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In this paper, we present insights into the mathematical complexity of our reference model regarding different approaches to introducing vectors in school. We will discuss and compare approaches using n-tuples, arrow classes, or translations. While an approach via n-tuples is relatively simple, arrow classes turn out to be much more complex. To give a detailed example, we will discuss the proof that vector addition is commutative in terms of both approaches separately. This is part of the larger research interest to identify possible prerequisites regarding vectors that first-year students bring from school during their transition to university. Our detailed reference model is an essential foundation for further research regarding the transition issues of the vector topic.

INTRODUCTION

The transition from school to university has been a broadly conceived issue [START_REF] Hoyles | Changing patterns of transition from school to university mathematics[END_REF]. There are differences between these two institutions concerning formal notation, rigour, and abstractness of mathematics [START_REF] Luk | The gap between secondary school and university mathematics[END_REF]. This process of transition can be investigated from different perspectives. For example, one can study the mathematical beliefs of students and how they change [START_REF] Geisler | That Wasn't the Math I Wanted to do!"-Students' Beliefs During the Transition from School to University Mathematics[END_REF] or focus on offers of support for the transition [START_REF] Gallimore | Increasing the impact of mathematics support on aiding student transition in higher education[END_REF]. Another perspective is to dive more deeply into the different types of practices of mathematics at school and university. The Anthropological Theory of the Didactic (ATD) provides an adequate framework to investigate mathematical practices in detail and while being sensitive to institutions and institutional effects [START_REF] Chevallard | Introducing the anthropological theory of the didactic: An attempt at a principled approach[END_REF].

In many countries, students learn about vectors in school and bring their learned knowledge about vectors when they start studying at university. Students seem to come to university with a surprisingly diverse and very unsound understanding of vectors, consisting of incoherent elements of different views on vectors [START_REF] Mai | A vector is a line segment between two points? -Students' concept definitions of a vector during the transition from school to university[END_REF]. This observation raised questions about the roots of these conceptions. Therefore, we are analysing school textbooks for mathematics as one possible source. For this goal, we use ATD, which suggests developing a so-called epistemological reference model as an analytical basis [START_REF] Chevallard | Didactic Transposition in Mathematics Education[END_REF]. This paper will focus on insights into our reference model about approaches to vectors at school.

THEORETICAL FRAMEWORK

In the Anthropological Theory of Didactic (ATD), a core idea is that knowledge is always related to an institution to which individuals can belong [START_REF] Chevallard | Introducing the anthropological theory of the didactic: An attempt at a principled approach[END_REF].

Another key concept from the ATD, which describes that knowledge can be situated in different institutions, is the notion of the didactic transposition. According to the model of didactic transposition, four different kinds of knowledge exist: "scholarly knowledge," "knowledge to be taught," "taught knowledge," and "learned/available knowledge" [START_REF] Chevallard | Didactic Transposition in Mathematics Education[END_REF]. From the model's perspective those four kinds of knowledge are part of the didactic transposition that knowledge undergoes before students learn it. Different institutions are involved in this process. For this paper, we consider mathematics at schools and university as vaguely defined institutions. Researchers working with ATD are encouraged to develop their own institutional point of view in a reference model, which can be understood as positioned outside the above mentioned process of didactic transposition [START_REF] Barbé | Didactic restrictions on the teacher's practice: The case of limits of functions in spanish high schools[END_REF]. Within the ATD, knowledge is conceptualised in terms of praxeologies. Praxeologies contain a praxis block and a logos block. The praxis block concerns problems (tasks) and activities to solve them (techniques). The logos block contains justifications (technologies) for why those activities do work and further justifications of these justifications themselves (theory). [START_REF] Tietze | Didaktik des Mathematikunterrichts in der Sekundarstufe II[END_REF] summarize the following relevant interpretations of vectors at the school level exist: n-tuples, points, pointers/location vectors, arrow classes and translations. [START_REF] Filler | Der Vektorbegriff: Verschiedene Wege zur Einführung[END_REF] state two mathematical approaches towards introducing vectors that are suitable and common for school level: n-tuples and arrow classes. Both mention the axiomatical approach and agree that it is rather unsuitable for introducing vectors to students in school. In German mathematics textbooks, we found a mixture of (partial) approaches using n-tuples, arrow classes, and translations to be most relevant [START_REF] Brandt | Lambacher Schweizer Mathematik Einführungsphase Nordrhein-Westphalen[END_REF]Griesel et al., 2014;Körner et al., 2015).

