 symmetric matrix �Eq. �9��, B� is the 4�4
skew-symmetric matrix

B� = �
0 e1 + 2p1 e2 + 2p2 e3 + 2p3

− e1 − 2p1 0 e3 − 2p3 − e2 + 2p2

− e2 − 2p2 − e3 + 2p3 0 e1 − 2p1

− e3 − 2p3 e2 − 2p2 − e1 + 2p1 0
� �13�

and I is the 4�4 identity matrix.

1
Husty �7� was first to apply this technique to formulate the DK algorithm for the

general Stuart–Gough platform manipulator where six points in EE are displaced

onto six spheres in FF.
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2.3 Constraint Equation Structure. Comparing Eqs.

�8�–�10�, �12�, and �13� one sees that matrices C and C�, which
contain only given parameters, are quite similar in structure.

In the case of the point-on-plane �PoP� constraint the matrix C

leads to an equation that is linear in yi.

The point-on-sphere �PoS� constraint contains a term 4	i=0
3 yi

2

but there are no other quadratic terms in yi.
In the case of more than one sphere constraint, only one con-

straint equation needs to remain quadratic in yi because it can be

subtracted from the others to remove all yi
2.

For a full 6DOF manipulator problem, six constraint equations
are required. The nonzero condition and the Study condition

	
i=0

3

xi
2

� 0, 	
i=0

3

xiyi = 0

are added as additional constraints to handle eight unknown pa-
rameters.

3 Schönflies Manipulator DK With Plane and/or

Sphere Constraints

The four parameter subgroup of Schönflies displacements con-
tains the proper Euclidean transformations that confine rotation to
a fixed axial direction. Here the common direction is taken paral-

lel to the z- or x3-axis of EE and FF. Analytic description of this
group is obtained by substituting

x1 = x2 = 0

in the general displacement matrix, Eq. �2�, so as to become the

4�4 matrix, Eq. �14�.

M = �
x0

2 + x3
2 0 0 0

t1 x0
2 − x3

2 − 2x0x3 0

t2 2x0x3 x0
2 − x3

2 0

t3 0 0 x0
2 + x3

2
� �14�

Simplified first column �translation� elements are shown above
and are defined below.

t1 = 2�x0y1 − x3y2�

t2 = 2�x0y2 + x3y1� �15�

t3 = 2�x0y3 − x3y0�

The Study condition and the nonzero condition are similarly re-
duced.

x0y0 + x3y3 = 0 �16�

x0
2 + x3

2
� 0 �17�

A Schönflies manipulator is any mechanism that admits only
Schönflies motions.

In case of Schönflies displacement, a plane constraint is repre-

sented by matrix C �Eq. �8��, with second and third rows and
columns removed, that now reads as

a1x0
2 + 2a2x0x3 + a3x3

2 + 2e1�x0y1 − x3y2� + 2e2�x0y2 + x3y1�

+ 2e3�x0y3 − x3y0� = 0

or, using ti, defined by Eq. �15�, as

a1x0
2 + 2a2x0x3 + a3x3

2 + e1t1 + e2t2 + e3t3 = 0 �18�

where

a1 = e0 + e1p1 + e2p2 + e3p3

a2 = e2p1 − e1p2

a3 = e0 − e1p1 − e2p2 + e3p3

Similarly a simplified
2

sphere constraint, in case of the Schön-
flies motion, is written as

a1
�x0

2 + 2a2
�x0x3 + a3

�x3
2 + 2b1

�x0y1 + 2b2
�x3y2 + 2b3

�x0y2 + 2b4
�x3y1

+ 2b5
��x0y3 − x3y0� + 4�y0

2 + y1
2 + y2

2 + y3
2� = 0 �19�

where

a1
� = e0 + e1p1 + e2p2 + e3p3 + p1

2 + p2
2 + p3

2

a2
� = e2p1 − e1p2

a3
� = e0 − e1p1 − e2p2 + e3p3 + p1

2 + p2
2 + p3

2

b1
� = e1 + 2p1

b2
� = − e1 + 2p1

b3
� = e2 + 2p2

b4
� = e2 − 2p2

b5
� = e3 + 2p3

3.1 Schönflies Motion With Three PoP Constraints. To bet-
ter understand geometric techniques used later in specific ex-
amples of parallel manipulator architectures it is useful to discuss
Darboux motion, which is defined by the requirement that the
path of each point is a planar curve. It turns out �cf. Ref. �8�, pp.
304–310� that aside from trivially obvious cases, where all point
paths lie in parallel planes, such a motion is one-parametric and
the rigid body can rotate only about axes in some common, fixed
direction. This means that Darboux motion is a subset of Schön-
flies motion. Moreover, it is well known that all point paths under
a nontrivial Darboux motion are ellipses.

In the following we prove that a Schönflies motion with three
PoP constraints is always a Darboux motion.

