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A tale of four cities: reflections of master’s students in mathematics on 
a visual word problem 
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1University of Turin and University of Pavia, Italy, francesco.beccuti@unito.it 

A group of master’s students in mathematics was asked to reflect on a visual word 
problem. No one of the students identified the correct solution and defended instead an 
incorrect one. The results are explained by the difficulty of the problem itself (reflecting 
into the students’ overall difficulty in imagining its solution) as well as by the students’ 
tendency to overgeneralize. Interestingly, some of the students reach a contradictory 
statement (which they do not dismiss or acknowledge as such) as a consequence of the 
effort to accommodate their own mathematical reasoning with what they perceive to 
be a normative characterization of the problem coming from the lecturer. I conclude 
by discussing psycho-pedagogical considerations on imagination and intuition with 
related issues of university curriculum reform.  
Keywords: Teaching and learning of logic, reasoning and proof, Curricular and 
institutional issues concerning the teaching of mathematics at university level, 
Visualization, Imagination, Intuition. 
INTRODUCTION 
While in general research in tertiary education is extending beyond the level of 
undergraduate studies (Artigue, 2021, p. 14; cf. also Winsløw et al., 2018), there seems 
to be very little or no research at all on students of graduate programs or courses in 
pure and applied mathematics (Winsløw & Rasmussen, 2020, p. 883-884) and 
specifically on master’s students in mathematics. This is possibly a consequence of the 
two-years master’s programs in mathematics being a relatively new phenomenon in 
Europe. Thus, most research on postsecondary mathematics education appears to 
concentrate either on undergraduate programs/courses in mathematics and related 
disciplines or else on graduate programs specifically designed for teachers. The present 
study contributes to this under-researched field by investigating how master’s students 
in mathematics reflect on an unusual visual problem. 
THEORETICAL FRAMEWORK AND RESEARCH QUESTION 
Research in visualization within mathematics education originated in the work of Alan 
Bishop and was later carried out by various authors: see Presmeg (2020) for a 
compendium. In this paper, I will follow the mainstream lineage of research developed 
by Abraham Arcavi (2003) and Norma Presmeg (2006) albeit explicitly stressing on 
some hopefully clarifying preliminary definitions inspired from the work of 
psychologist Efraim Fischbein (1987) as well as from the writings of mathematicians 
such as Felix Klein, David Hilbert and Henry Poincaré. These definitions will 
constitute the framework for carrying out the analysis of the case-study presented 
below. This framework can be understood as a systematization of the traditional 



  
understanding of cognitive steps happening during a working mathematician’s process 
of proving. 
Vision may be defined unambiguously as the faculty by which we directly see things 
which are there for us to see. On the other hand, imagination is the faculty by which 
we see what is not there to see (in mathematics this usually happens in connection with 
some properties one wants to prove or show). It may be divided into passive 
imagination (the act of representing to oneself something prompted to us from an 
outside source) and active imagination (the act of representing to oneself something 
not prompted from the outside). Furthermore, intuition is the faculty by which we 
generalize the properties that we see or imagine.[1] 
Notice that the definition of intuition given above (essentially derived from Fischbein, 
1987) is somewhat more specific than the usual meaning given to the term “intuition” 
(mostly found within philosophy of mathematics or mathematicians’ introspective 
accounts) which is generally an umbrella term used by authors to characterize any 
informal way of grasping mathematical truths outside of formal reasoning. Indeed, for 
the great majority of authors “intuitive reasoning” is nothing but a synonym of 
“informal reasoning”. Notice also that for simplicity and adherence to tradition, I take 
in this paper a clear a priori distinction between informal and formal reasoning, albeit 
agreeing with the philosophical stance taken by Giardino (2010) that the two forms of 
reasoning are really inextricably intertwined. Notice also that the literature has 
traditionally distinguished between internal and external acts of visualization. Presmeg 
(2006) assumes this distinction as unproblematic by adopting the Piagetian view that 
any act of external visualization depends on internal mental images. I do not want to 
delve into this issue here, but I would like to remark that the distinction must be made 
at the level of imagination, i.e., the distinction does not concern vision (always 
external) and intuition (always internal). 
To get a concrete grasp of these definitions and to simultaneously give an example of 
how these can be applied to analyze mathematical processes, let us look at the usual 
proof of the following proposition: the opposite sides of a parallelogram are congruent 
to each other. Provided that we indeed know what a parallelogram is, we can draw it 
(as an act of passive imagination) by tracing two pairs of parallel lines as in Figure 1.a. 
At this point we can see the parallelogram 𝐴𝐵𝐶𝐷 as a direct act of vision. Furthermore, 
in order to prove the proposition, we may (actively) imagine the segment 𝐴𝐶 (Figure 
1.b) and consider the angles that this new segment forms with the lines. We are then 
able to conclude that angles 𝐷𝐴𝐶 and 𝐴𝐶𝐵 are congruent to each other (Figure 1.c) as 
well as angles 𝐶𝐴𝐵 and 𝐴𝐶𝐷 (Figure 1.d). Thus, triangles 𝑫𝑨𝑪 and 𝑨𝑪𝑩 are congruent 
(by known properties of congruence). Therefore, the opposite sides of the initial 
parallelogram are congruent to each other. Finally, it is by intuition that we realize that 