A BRIEF OVERVIEW OF APPROACHES TO VECTORS AT A SCHOOL LEVEL

RESEARCH INTEREST

Based on the discussion from the previous section, the research interest of this paper is to flesh out a reference model for the introduction of vectors at school level using three different approaches, namely vectors as n-tuples, as arrow classes and as translations. Through an explicit and detailed elaboration of such a reference model, focusing first on the formulation of the necessary definitions and theorems and the associated proofs, the reference model becomes logos centred. Praxis will be considered later, when the analysis of the school textbooks as artifacts of the knowledge to be taught are analysed.

Only some excerpts of the reference model can be presented below, because the original model would be too long to fit in here. Beyond this paper, the reference model is intended as a framework for analysing school textbooks regarding the topic of introducing vectors. In the end, this research will help to better understand what prior knowledge students bring to university as textbooks are an influential factor in developing students' knowledge at school [START_REF] Valverde | According to the book: Using TIMSS to investigate the translation of policy into practice through the world of textbooks[END_REF]. In this paper, we show the readers that large parts of the mathematical background regarding the introductions of vectors (have to) remain implicit for students at school.

THE BASIC STRUCTURE OF THE REFERENCE MODEL

For the formulation of the reference model, we decided that three types of vector objects should be considered: n-tuples (here and in the following with real-valued components and 𝑛 = 2 or 𝑛 = 3), arrow classes and translations as mappings from the plane into the plane or respectively in 3d-space. All three types of objects appear in school textbooks and are referred to as vectors. Often textbooks present an incoherent mixture of these three approaches and textbooks also differ in how they combine them. Although arrow classes are uncommon for university mathematics, they are an important tool at school level for solving tasks in geometrical contexts.

In the reference model, a definition is given for each of the above-mentioned vector objects and operations with them. The defined structures are similar to vector spaces. However, this is not the implicit and more general approach of defining vectors in university mathematics as elements of vector spaces. The reference model includes further terms and operations relevant to school textbooks, including vector addition, multiplication by a scalar, the magnitude of a vector, opposite vectors, and location vectors. Our reference model is divided into two parts. First, we introduce each of the three approaches to vectors. Afterwards, we prove that these three approaches are isomorphic regarding the operations of addition, scalar multiplication and the assignments of "length" resp. "magnitude" (isometrical isomorphy).

Defining a vector and the related operations and concepts based on n-tuples does not cause any difficulties. Building on the definition of n-tuples, the further desired concepts and properties such as addition and scalar multiplication can be easily defined by using the properties of real numbers. The situation is different if vectors are to be introduced as arrow classes as we will show later on. At school level, this term is restricted to arrow classes consisting of arrows in the plane or space. The onedimensional case is often neglected in school, although positive and negative numbers could be easily associated with one-dimensional vectors, as is done in some older textbooks.

In our reference model, the arrow concept is defined as a 2-tuple consisting of a starting point and an endpoint. For this definition, we assume Euclidian geometry with properties of points, lines, and planes without specifying an axiomatic system for these objects. In the beginning, a coordinate system is not necessarily needed for this approach. Later, it becomes relevant when a connection (isomorphy) to the other two approaches to defining vectors is established. Furthermore, the length of an arrow and the relation "is parallel to" for two arrows have to be introduced. These two concepts can easily be traced back to known geometrical facts. We intend to build an equivalence relation on the sets of arrows by regarding arrows that are parallel, have the same length, and have the same orientation as equivalent. It is surprisingly complicated to precisely define the intuitively simple concept of "having the same orientation" in geometric terms (see also below).