3
All we need to show

is that, given three PoP constraints, the translational components

t1, t2, and t3 are homogeneous quadratic functions in x0 or x3; i.e.,
the resulting motion is rational of order 2.

Let

ai1x0
2 + 2ai2x0x3 + ai3x3

2 + 2ei1�x0y1 − x3y2� + 2ei2�x0y2 + x3y1�

+ 2ei3�x0y3 − x3y0� = 0 �20�

be the three PoP constraints, i=1,2 ,3 �compare with Eq. �18��.
With some further symbolic compression, as noted afterward, the
following four expressions, Eq. �21�, generated with Eq. �20� via
Cramer’s rule, are offered, by way of proof, to show that one
indeed obtains a Darboux motion.

y0 = − x3 ·
�2�x0,x3�

2� · �x0
2 + x3

2�

y1 =
x0 · �2�x0,x3� + x3 · �2�x0,x3�

2� · �x0
2 + x3

2�
�21�

y2 =
x0 · �2�x0,x3� − x3 · �2�x0,x3�

2� · �x0
2 + x3

2�

y3 = x0 ·
�2�x0,x3�

2� · �x0
2 + x3

2�

where �2�x0 ,x3�, �2�x0 ,x3�, and �2�x0 ,x3� are the quadratic homo-

geneous polynomials

�2�x0,x3� = �
a1e2e3

a2e2e3

a3e2e3
��x0
22x0x3x3

2�⊤

2
Only six of the bilinear terms xiy j occur.

3
Vogler �16� recently gave an alternative proof of this fact.
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�2�x0,x3� = �
e1a1e3

e1a2e3

e1a3e3
��x0
22x0x3x3

2�⊤

�2�x0,x3� = �
e1e2a1

e1e2a2

e1e2a3
��x0
22x0x3x3

2�⊤

and

� = 
e1e2e3
, a j = �
a1j

a2j

a3j

�, e j = �
e1j

e2j

e3j

�
By substitution of Eq. �21� into Eq. �15� we get

t1 = 2�x0y1 − x3y2� =
�2�x0,x3�

�

t2 = 2�x0y2 + x3y1� =
�2�x0,x3�

�
�22�

t3 = 2�x0y3 − x3y0� =
�2�x0,x3�

�

This shows that the translational components t1, t2, and t3 are

indeed homogeneous quadratic functions in x0 ,x3, as stated.

3.2 DK of Schönflies Manipulators With Three PoP and a
Fourth PoP or PoS Constraint. As shown in Sec. 3.1 the three
given PoP constraints determine a Darboux motion. Hence, the
path of the fourth given point undergoing this motion is an ellipse.
On the other hand this point must lie on a plane or sphere accord-
ing to the fourth given constraint. In conclusion the DK problem
at hand can be reduced to finding the intersection of an ellipse
with a plane or a sphere. The insight gained from this approach
shows that such a problem must necessarily admit two or four DK
solutions, at most.

Analytically, the solutions can be found as follows. From the
three given PoP constraints we obtain expressions �21� and �22�.

�a� If the fourth constraint surface is a plane represented by
Eq. �18� then substitution of Eq. �22� produces a qua-

dratic univariate in x3 after dehomogenizing with x0=1.
�b� If the fourth surface is a sphere represented by Eq. �19�,

then by substitution of Eq. �21� the quadratic term

4	i=0
3 yi

2 becomes

4�y0
2 + y1

2 + y2
2 + y3

2� =
1

�2�x0
2 + x3

2�
��2

2�x0,x3� + �2
2�x0,x3�

+ �2
2�x0,x3��

Thus, substitution of Eq. �21� in Eq. �19� clearly produces a

quartic univariate in x3 after multiplication with the denominator

x0
2+x3

2 and dehomogenizing with x0=1.

Once the values of x3 are thus obtained, the three equations in

Eq. �22� allow one to find the corresponding values of t1, t2, and

t3, thus completing the definition of the DK displacement implied
by the problem.

3.3 DK of Schönflies Manipulators With Two or More PoS
Constraints. Let at least two PoS constraints �Eq. �19�� be used to
characterize the DK of a Schönflies motion. Then the difference

between any two PoS equations removes the term 4	i=0
3 yi

2 so as to

always yield three equations �Eq. �23�� linear in y0, y1, y2, and y3.

mi1x0
2 + mi2x0x3 + mi3x3

2 − mi4x3y0 + �mi5x0 + mi6x3�y1 + �mi7x0

+ mi8x3�y2 + mi4x0y3 = 0 �23�

Each represents either a PoP constraint or the difference between

two PoS constraints. The coefficients mij, i=1,2 ,3, j=1, . . . ,8 are
formulated from appropriate combinations of given point, plane,

or sphere parameters, pkl, ekl.