  
the property thus proved is not linked to the particular parallelogram considered, but 
holds in general for all parallelograms. 

      a)       b)    

      c)       d) 

Figure 1: visual steps involved in the proof of the proposition 

Now, in the passage above the crucial imaginative step (the proverbial “idea” one must 
have) is to consider the segment 𝐴𝐶 and reduce the proof of the proposition to the proof 
of the congruence of triangles 𝐷𝐴𝐶 and 𝐴𝐶𝐵. In this example the segment or shape 
that one needs to imagine in order to complete the proof is almost evident to the trained 
eyes of a mathematician. However, this may not be the case for inexperienced pupils 
and, similarly, even experienced mathematicians might have trouble when solving a 
problem involving a difficult imaginative step which is not cued by the figure or 
diagram naturally representing the problem. 
In this paper I will concentrate on a problem of this kind: the four cities problem, which 
I will describe below. My research question will thus be the following. 
How do master’s students in mathematics reason about the four cities problem? 
Other than complementing the literature on university mathematics education, 
answering to this question will also contribute in general to the literature on students 
engaged in problem solving, which seems to have concentrated primarily on students 
of compulsory schools (cf. Verschaffel et al., 2020) 
THE FOUR CITIES PROBLEM AND RESEARCH CONTEXT 
The problem below was given to 28 students enrolled in a master’s program in 
mathematics at the University of Turin, Italy. This is a competitive program focusing 
on pure and applied mathematics. The main requirement for entering the program is to 
have completed a three-year bachelor’s in mathematics with good marks. Such 
bachelors, in the Italian university system (which does not offer a major-minor 
arrangement of credits but focuses instead almost entirely on mathematics) usually 
revolve around learning mathematical content knowledge in the form of theorems and 
proofs which were customarily tested by means of problem sets usually revolving on 
the application of these. The problem was given as part of a voluntary assignment 



  
within the students’ first course in mathematics education. This is an elective course 
that students usually take in the first year of the master’s program. During the course, 
other visual mathematical problems were presented, but this problem was the one 
which caused the most difficulties to the students.  
Problem: Four cities are placed at the four corners of a square and an engineer wants 
to design a road which connects them. What path she has to choose in order to use the 
least amount of materials?  
The problem is equivalent to the problem of finding the minimal path which connects 
the vertices of a square. The optimal solution to the problem is presented in red in 
Figure 2.d (modulo a 90-degree rotation), while Figure 2.a, 2.b and 2.c show paths 
which indeed connect the four cities but are not minimal.[2] 
The following hint was given by the lecturer right after the statement of the problem: 
“the solution is not the path consisting of the square itself” in order to help the students 
exclude right away the path presented in Figure 2.a. However, this hint may have 
instead prompted some confusion since a portion of the students interpreted it 
“normatively”, so to speak, as we will see below. After this, no other communication 
took place between the students and the lecturer. 