Once this is done, the relation of two arrows being equal in length, parallel to each other, and oriented the same way can be proved to be an equivalence relation of arrow classes. Subsequently, it is clear that each arrow is an element of an associated arrow class. Such arrow classes are called vectors. Within this approach, it is important also to define the zero vector. Therefore, another class of "arrows" by all those "degenerated" arrows of the kind 𝐴𝐴 ⃗⃗⃗⃗⃗ has to be introduced. These arrows have to form an equivalence class of their own. However, the defining equivalence relation for nondegenerate arrows is not applicable (parallelism and orientation are difficult to define including these degenerated arrows). This mathematical difficulty is solvable but is related to erroneous or missing introductions of zero vectors in school textbooks based on vectors as arrow classes.

A well-known difficulty of textbook language and students' conceptions of vectors is the missing symbolic distinction between arrows and arrow classes (vectors). Usually, both are written as 𝐴𝐵 ⃗⃗⃗⃗⃗ . To avoid symbolic confusion in our reference model, we use the notation with one arrow, e.g. 𝐴𝐵 ⃗⃗⃗⃗⃗ , to explicitly denote the arrow from A to B and the notation with two arrows above, e.g. 𝐴𝐵 ⃗⃗⃗⃗⃗ ⃗⃗⃗⃗⃗ , to refer to the class of arrows determined by the representing arrow 𝐴𝐵 ⃗⃗⃗⃗⃗ .

Finally, translations (as mappings) are introduced in the reference model as vector objects. Mathematically, these can be defined similarly to n-tuples or arrow classes. Our reference model introduces the ℝ 𝑛 with usual operations. For 𝑎 ∈ ℝ 𝑛 a translation can be defined as a mapping 𝑡: ℝ 𝑛 → ℝ 𝑛 with 𝑡(𝑥) = 𝑎 + 𝑥 for all 𝑥 ∈ ℝ 𝑛 . This way, they are introduced similarly to the n-tuple approach but as mappings. In this sense, they mainly differ from the n-tuple approach by a different notation and the explicit possibility to apply the translation to a point (given by its coordinates). This section will present a definition for arrows of the same orientation and investigate the consequences of such a definition for the proof that vector addition is commutative. The first complication is that it is not directly possible to define the orientation as a property of an arrow and then assess whether two orientations are the same. We have to define a relation for two parallel arrows: "Arrow a has the same orientation as b if…". This is a logical challenge for textbooks and students' understanding. It is similar to defining whether two finite sets have the same size (existence of a bijective mapping) without determining their size before by counting.

The relation of two arrows "having the same orientation" is essential for defining arrow classes. For a theory about vectors as arrow classes, it is enough to define "orientation" only for arrows with the same length and parallel to each other. This reduces the possibilities for two given arrows to have same orientation or to have opposite orientations. From an ostensive point of view, this seems trivial to decide. However, the mathematical definition in the reference model has to be precise.

Definition of the same and opposite orientation of two parallel arrows with the same length

The following definition of two arrows having the same orientation is based on the suggestion of Filler (2011, p. 88). It is here supplemented with the case 3. for two identical arrows to guarantee that the relation of having the same orientation is a reflexive relation.

Let A, B, C, and D be points on a plane. Let 𝐴𝐵 ⃗⃗⃗⃗⃗ and 𝐶𝐷 ⃗⃗⃗⃗⃗ be two parallel arrows of the same length with 𝐴 ≠ 𝐵 and 𝐶 ≠ 𝐷. We say 𝐴𝐵 ⃗⃗⃗⃗⃗ and 𝐶𝐷 ⃗⃗⃗⃗⃗ have the same orientation if and only if one of the following three statements is true:

1. 𝐴𝐵 ⃗⃗⃗⃗⃗ and 𝐶𝐷 ⃗⃗⃗⃗⃗ do not lie on the same line and the lines AC and BD are parallel to each other (see figure 1). 2. 𝐴𝐵 ⃗⃗⃗⃗⃗ and 𝐶𝐷 ⃗⃗⃗⃗⃗ are on the same line, but both arrows are not identical. Additionally, either B and C lie on the line segment between A and D or A and D lie on the line segment between B and C (see figure 2). 3. 𝐴𝐵 ⃗⃗⃗⃗⃗ and 𝐶𝐷 ⃗⃗⃗⃗⃗ are equal (𝐴 = 𝐶 and 𝐵 = 𝐷).