A fourth constraint contains the term 4	i=0
3 yi

2. It has the form of
Eq. �19�.

A 4�5 matrix, whose rows are coefficients of 1, y0, y1, y2, and

y3, as these appear in Study condition �16� and the three equations

in Eq. �23�, is set up. Taking determinants of all 4�4 minors with

alternating�sign and dividing all the rest by the first, i.e., Cram-

er’s rule, yield yi=yi�x0 ,x3�.

� = �x0
2 + x3

2��	457x0
2 + �	458 + 	467�x0x3 + 	468x3

2�

= �x0
2 + x3

2�
2�x0,x3�

y0 =
x3

�
�	157x0

4 + �	158 + 	167 + 	257�x0
3x3 + �	168 + 	258 + 	267

+ 	357�x0
2x3

2 + �	268 + 	358 + 	367�x0x3
3 + 	368x3

4� =
x3

�
�4�x0,x3�

y1 =
x0

2 + x3
2

�
�	147x0

3 + �	148 + 	247�x0
2x3 + �	248 + 	347�x0x3

2

+ 	348x3
3� =

x0
2 + x3

2

�
· �3�x0,x3� �24�

y2 = −
x0

2 + x3
2

�
�	145x0

3 + �	146 + 	245�x0
2x3 + �	246 + 	345�x0x3

2

+ 	346x3
3� = −

x0
2 + x3

2

�
�3�x0,x3�

y3 = −
x0

x3

y0 = −
x0

�
· �4�x0,x3�

where 	ijk= 
mim jmk
, m j = �m1j ,m2j ,m3j�⊤.

Note that homogeneous polynomials 
2�x0 ,x3�, �4�x0 ,x3�,
�3�x0 ,x3�, and �3�x0 ,x3� in x0 ,x3 are of degrees 2, 4, 3, and 3,

respectively.
At this point, things do not look encouraging. The numerators

in the expressions for yi are of fifth order and the common de-

nominator � is quartic. Improvement in prospects appears after

substitution of these expressions into the quadratic term 	i=0
3 yi

2 of
the fourth constraint �Eq. �19��

	
i=0

3

yi
2 =

�4
2�x0,x3� + �x0

2 + x3
2� · ��3

2�x0,x3� + �3
2�x0,x3��

�x0
2 + x3

2� · 
2
2�x0,x3�

Hence, substitution of Eq. �24� into the fourth equation yields,

after multiplication with the denominator �x0
2+x3

2�
2
2�x0 ,x3�, the

following homogeneous octic equation in x0 ,x3:

�x0
2 + x3

2��
2�x0,x3���a1
�x0

2 + 2a2
�x0x3 + a3

�x3
2�
2�x0,x3� + 2�b1

�x0

+ b4
�x3� · �3�x0,x3� − 2�b3

�x0 + b2
�x3��3�x0,x3� − 2b5

��4�x0,x3��

+ 4��3
2�x0,x3� + �3

2�x0,x3��� + 4�4
2�x0,x3� = 0 �25�

This establishes the upper bound of eight on the number of
possible solutions for any Schönflies DK problem that is defined
by PoP and PoS constraints and contains at least two of the latter.

With solutions for x3, and having set x0=1, corresponding values

of yi are obtained explicitly with Eq. �24�; so are elements of the
transformation, Eq. �14�. This essentially solves this DK problem.
In Sec. 3.4 it will be shown that eight real DK solutions for such
Schönflies architectures can occur.

3.4 Examples of Schönflies Manipulators

3.4.1 Fully Parallel Schönflies Manipulators. Figure 1 shows

the � or parallelogram joint, a feature common to many Schön-
flies manipulators because it provides a 1DOF circular translation
to the distal link, with respect to the link at the opposite side of the

parallelogram. Figure 1�a� shows two leg designs, with �- and
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R-joints, that may be used to build four-legged robots wherein EE

executes Schönflies motion. Actuating a basal R-joint as shown on
the left causes the remaining free joints to bind the EE attachment

point, shown at the center of the terminal R-joint, to motion in the

plane of the two �-joints. Actuating a basal �-joint as shown at
the right causes that point to move, alas, on a torus. A four, similar
legged manipulator of the first type is therefore seen to have four
PoP constraints and a DK solution admitting two assembly modes
as demonstrated in Sec. 3.2. In the case on the right, circular
sections of the torus are shown. DK analysis of such models
awaits a future treatment of toroidal constraint that promises to be
more complicated. A glance at the manipulator of Zhou et al. �9�,
with P� R�R legs, shown in Fig. 1�b�, fares—if one seeks solution
simplicity—somewhat better. The EE attachment points cause the

terminal R-joint centers to move on spheres and the DK problem
solution admits an octic univariate polynomial. Referring to Ref.
�10� the interested reader might try all leg architectures depicted
therein to see which fit the “point-on-plane or -sphere” formula-
tion paradigm. Certainly those that do not will afford fruitful av-
enue of future research.