      a) 

 

      b) 

 

 

 

      c) 

 

 

      d) 

Figure 2: possible paths linking four vertices of a square 

The participants were asked to form groups of three or four. In each group one student 
(the observer) had to write a report observing and elaborating on the way she and her 
colleagues reasoned about the problem. In the spirit of Arzarello et al. (2002), the 
students were invited to visualize the problem by means of a dynamic-geometry 
software (Geogebra) and given about one hour to solve the problem collaboratively.  
METHOD 
The data for this study consist of the written reports and the Geogebra files produced 
by the groups. A preliminary categorization of the groups was performed in terms of 
the final answer they gave to the problem. 



  
Then the data were analysed by means of the framework described above. As seen in 
the case of the parallelogram theorem, a procedure of proof relying on visual 
representation can be segmented into steps linked to the given definitions of vision 
imagination and intuition. In that case, the analysis referred to an unproblematic and 
correct proof. However, nothing really prevents to apply it to any other correct or 
incorrect mathematical proof or proof attempt. 
Thus, for each group of students, I analysed the respective texts in connection with the 
Geogebra files they produced in search for instances text and figures signalling acts of 
vision, imagination and intuition as connected to the logical structure of the 
argumentation they provided. In particular, the Geogebra files contained traces of both 
the students’ acts of passive imagination (e.g., draw the initial square) as well as to 
their attempts to concretize products of their active imagination. These in turn were 
signalled by corresponding textual expressions describing attempts to add to their 
drawing new lines or figures. Finally instances of acts of intuition were similarly 
mostly signalled by textual data describing attempts at deduction and generalization.  
In presenting the textual data, I translated the relevant passages from Italian as literally 
as possible. 
RESULTS 
Only one of the eight groups hinted at the correct solution. However, the students in 
this group admitted that one of them had already seen the problem before and hence 
they were excluded from the study. Among the remaining groups, four suggested that 
the solution was the one depicted in Figure 2.c: “the diagonals”, while three groups 
suggested that the solution of the problem was the one depicted in Figure 2.a, “the 
square”, and thus had to conceptually “accommodate” the aforementioned hint, as I 
will discuss below. 
Analysis of two reports concluding that the solution is “the diagonals”   
Let us now examine the reports of two representative groups (here called A and B) of 
the former portion of students. The remaining groups (C and D) had similar reports to 
Group B. Indeed, Group A drew a square together with its diagonals, and just wrote 
the following laconic sentence. 

The minimal path to unite the 4 cities is through the bisectors of the quadrilateral, given 
the fact that a straight segment is always the shortest way to unite 2 points.  

Here the students enact a false deduction, or an over-generalization as described in 
(Fischbein, 1987): since the shortest way to unite two points is a straight line, then the 
shortest way to unite four points is simply two straight lines. This report does not 
furnish us with any clue as to how they arrived to consider the path consisting of the 
diagonals, or “the bisectors”, as they say here.  
On the other hand, a quotation from Group B’s report may let us understand how these 
other students arrived at the same conclusion: the observer writes that his colleagues  



  
[…] decided to represent the diagonals of the quadrilateral, since they thought that the best 
idea was that of starting from the properties offered by the quadrilateral […] they [then] 
asked themselves if there did not exist a path better than the one just deduced […] they 
then decided to construct a second quadrilateral and conjoin the vertices, not by the 
diagonals, but by segments located in a different way […] In conclusion both the girls 
agreed, in light of their reasoning and the tests performed, that the minimal path was the 
one represented by the diagonals of the quadrilateral.  