Otherwise, the arrows 𝐴𝐵 ⃗⃗⃗⃗⃗ and 𝐶𝐷 ⃗⃗⃗⃗⃗ have an opposite orientation. Thus, it is not surprising that school textbooks known to us do not use this logically complicated definition and mostly rely on an intuitive assessment of the "same orientation". However, it is clear that a relational concept of "same orientation" is necessary to overcome an ostensive definition of "same orientation".

With this definition as preparation, we can turn to the proof of the commutativity of vector addition for 2-tuples and arrow classes in comparison.

Proof that vector addition is commutative for 2-tuples

Let 𝑉 1 = ( 𝑎 1 𝑎 2 ) and 𝑉 2 = ( 𝑏 1 𝑏 2 ) be vectors (in the sense of 2-tuples). Then

𝑉 1 + 𝑉 2 = ( 𝑎 1 𝑎 2 ) + ( 𝑏 1 𝑏 2 ) = ( 𝑎 1 + 𝑏 1 𝑎 2 + 𝑏 2 ) = ( 𝑏 1 + 𝑎 1 𝑏 2 + 𝑎 2 ) = ( 𝑏 1 𝑏 2 ) + ( 𝑎 1 𝑎 2 ) = 𝑉 2 + 𝑉 1 is true because of
the commutativity of the addition of real numbers. Therefore, the addition of two vectors is also commutative.

In the world of tuples this proof is relatively easy and does, of course, work analogously for every n-tuple. Now, we turn our focus to arrow classes.

Definition of the addition of plane arrow classes

Let 𝑉 1 and 𝑉 2 be plane arrow classes (vectors). Select any arrow 𝐴𝐵 ⃗⃗⃗⃗⃗ ∈ 𝑉 1 . Select the specific arrow from 𝑉 2 which has the start point B (its existence and uniqueness has to be shown before), which is the endpoint of the selected first arrow 𝐴𝐵 ⃗⃗⃗⃗⃗ . We call the second arrow's endpoint 𝐶 and can refer to this arrow as 𝐵𝐶 ⃗⃗⃗⃗⃗ . Now we define 𝑉 1 + 𝑉 2 = 𝐴𝐵 ⃗⃗⃗⃗⃗ ⃗⃗⃗⃗⃗ + 𝐵𝐶 ⃗⃗⃗⃗⃗ ⃗⃗⃗⃗⃗ : = 𝐴𝐶 ⃗⃗⃗⃗⃗ ⃗⃗⃗⃗⃗ . The resulting arrow 𝐴𝐶 ⃗⃗⃗⃗⃗ represents the arrow class 𝐴𝐶 ⃗⃗⃗⃗⃗ ⃗⃗⃗⃗⃗ which is the result of the addition. This concept of addition corresponds to common idea of attaching an arrow to the tip of the other arrow. In the elaboration of our reference model -but not here in this paper -we prove that this definition is well defined for an arbitrarily selected representative from the arrow class 𝑉 1 . Again, showing the independence of the definition of the chosen representative is often neglected at school level. In principle, it is also needed when introducing fractions and their operations. That this neglection happens consistently at school level, might be done so because of the difficulty of the concept of equivalence classes.

Proof that vector addition is commutative for arrows on a plane

A challenge is that a proof needs to distinguish different configurations of vectors: being parallel or not, or including a zero vector. Also, we use the term "collinear" in a sense for parallel that is worked out in more detail in our reference model.

We start with 𝑉 1 and 𝑉 2 being non-collinear plane arrow classes (vectors). Let 𝐴, 𝐵 and 𝐶 be points with 𝐴 ≠ 𝐵, 𝐵 ≠ 𝐶, 𝑉 1 = 𝐴𝐵 ⃗⃗⃗⃗⃗ ⃗⃗⃗⃗⃗ and 𝑉 2 = 𝐵𝐶 ⃗⃗⃗⃗⃗ ⃗⃗⃗⃗⃗ . By the definition of addition for arrow classes the following is true: 𝑉 1 + 𝑉 2 = 𝐴𝐵 ⃗⃗⃗⃗⃗ ⃗⃗⃗⃗⃗ + 𝐵𝐶 ⃗⃗⃗⃗⃗ ⃗⃗⃗⃗⃗ = 𝐴𝐶 ⃗⃗⃗⃗⃗ ⃗⃗⃗⃗⃗ . Thus, we are to show that 𝑉 2 + 𝑉 1 = 𝐴𝐶 ⃗⃗⃗⃗⃗ ⃗⃗⃗⃗⃗ . This can be achieved by proving that the arrows 𝐴𝐵 ⃗⃗⃗⃗⃗ and 𝐷𝐶 ⃗⃗⃗⃗⃗ (see figure 3) have the same length, are parallel to each other, and have the same orientation. After this thorough argumentation, the proof is still not complete, yet. Since it was necessary to presume non-collinear arrow classes for the given argumentation above, we now turn our attention to the formerly skipped cases.