3.4.2 Two-Legged Schönflies Manipulators. Shown in Fig.
2�a� is a novel design prototype revealed by Angeles et al. �4�.
The idea was to achieve superior workspace and dexterity, which
one might expect when the number of legs of a parallel robot is
reduced from four to two, while retaining some advantages inher-
ent in parallel architecture. Furthermore maintaining basal actua-
tion is seen as an additional advantage of the design. This avoids
placement of motors on moving links, as is done in many serial
designs. Two joint actuation is achieved by means of an—also

basally mounted—planetary gearbox that delivers torque to both

the proximal R- and �-joints. Only one would be actuated, in
typical four-legged designs, like those depicted in Fig. 1.

The DK of the two-legged Schönflies manipulator of Angeles et
al. �4� is immediately seen to be modeled as the placement of each

of the two EE attachment points Pi on a circle ki represented by

two surfaces: a sphere �i and a vertical plane �i, i=1,2. The
solution paradigm is typical of all parallel Schönflies manipulators
with PoP and more than one PoS constraint. Therefore the setup
for the octic univariate, derived in Sec. 3.3, will be carried out
here in some detail.

By appropriate choice of the coordinate system in EE one can

assume that the two EE attachment points P1 and P2 are given by
the vectors

p1 = �
1

0

0

0
�, p2 = �

1

d

0

0
�

which means that P1 is on the origin and P2 on the x-axis of the

EE coordinate system. The circles k1 and k2 are represented by the

plane-sphere pairs ��1 ,�1� and ��2 ,�2� as follows:

�1 ¯ e1 = �
e10

e11

e12

0
�, �1 ¯ e2 = �

e20

e21

e22

e23

�
�2 ¯ e3 = �

e30

e31

e32

0
�, �2 ¯ e4 = �

e40

e41

e42

e43

�
From the constraints P1��1 ,�1 and P2��2 ,�2 we get the four
equations

e10�x0
2 + x3

2� + 2e11�x0y1 − x3y2� + 2e12�x0y2 + 2x3y1� = 0 �26�

e20�x0
2 + x3

2� + 2e21�x0y1 − x3y2� + 2e22�x0y2 + x3y1� + 2e23�x0y3

− x3y0� + 4�y0
2 + y1

2 + y2
2 + y3

2� = 0 �27�

�e30 + e31d�x0
2 + 2e32dx0x3 + �e30 − e31d�x3

2 + 2e31�x0y1 − x3y2�

+ 2e32�x0y2 + x3y1� = 0 �28�

�e40 + e41d + d2�x0
2 + 2e42dx0x3 + �e40 − e41d + d2�x3

2 + 2�e41

+ 2d�x0y1 − 2�e41 − 2d�x3y2 + 2e42�x0y2 + x3y1� + 2e43�x0y3

− x3y0� + 4�y0
2 + y1

2 + y2
2 + y3

2� = 0 �29�

free R dyad

free

free R-joint

R-joint actuator

two free -joints

FF FF

EE

free

R-joints

-

joint

toroidal surface of

-joint actuator

d

(b)(a)

Fig. 1 Various leg architectures in a variety of Schönflies parallel manipulator contexts

P1

P2

k1 k2

(b)(a)

Fig. 2 Two-legged Schönflies manipulator
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To obtain Eq. �23�, the system of three equations linear in yi, Eqs.
�26� and �28� are selected along with the difference between Eqs.

�29� and �27�. The resulting coefficients mij are

m11 = m13 = e10, m12 = m14 = 0

m15 = − m18 = 2e11, m16 = m17 = 2e12

m21 = e30 + e31d, m22 = 2e32d, m23 = e30 − e31d

m24 = 0, m25 = − m28 = 2e31, m26 = m27 = 2e32

m31 = e40 − e20 + e41d + d2, m32 = 2e42d

m33 = e40 − e20 − e41d + d2, m34 = 2�e43 − e23�

m35 = 2�e41 − e21 + 2d�, m36 = m37 = 2�e42 − e22�

m38 = 2�− e41 + e21 + 2d�

With the coefficients mij one defines the determinants 	ijk and

hence the polynomials �4�x0 ,x3�, �3�x0 ,x3�, �3�x0 ,x3�, and


2�x0 ,x3� according to Eq. �24�. Finally, one of the two given PoS

constraints, say, Eq. �27�, is used to produce univariate octic equa-

tion �25�. In this case the resulting constants a1
� , . . . ,b5

� are

a1
� = a3

� = e20, a2
� = 0

b1
� = − b2

� = e21, b3
� = b4

� = e22, b5
� = e23

Figure 2�b� shows an example with eight real solutions. The
eight poses of EE are represented by eight horizontal—they do not