Thus, the students in Group B chose the diagonals because they were “offered by the 
quadrilateral” itself. In other words, the imaginative step connected with the decision 
to conjoin opposite points in the parallelogram example above was, as they seem to 
mean, suggested or cued by the figure itself.  
   a) 

 

    b) 

 

Figure 3: Geogebra protocols from Group B 

Notice that these students also in the end overgeneralized as they considered two 
different configurations (their own drawings in the software are displayed in Figure 3.a 
and 3.b) and noticed that the path consisting of the diagonals was shorter than those, 
and then concluded that the former is shorter than any possible path. Interestingly, 
notice how the path displayed in Figure 3.a is not too distant from a correct solution. 
Analysis of two reports concluding that the solution is (approximately) the square 
What about the remaining three groups? As said before, the students in these groups 
stated that the solution the problem was the square itself but were puzzled by the hint 
which straightforwardly told them that this was not the case. Of course, the hint was 
specifically given in order to prompt students to think about other non-obvious 
solutions and help them in identifying the correct one. However, some of the students 
instead gave an argument for affirming that the solution was the square itself and then, 
since this had been excluded by the lecturer, proceeded to propose an “approximate 
solution” to the problem. Let us see how by analysing the reports of two representative 
groups (here called E and F) of this latter portion of students. The remaining Group G 
had a similar report as to Group F. Indeed, the observer of Group E wrote that her 
colleagues considered the diagonals first but then  

After some reflection, they discussed on the fact that by considering the diagonals of the 
square, in order to visit all the cities, they necessarily needed to use one of the sides. Given 
the impossibility of doing this, they abandoned this idea.  



  
This passage suggests that students in Group E were possibly also imposing to the 
problem the limitation that in order to visit all the cities a hypothetical traveller must 
not touch the same city two times (an interpretation which is at odds with the realistic 
setting within which the problem was presented). In any case, they were convinced that 
the solution to their interpretation of the problem had to be the square. Since this 
solution was ruled out by the hint, they then reasoned as follows.  

[…] they thought of creating polylines [delle spezzate], not necessarily coinciding with the 
diagonals, which best approximated the perimeter so that their point of intersection lied on 
the square’s axis. Initially they considered these just on two sides of the square while on 
the others they considered the diagonals. In order to understand if the minimal path was 
that formed by the polylines on two sides and the diagonals on the other two or rather was 
the path consisting of polylines on all four sides they decided […] to calculate which one 
was shorter […] Therefore […] their final conjecture was that of choosing, as minimal 
path, the one consisting of polylines which best approximate the square’s perimeter.  

What happened here? It appears that first the students did not imagine that other paths 
are possible, and as a consequence this led to a comparison whose result they thus 
generalized. Indeed, they constructed using Geogebra the two configurations displayed 
in Figure 4.a and 4.b below, then they calculated their respective perimeters (notice 
that for Figure 4.a this includes the dotted diagonals) and finally conjectured that the 
solution should be the latter.  

a)  

 

b)  

Figure 4: Geogebra protocols from Group E 

Furthermore, what is perhaps most striking here is the struggle the students experienced 
in formulating the consequences of their conjecture. Since the latter points to the fact 
that the solution should be the square itself, but since also the lecturer had ruled out 
this possibility, these students are then forced to conclude an impossibility: the minimal 
path is the one which best approximates the square itself, despite the fact that no such 
unique path exists!   
Similarly, Group F started by considering the diagonals of the square but then   

[…] came the idea of creating a square in the centre [of the original square] whose side can 
vary between 0 and l [the side of the square] linking any of its vertex to one and only one 
city […]  



  
At this point, they used Geogebra to represent this situation (as displayed in Figure 5 
where point 𝑅 can vary over side 𝑄𝑁) and concluded that  

[…] point 𝑅 must be as close as possible to point 𝑁 for having the minimal path: this means 
that the two squares must have roughly the same side […] The minimal path is given by 
the approximation of the square having as vertices the four cities. 

Here again for these students “the” solution is “the minimal path” consisting of the best 
approximation to the square itself, despite this being a mathematical impossibility. 