1. 𝑉 1 and 𝑉 2 are both the zero vector. 2. Either 𝑉 1 or 𝑉 2 is the zero vector.

3. 𝑉 1 and 𝑉 2 are parallel vectors.

Regarding 1. and 2. the proof cannot rely on the geometric situation as seen in figure 3. Luckily, it can easily be calculated that the addition of arrow classes in these specific cases is commutative. We turn now to case 3. which is more complex.

If 𝑉 1 and 𝑉 2 are collinear vectors, the definition of vector addition can be used to only consider arrows on the same line due to the independence of chosen representatives.

Obviously, the sum leads to two parallel arrows and attaching them in any order leads to a line segment of the same length. Consequently, to prove that the addition, in this case, is commutative, we need to prove that the results of 𝑉 1 + 𝑉 2 and 𝑉 2 + 𝑉 1 have the same orientation. Same orientation for arrows on the same line was defined with the help of six different cases regarding the relative position of the two arrows to each other. Furthermore, it is possible that the considered arrows from 𝑉 1 and 𝑉 2 are not of the same length and contrary orientated (here, we use the term in common sense, since above we did not cover a definition for the case of arrows of different lengths). The proof has to consider every possible constellation. We will only give a representation, as seen in figure 4, of three exemplary constellations due to the limited space in this paper. In figure 4 one can see an arrow 𝐴𝐵 ⃗⃗⃗⃗⃗ to which an arrow 𝐵𝐶 ⃗⃗⃗⃗⃗ is attached. This represents 𝑉 1 + 𝑉 2 . To the arrow 𝐵𝐶 ⃗⃗⃗⃗⃗ is another arrow 𝐶𝐷 ⃗⃗⃗⃗⃗ attached which is from 𝑉 1 , because it has the same length as 𝐴𝐵 ⃗⃗⃗⃗⃗ . So, this is a representation of the commuted addition 𝑉 2 + 𝑉 1 . For the proof it would further be necessary to argue in each possible case that 𝑉 1 + 𝑉 2 and 𝑉 2 + 𝑉 1 result in the same arrow class resp. both resulting arrows are representatives of the same arrow class. 

DISCUSSION

The elaboration of a reference model as mathematical background theory for the introduction of vectors using the usual school approaches via n-tuples, arrow classes, and translations has proven to be very insightful. The presented reference model constitutes a mathematical view that is neither the scholarly knowledge nor the knowledge to be taught at school. Because no task types or techniques are addressed in the reference model, the reference model can be compared to the logos block of a praxeology. It offers definitions and theorems with their proofs which constitutes a collection of technologies and their theory.

In comparison, the access to a vector object as an n-tuple is clearly shorter than the access via arrow classes. The latter approach to vectors is already in the preparations for the definition of the object "arrow class" clearly more complex in comparison to the n-tuple approach. Subsequently the study of a proof for the commutativity of vector addition shows in an example case that the difference in complexity stays relevant as the reference model progresses. Regarding school mathematics, this fact reveals that the most ostensive approach to vectors contains a high complexity while an algebraic approach is much more straight forward from a mathematical perspective. In mathematics textbooks, this complexity is partly condensed into single sentences like "In geometry, a vector can be described graphically by a set of mutually parallel, equally long and equally oriented arrows" [START_REF] Brandt | Lambacher Schweizer Mathematik Einführungsphase Nordrhein-Westphalen[END_REF], translated by the authors). Without corresponding further explanations, vast parts of the associated logos remain implicit in such statements.