appear so in the perspective image—bars whose end points P1 and

P2 lie on the two given circles k1 and k2 representing EE anchor
point free motion in FF. This example was solved using the fol-
lowing data:

d = 5, e1 = �
0

1

0

0
�, e2 = �

− 9

0

0

0
�

e3 = �
− 0.98

− 0.1

1

0
�, e4 = �

− 23.87

− 0.4

− 2

− 0.6
�

As a final example of two-legged Schönflies manipulators, the
two view drawing in Fig. 3 shows for the first time how, after
considerable further development of the basic design idea, to ap-

ply a very simple PP� PR leg architecture to achieve a DK model

where two points S and T move on two lines S and T, respec-
tively. Each line is the intersection of a vertical plane and one

normal to it. The two basal P-joints on each leg are actuated,
possibly in the manner shown. With only PoP constraints, the DK
admits two solutions, at most.

4 DK of the Spherical Double Triangular Manipulator

Figure 4�a� shows the mechanical layout of a regular spherical
double triangular manipulator �spherical DTM�. Keep in mind that
the three short legs, each made up of curved sliders and interme-

diate R-joints, separating the curved rods of FF and EE, make this
architecture kinematically equivalent to a classical three-legged

RRR spherical parallel manipulator. Notwithstanding apparent
similarity to the spatial DTM �see Sec. 5� this one, in contrast, is
fully parallel; i.e., has one as opposed to more actuated joints per
leg.

Under spherical displacement there are no terms containing yi

in point transformation �2� as follows:

M = �
x0

2 + x1
2 + x2

2 + x3
2 0 0 0

0 x0
2 + x1

2 − x2
2 − x3

2 2�x1x2 − x0x3� 2�x1x3 + x0x2�

0 2�x1x2 + x0x3� x0
2 − x1

2 + x2
2 − x3

2 2�x2x3 − x0x1�

0 2�x1x3 − x0x2� 2�x2x3 + x0x1� x0
2 − x1

2 − x2
2 + x3

2
� �30�

The DK of the spherical DTM can be reformulated as the fol-

lowing task:

Given a spherical triangle P1P2P3 on the unit sphere and three

planes �1 ,�2 ,�3 on the origin �center of the unit sphere� find a

congruent spherical triangle Q1Q2Q3 with Qi��i.

In other words one has to find all spherical displacements that

satisfy the three PoP conditions Pi ,�i, i=1,2 ,3.

To solve this task one may simplify coefficients by choosing,

without loss in generality, the three points Pi and the three planes

�i as follows:

Front View

Passive
R-joint

Passive

P-joint

Active P-joints

Half top-view

Q

EE

T

S

P

d

Fig. 3 Two screw actuators for double basal actuation
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p1 = �
1

1

0

0
�, p2 = �

1

p2,1

p2,2

0
�, p3 = �

1

p3,1

p3,2

p3,3

�
and

e1 = �
0

1

0

0
�, e2 = �

0

e2,1

e2,2

0
�, e3 = �

0

e3,1

e3,2

e3,3

�
Then the three planar constraints

ei
⊤Mpi = 0, i = 1,2,3

have the form

x0
2 + x1

2 − x2
2 − x3

2 = 0

a00x0
2 + a11x1

2 + a22x2
2 + a33x3

2 + 2a03x0x3 + 2a12x1x2 = 0 �31�

b00x0
2 + b11x1

2 + b22x2
2 + b33x3

2 + 2b01x0x1 + 2b02x0x2 + 2b03x0x3

+ 2b12x1x2 + 2b13x1x3 + 2b23x2x3 = 0

where M is matrix equation �30� and

a00 = e21p21 + e22p22, a11 = e21p21 − e22p22

a22 = − e21p21 + e22p22, a33 = − e21p21 − e22p22

a03 = e22p21 − e21p22, a21 = e21p22 + e22p21

b00 = e32p32 + e31p31 + e33p33

b11 = − e33p33 + e31p31 − e32p32

b22 = e32p32 − e31p31 − e33p33

b33 = − e31p31 − e32p32 + e33p33

b01 = e33p32 − e32p33, b02 = e31p33 − e33p31

b03 = e32p31 − e31p32, b12 = e31p32 + e32p31

b13 = e31p33 + e33p31, b23 = e32p33 + e33p32

Remark. It is well known that each of the equations in Eq. �31�
represents a Clifford-quadric in a homogeneous three dimensional

vector space of Euler parameters x0, x1, x2, and x3. This is a
Cayley–Klein space with an elliptic metric based on the absolute

null-quadric M :x0
2+x1

2+x2
2+x3

2=0. A Clifford-quadric is charac-
terized by the property that its intersection with M is a skew
quadrilateral consisting of two pairs of conjugate complex straight
lines. See, for instance, Ref. �11�.