 

Figure 5: Geogebra protocol from Group F 

CONCLUSION 

In conclusion, these data may be explained by the difficulty of the problem itself (which 
in turns reflect into the students’ difficulty to imagine the solution) as well as by the 
students’ tendency to overgeneralize connected to false deduction. Furthermore, many 
of the students’ imagination seems to have been crucially impeded by the fact that the 
square itself cued a false solution: in the words of (some of) the students, the square 
“offered” the diagonals as the solution for presumably all Groups A, B, C and D. A 
similar phenomenon is probably safe to assume having played a role also for Groups 
E, F and G in convincing them that the square itself (or its “approximation") was the 
solution. This fact is not surprising perhaps and possibly just tells us something about 
the difficulty of the problem chosen.  
On the other hand, the proneness of master’s students in mathematics to overgeneralize 
is more interesting given the fact that this phenomenon is present in a form or another 
in the reports of both the first and the second portions of students. This behaviour could 
be taken to be desirable and proper when conjecturing. However, the substantial 
easiness with which these students passed from the particular to the general could be 
regarded as problematic as pertaining to master’s students of mathematics (i.e., 
students who supposedly are at the pinnacle of mathematical instruction). As a 
linguistic observation, notice the awkward usage of the term “deduction” in the quoted 
passage of Group B, where “deduced” is used as a synonym of “conjectured” or simply 
“thought of”. 
Moreover, with respect to Groups E, F and G, we have seen how the students prefer to 
conclude an impossibility rather than dismissing their own mathematical reasoning or 



  
rather than dismissing what they perceive to be a normative characterization of the 
problem coming from the lecturer. This is in itself an interesting phenomenon which 
could be interpreted as signalling a formal and “ritualistic” way of dealing with 
mathematical problems. Furthermore, if further replicated with different (but 
analogous) problems and by means of a larger group of students, similar results may 
point to the fact that for some university students in mathematics what they perceive to 
be a correct mathematical argument together with what they perceive to be a normative 
statement coming from the lecturer has stronger epistemic (or perhaps only cognitive) 
primacy over acknowledging the contradictory nature of their conclusions.  
Finally, I do not mean to understand these preliminary conclusions in purely 
psychological terms as dependent solely on the students’ internal faculties, them being 
completely separated from the context in which these students were immersed.[3] On 
the contrary, the students’ difficulties I have outlined in this paper render possibly 
evident that the kind of mathematical training to which these students were exposed 
fails (at least in this case) as a training for problem solving involving a strong 
conjecturing component. More empirical data agreeing with these results may point to 
the fact that the type of mathematical rationality into which these students have been 
steeped in is very different from the kind of rationality which would ideally be that of 
a working mathematician. Indeed, a deeper and larger study into these phenomena 
would be required to reach more than tentative conclusions on this matter. Such study 
could perhaps suggest the need to develop the university mathematics curriculum in 
favour of a greater exposure of students to problems involving a stronger conjecturing 
component. It remains however an open question whether such exposure may in 
general succeed in the training of imagination and intuition and, in general, whether 
these faculties are susceptible to be trained at all. The latter in turn is a psycho-
pedagogical matter over which further investigation would be needed. 
NOTES 

1. In accordance with the scholarship on visualization within mathematics education (cf. Arcavi, 2003), one can 
thus generally understand visualization in mathematics as all that concerns the faculties/properties/abilities 
above, i.e., the mode by which we bring mathematical objects at the attention of our senses, we manipulate them 
and we reflect on them, internally (i.e., in the mind) or externally via some material support, traditionally by 
hand-drawing on paper or, nowadays, by means of software-generated images.  

2. An a priori analysis of the problem would be too long to give here. It is plausible to think that a path very similar 
to the one which is the solution of the problem must be reached by a unique act of imagination, which arguably 
seems to not be decomposable into simpler mental actions.  

3. For instance, the behavior of Groups E, F and G just summarized may be perhaps explained by a difficulty in 
reasoning outside of the didactic contract the students assume to be in place (on this concept see Brousseau, 
Sarrazy and Novotná, 2020), connected to a difficulty in questioning the authority of the teacher. 
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