The investigation and elaboration of the presented reference model are by themselves insightful and reveal the mathematical structures connected to the different approaches. Nevertheless, it is only a first step. In the future, our research will use the reference model to analyse textbooks and the knowledge to be taught that comes along with them. By this analysis, there will undoubtedly be a gap between the given justifications in the textbook logos and further implicit justifications which do not surface in the school institutions but are made visible in our reference model. Having a tool to describe the mentioned gap better and will also help to reflect the knowledge on vectors that students might learn at school and, on the other side, to reflect on what beginners have to learn when they first engage with university mathematics.
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 1 Figure 1: Two examples of two arrows with the same and with opposite orientation (the figure is similar to Filler, 2011, p. 88).
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 2 Figure 2: Illustration of two cases of the points 𝑩 and 𝑪 lying between the points 𝑨 and 𝑫 on a line.
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 3 Figure 3: Illustration of the geometric configuration for the proof that the addition of arrow classes is commutative. (a) 𝑉 1 + 𝑉 2 = 𝐴𝐵 ⃗⃗⃗⃗⃗ ⃗⃗⃗⃗⃗ + 𝐵𝐶 ⃗⃗⃗⃗⃗ ⃗⃗⃗⃗⃗ = 𝐴𝐶 ⃗⃗⃗⃗⃗ ⃗⃗⃗⃗⃗ by definition. (b) Choose the point 𝐷 so that 𝐴𝐷 ⃗⃗⃗⃗⃗ ∈ 𝐵𝐶 ⃗⃗⃗⃗⃗ ⃗⃗⃗⃗⃗ is true. (c) 𝐵𝐶 ∥ 𝐴𝐷 as 𝐴𝐷 ⃗⃗⃗⃗⃗ , 𝐶𝐷 ⃗⃗⃗⃗⃗ ∈ 𝐵𝐶 ⃗⃗⃗⃗⃗ ⃗⃗⃗⃗⃗ . (d) Define 𝛼 ≔ ∠𝐵𝐷𝐴 and 𝛼 ′ ≔ ∠𝐷𝐵𝐶. (e) It follows that 𝛼 = 𝛼′ because of (c) and the Alternate Interior Angles Theorem. (f) Further, |𝐵𝐶| = |𝐴𝐷| holds as 𝐴𝐷 ⃗⃗⃗⃗⃗ , 𝐵𝐶 ⃗⃗⃗⃗⃗ ∈ 𝐵𝐶 ⃗⃗⃗⃗⃗ ⃗⃗⃗⃗⃗ . (g) 𝐵𝐷 is a side of the triangles △ 𝐴𝐷𝐵 and △ 𝐵𝐷𝐶 each. (h) The triangles △ 𝐴𝐷𝐵 and △ 𝐵𝐷𝐶 are congruent because of the Congruence Theorem SAS together with (e), (f) and (g). (i) |𝐴𝐵| = |𝐶𝐷| as the triangles △ 𝐴𝐷𝐵 and △ 𝐵𝐷𝐶 are congruent. (j) Define 𝛽 ≔ ∠𝐴𝐵𝐷 and 𝛽 ′ ≔ ∠𝐶𝐷𝐵. (k) It follows that 𝛽 = 𝛽′, because (h) △ 𝐴𝐷𝐵 and △ 𝐵𝐷𝐶 are congruent and (i) |𝐴𝐵| = |𝐶𝐷| (the adjacent sides have the same length). (l) 𝐴𝐵 || 𝐶𝐷 because of the Converse Interior Angle Theorem together with (k) 𝛽 = 𝛽′. (m) 𝐴𝐵 ⃗⃗⃗⃗⃗ and 𝐷𝐶 ⃗⃗⃗⃗⃗ have the same orientation, because (l) 𝐴𝐵 || 𝐶𝐷, (i) |𝐴𝐵| = |𝐶𝐷|, and (c) 𝐵𝐶 ∥ 𝐴𝐷. (n) 𝐴𝐵 ⃗⃗⃗⃗⃗ and 𝐷𝐶 ⃗⃗⃗⃗⃗ are elements of the same arrow class, because they are (l) parallel, (i) have the same length, and (m) they have the same orientation.
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 4 Figure 4: Exemplary constellations for the parallel case.