In the following we will outline how the number of variables
can be reduced from four to three, if dehomogenization is
counted, to two by introducing a bilinear parametrization of the
Clifford-quadric represented by the first of the three equations in
Eq. �31�; i.e.,

x0
2 + x1

2 − x2
2 − x3

2 = 0 �32�

By means of the regular projective �coordinate� transformation

x0 = y0 + y3

x1 = y1 + y2

�33�
x2 = y0 − y3

x3 = y1 − y2

the Clifford-quadric, Eq. �32�, becomes the bilinear equation

4�y0y3 + y1y2� = 0

Now a parametrization can be easily tailored so as to null the
expression above, viz.,

�
y0

y1

y2

y3

� = �
− 1

u

v

uv

� �34�

After application of the inverse projective transform �Eq. �33�� we
obtain the mentioned bilinear parametrization of the original
Clifford-quadric �Eq. �32��

�
x0

x1

x2

x3

� = �
− 1 + uv

u + v

− 1 − uv

u − v

� �35�

Hence, substitution of this parametrization nulls the left hand side
of the first of the equations in Eq. �31�. The other two, after a little
rearrangement, assume the form of

�2�u�v2 + �1�u�v + �0�u� = 0

�36�
�2�u�v2 + �1�u�v + �0�u� = 0

where the coefficients are the following quadratics in u:

Fig. 4 Spherical double triangular manipulator
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�2�u� = 2e22�p22u
2 − 2p21u − p22�

�1�u� = − 4e21p22�u
2 + 1�

�0�u� = − 2e22�p22u
2 + 2p21u − p22�

�2�u� = − 2�e31p33 − e32p32 − e33p31�u
2 − 4�e32p31 − e33p32�u

− 2�e31p33 + e32p32 + e33p31�

�1�u� = − 4�e31p32 + e32p33�u
2 − 8e33p33u − 4�e31p32 − e32p33�

�0�u� = 2�e31p33 − e32p32 + e33p31�u
2 − 4�e32p31 + e33p32�u

+ 2�e31p33 + e32p32 − e33p31�

An octic in u emerges when v is eliminated between equations in
Eq. �36�. A neat dialytic method to do this is given in

�
�2�u� �1�u� �0�u� 0

0 �2�u� �1�u� �0�u�

�2�u� �1�u� �0�u� 0

0 �2�u� �1�u� �0�u�
� = 0 �37�

To obtain values of v that correspond to the eight values of u

obtained with Eq. �37� consider that a given u=u0 numerically
defines all coefficients in Eq. �36� so these two equations become

redundant. Multiplying these, respectively, by �2�u0� and �2�u0�
and equating their difference to zero define v=v0 as

v = v0 =
�0�u0��2�u0� − �2�u0��0�u0�

�2�u0��1�u0� − �1�u0��2�u0�
�38�

Using known pairs of u=u0, v=v0 in Eq. �35� yields all four xi for
up to eight poses of EE moved to FF via a spherical displacement
constrained by three PoP equations.

The diagram in Fig. 4�b� displays an architecture with imposed
joint parameters that generates a DK solution with eight assembly
modes. So once again an octic univariate is minimal. This ex-

ample uses three planes, x=0, y=0, and z=0, upon which three
absolute EE points, initially with respective direction numbers
�1,0,0�, �0.5,0.48,0�, and �0.27,0.71,1.64�, are to be placed. The
EE triangle is scalene. It was thus chosen to visually contrast, by
its asymmetry, its double placement in each of the four octants of
the sphere and, of course, to show a case with eight real assembly
modes. The division of the FF sphere into eight congruent spheri-
cal triangles brings to ones attention that inscribing the EE tri-
angle into any of the other �blank� octants would involve parity
reversal of the EE triangle. I.e., exchanging concave and convex
surface orientation, like flipping heads and tails in the planar case,
is forbidden. Such “solutions” would thus not be valid ones.

5 Spatial Three-Legged Manipulator DK With Three

Line Constraints

This is a full mobility, i.e., 6DOF manipulator. It fits into the
category of reduced mobility—or rather reduced complexity—
because it is not fully parallel. Its three legs require two actuators
each and thus its DK is much easier to solve than, say, Husty’s
general six-points-on-six-spheres problem �7�. Equation �1� and
six PoP constraints may be used in this case if each given point
must satisfy a pair of these; i.e., each pair of planes intersects on
one of the given lines. The spatial DTM can be modeled in this

way. The following three points Pi, i=1,2 ,3 and six planes �i, i

=1, . . . ,6, the latter to be taken in successive pairs to represent

lines, li, are without loss in generality chosen to simplify equation
coefficients and, more important, to obtain a system that admits a
reparametrization approach to solution quite similar to that used,
in Sec. 4, for the DK of three-legged spherical robots.

p1 = �
1

0

0

0
�, p2 = �

1

p21

0

0
�, p3 = �

1

p31

p32

0
�

l1 ¯ e1 = �
0

0

1

0
�, e2 = �

0

0

0

1
�

l2 ¯ e3 = �
1

0

0

e33

�, e4 = �
0

e41

e42

0
�

l3 ¯ e5 = �
1

e51

e52

0
�, e6 = �

1

0

e62

e63

�
This means that the first line l1 is the x-axis of the coordinate

frame in FF, that the z-axis of that coordinate system is the com-

mon perpendicular of l1 , l2, and that one of the two planes fixing

the third line l3 is parallel to z and the other one is parallel to x.

Now the three terms, which contain yi, i=0,1 ,2 ,3 in the first
column of the matrix in Eq. �2�, are replaced with the translational

components ti, i=1,2 ,3, according to Eq. �5� and, after carrying

out the six transformations with Eq. �1� to get qi, the products

e1,2
⊤ q1, e3,4

⊤ q2, and e5,6
⊤ q3 provide six constraint equations. Notice

that the original eight homogeneous Study parameters have been

reduced to seven by the replacement of all terms containing y0, y1,

y2, and y3 with t1, t2, and t3 so these six equations are sufficient

when the new system is dehomogenized by setting x0=1. The first

two, which express P1� l1, yield t2=0 and t3=0. Substituting this

result into the rest leaves only t1, in two of the remaining four
equations

x0
2 + x1

2 + x2
2 + x3

2 − 2e33p21�x0x2 − x1x3� = 0 �39�

p21�e41�x0
2 + x1

2 − x2
2 − x3

2� + 2e42�x0x3 + x1x2�� + e41t1 = 0 �40�

�1 + e51p31 + e52p32�x0
2 + �1 + e51p31 − e52p32�x1

2 + �1 − e51p31

+ e52p32�x2
2 + �1 − e51p31 − e52p32�x3

2 − 2�e51p32 − e52p31�x0x3

+ 2�e51p32 + e52p31�x1x2 + e51t1 = 0 �41�

�1 + e62p32�x0
2 + �1 − e62p32�x1

2 + �1 + e62p32�x2
2 + �1 − e62p32�x3

2

+ 2e63p32�x0x1 + x2x3� − 2e63p31�x0x2 − x1x3� + 2e62p31�x0x3

+ x1x2� = 0 �42�

Next, t1 is eliminated from Eqs. �40� and �41� as follows:

e41�1 − e51�p21 − p31� + e52p32�x0
2 + e41�1 − e51�p21 − p31�

− e52p32�x1
2 + e41�1 + e51�p21 − p31� + e52p32�x2

2

+ e41�1 + e51�p21 − p31� − e52p32�x3
2 − 2�e41e51p32 − e41e52p31

+ e42e51p21�x0x3 + 2�e41e51p32 + e41e52p31 − e42e51p21�x1x2 = 0

�43�

With Eqs. �39�, �43�, and �42� we have obtained a system of three

homogeneous quadratic equations in x0, x1, x2, and x3. The coef-
ficients of this system are shown compressed in the following
equation to make the final steps easier to follow:
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x0
2 + x1

2 + x2
2 + x3

2 − 2k�x0x2 − x1x3� = 0

a0x0
2 + a1x1

2 + a2x2
2 + a3x3

2 − 2a4x0x3 + 2a5x1x2 = 0 �44�

b0�x0
2 + x2

2� + b1�x1
2 + x3

2� + 2b2�x0x1 + x2x3� − 2b3�x0x2 − x1x3�

+ 2b4�x0x3 + x1x2� = 0

In the following we adapt the parametrization technique, intro-
duced in Sec. 4, to the case at hand. The left hand side of the first
of the equations in Eq. �44� can be written as a sum of two prod-

ucts whose factors are linear in x0, x1, x2, and x3 as follows:

x0
2 + x1

2 + x2
2 + x3

2 − 2k�x0x2 − x1x3� = �x0 − �k + l�x2��x0 − �k − l�x2�

+ �x1 + �k + l�x3��x1 + �k − l�x3�

where
4

l = �k2 − 1

Hence, if we apply the regular projective �coordinate� transforma-
tion

y0 = x0 − �k + l�x2

y1 = x1 + �k + l�x3

�45�
y2 = x1 + �k − l�x3

y3 = x0 − �k − l�x2

the quadric represented by the first of the equations in Eq. �44�
becomes a simple bilinear expression

y0y3 + y1y2 = 0

whose left hand side is again nulled by parametrization equation
�34�. Substitution of this parametrization into the inverse trans-
form

x0 =
1

2l
�− �k − l�y0 + �k + l�y3�

x1 =
1

2l
�− �k − l�y1 + �k + l�y2�

x2 =
1

2l
�− y0 + y3�

x3 =
1

2l
�y1 − y2�

of �Eq. �45�� yields

�
x0

x1

x2

x3

� = �
k − l + �k + l�uv

�l − k�u + �l + k�v

1 + uv

u − v

� �46�

i.e., a parametrization of the original quadric.
5

Equations �37� and �38� are applied exactly as before, except

for the definition of the quadratic polynomials �2�u� , . . . ,�0�u�,
described as follows:

�2�u� = �2a0k�k + l� − a0 + a2�u2 + 2�a4 + a5��k + l�u + 2a1k�k + l�

− a1 + a3

�1�u� = − 2�a4�k + l� + a5�k − l��u2 + 2�a0 − a1 + a2 − a3�u

+ 2�a5�k + l� + a4�k − l��

�0�u� = �2a1k�k − l� − a1 + a3�u2 − 2�a4 + a5��k − l�u + 2a0k�k − l�

− a0 + a2

�47�
�2�u� = 2�b0k − b3��k + l�u2 − 4b2�1 − k�k + l��u

+ 2�b1k − b3��k + l�

�1�u� = 4b4lu2 + 4�b0 − b1�u + 4b4l

�0�u� = 2�b1k − b3��k − l�u2 + 4b2�1 − k�k − l��u

+ 2�b0k − b3��k − l�

Again the solutions of an octic univariate in u, produced with the
determinant of Eq. �37�, are back substituted into Eq. �38� and the

corresponding v is solved linearly.

5.1 The Spatial Double Triangular Manipulator. A pos-
sible mechanical realization of the three-points-on-three-lines
paradigm is the so-called spatial double triangular manipulator
�spatial DTM� as introduced in Ref. �2�.

Figure 5�a� shows two frames, each consisting of three skew

lines. These are connected by three short C� CC legs where C is a
cylindrical joint. Both DOFs of the ones on FF are actuated. This
was the design envisaged by Daniali �2� who carried out no DK
analysis. Figure 5�b�, on the right, shows such a leg. This design,
though theoretically feasible, embodies a three-intersecting-line-
pairs paradigm, which is fraught with singularities and even
2DOF self-motion as described by Zsombor-Murray and Hyder

�12�. Adopting C� RRC legs as shown on the left of Fig. 5�b� solves

the problem. The centers of the three unactuated C-joints become
the three points in FF upon which the three pairs of planes, which
intersect on the three lines in EE, are to be placed. These six
planes can be transformed by the procedure outlined above.

The sample solution in Fig. 5�c�, revealing eight real assembly
modes, is an inversion; i.e., the three points in EE, �0,0,0�, �5,0,0�,
and � 5

2
,

5�3

2
,0�, were placed on the respective plane pairs y

=0�z=0, x=0�z=1, and x=1�y=1. Thus the octic polynomial
�see above� is demonstrated to be minimal.

6 Conclusion

Direct kinematic problems for a wide variety of parallel ma-
nipulators have been solved in a unified fashion using point kine-
matic mapping. All cases involved the writing of constraint equa-
tions that place a number of points on corresponding surfaces, not
always in the same number. However, once one begins to look at
problems in this way, the writing of a sufficient set of such equa-
tions is made a lot easier. These equation sets were then solved by
introducing, or rather resurrecting in a more general engineering
context, some not so widely known algebraic techniques, found in
Refs. �7,8,11,13–16�, and thereby obtaining some new results.

�a� reducing the PoP constraint to a quadric in Study param-
eters and similarly reducing the PoS constraint by inter-
secting the original quartic with the Study quadric and

confining the transformed point P to Euclidean space
6

�b� reduction in a partial set of constraints to a one parameter
motion trajectory of the last point that is then intersected
with the remaining surface

�c� reparametrization to reduce the number of variables and
constraint equations

4
As one can easily check k2−1�0 is equivalent with dist�P1 , P2��dist�l1 , l2�.

Clearly a solution to the DK problem exists only if the latter condition holds.
5
The factor 1 /2l can be omitted since we deal with homogeneous equations.

6
Strictly speaking, Husty �7� introduced the technique in his notable DK solution

of the general Stewart–Gough platform. Here we have reintroduced the technique in

the context of parallel Schönflies robots.
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�d� neatly extracting an octic univariate from a pair of simul-

taneous bivariate quartics, like system �36� wherein there

are no cubic or quartic variable terms, as a simple 4�4

determinant, Eq. �37�, and exposing a linear back substi-

tution, Eq. �38�, to obtain corresponding values of the

other variable

�e� revealing for the first time an octic univariate polynomial

and eight real DK solutions for the spherical DTM

�f� revealing for the first time an octic univariate polynomial

and eight real DK solutions for the spatial DTM

Almost all cases examined pertained to manipulators of less

than 6DOF though there was one fully mobile example, the spatial

DTM, albeit a simplified problem because it was not fully parallel,
i.e., had more than one actuated joint per leg.
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