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In an institution 𝛪, a praxeology 𝓅 is generally a modification of a praxeology 𝓅* coming from a collective of institutions 𝛪*, where the modification is conceptualised by the phenomenon of institutional transposition. This paper presents a praxeological analysis of the concept of concavity of functions as expressed in a mathematics textbook for Norwegian upper secondary school. The analysis shows how the institutional (here, didactic) transposition has "moved" the mathematics presented in upper secondary school away from the mathematics taught at the university and how this transposition has resulted in a poor logos block of the mathematics to be taught.

INTRODUCTION

The theory of didactic transposition [START_REF] Chevallard | La transposition didactique. Du savoir savant au savoir enseigné[END_REF] was introduced in 1985 by Yves Chevallard. The didactic transposition process refers to the transformations an object of knowledge undergoes from the moment it is produced by scholars, to the time it is selected and designed by noospherians to be taught, until it is actually taught (and studied) in a given educational institution [START_REF] Chevallard | Didactic transposition in mathematics education[END_REF]. When doing didactic transposition analyses, the empirical unit is enlarged to encompass data from outside of the mathematics classroom. This reflects the insight that to study teaching and learning of mathematics in the classroom, it is not enough to study what students and teachers are thinking and doing: the mathematics taught becomes itself an object of study. The researcher studies transformations between the following instances: the scholarly mathematical knowledge as it is produced by mathematicians; the mathematical knowledge to be taught as officially formulated in curriculums and as presented in textbooks; the mathematical knowledge as it is actually taught by teachers in classrooms; and the mathematical knowledge as it is actually learned by students [START_REF] Bosch | Twenty-five years of the didactic transposition[END_REF]. The didactic transposition process taking place between the mentioned instances is illustrated in Figure 1. In the research presented here, we have studied the didactic transposition of concavity of functions from scholarly knowledge to mathematical knowledge to be taught in secondary school. We have analysed transformations between the mathematical organisation of concavity of functions (in particular, its logos block) as expressed in a university textbook on calculus [START_REF] Lindstrøm | Kalkulus [Calculus[END_REF] and the mathematical organisation of the same theme as expressed in a mathematics textbook for Grade 12 [START_REF] Kalvø | Mønster: Matematikk R1 [Patterns: Mathematics for the theoretical programme[END_REF]. As asserted by [START_REF] Winsløw | Mathematical analysis at university[END_REF], the calculus presented in mathematics courses at the university is indeed the result of a didactic transposition of the calculus of the 18th century. So, the mathematics presented in the university textbook analysed here is itself a body of transposed knowledge. An analysis of the transformations that this knowledge has undergone from the scholarly mathematical knowledge is however beyond the scope of this paper.

The transformations of concavity of functions that have taken place between the university textbook and the school textbook have been studied through a praxeological analysis. Generally, praxeological analyses, together with analyses of didactic transposition processes that specific knowledge objects have undergone, help us understand which mathematics is taught in school, and why it has become so. Our study centres on the following research question: What are the transformations that the notion of concavity of functions has undergone during the didactic transposition process from the knowledge taught at the university to the knowledge to be taught in Norwegian upper secondary school?

THEORETICAL TOOLS

The study reported here has been conducted in the framework of the anthropological theory of the didactic (ATD; [START_REF] Chevallard | Introducing the Anthropological Theory of the Didactic: An attempt at a principled approach[END_REF]. A praxeology of a body of knowledge is in the ATD a model of this knowledge. This model is a unit composed of four components: T, τ, θ and Θ (sometimes referred to as "the four t-s"), where T is a type of tasks, τ is a technique (or a set of techniques) to solve the tasks, θ is a technology, that is, a discourse describing and explaining the techniques, and Θ is a theory, that is, a discourse justifying θ. T and τ belong to the praxis block of the praxeology, whereas θ and Θ belong to the logos block. A praxeology 𝓅 is written:

𝓅 = [T / τ / θ / Θ].
A praxeology 𝓅 is usually the product of the activity of an institution or a collective of institutions 𝛪. It is often the case that this "product" is the result of an institutional transposition of a praxeology 𝓅* living in a collective of institutions 𝛪* to a praxeology 𝓅 that has to live within 𝛪 and thus has to satisfy a set of conditions and constraints specific to 𝛪 (Chevallard, 2020). This is the case when 𝛪 is a collective of "didactic" institutions, that is, institutions declaring to teach some bodies of knowledge, such as secondary schools for example. This is referred to as didactic transposition of 𝛪* into 𝛪. Often, in this case, it is observed that 𝓅 is a "simplification" of 𝓅* through various processes. For example, it may be that a certain type of tasks T in 𝛪* becomes useless in 𝛪. It may be that a particular technique is inefficient, or that it leads the average user to make many mistakes. Moreover, in the process of transposition, it is likely that 𝓅* has been greatly simplified and thus distorted so the technology does not really justify the proposed technique. Finally, the theoretical elements are often implicit, repressed, or taken for granted. Therefore, for those who want to analyse a praxeology living in a given institution, the theoretical component is hard to bring to light. This is shown in the analysis section below.

METHODICAL APPROACH

The methodical approach is essentially that of didactic transposition analysis [START_REF] Chevallard | La transposition didactique. Du savoir savant au savoir enseigné[END_REF]. The didactic transposition analysis of the concerned body of knowledge 𝓀 presented here involves a comparison of praxeological analyses of two different "copies" (i.e., "transposed" versions) of 𝓀 as they appear in two different institutions. The data are the mentioned textbooks (in Norwegian)1 : The first is Kalkulus, an introductory textbook on calculus for the university, published in 2016. It is written by Tom Lindstrøm, professor of mathematics at the university of Oslo. The second is Mønster [Patterns]: Mathematics R1, a Grade 12 mathematics textbook for a theoretical programme at upper secondary school, preparing for university studies in science, technology, engineering, and mathematics. It is part of a textbook series for the national curriculum since 2020, written by Tove Kalvø, Jens C. L. Opdahl, Knut Skrindo, and Øystein J. Weider, all serving as teachers in mathematics at (different) upper secondary schools. The reasons for the choice of these books are: Kalkulus is an introductory textbook used in the first calculus course taken by students enrolled in teacher education programmes for Grade 8-13 at several Norwegian universities; Mønster is part of a brand-new textbook series for the theoretical programme; it is not a revised version of an old series as are two other textbook series for the same programme (i.e., [START_REF] Borgan | Matematikk R1 [Mathematics for the theoretical programme[END_REF][START_REF] Oldervoll | Sinus R1: Matematikk [Sinus: Mathematics for the theoretical programme[END_REF].

ANALYSIS OF A DIDACTIC TRANSPOSITION PROCESS

We present here an analysis of concavity of functions as treated in the textbook Mønster (Kalvø et al., 2021, pp. 208-224) and compare it with the treatment of the same topic in the university textbook Kalkulus (Lindstrøm, 2016, pp. 313-321)-which we regard as closer to scholarly knowledge. The aim is to bring to light the didactic changes this knowledge object, as presented in Mønster, has been subjected to.

The Logos Block of Concavity of Functions in Kalkulus

In Chapter 6.4 of Kalkulus, with heading "Discussion of Curves", there is a section entitled "Convex and Concave Functions" (pp. 283-288). 2 The author starts with a geometrical definition of the concepts of convex function and concave function:

Definition

The function f is called convex on the interval I if every time we select two points a, b ∊ I, then no point on the line segment between (a, f(a)) and (b, f(b)) will be below the graph of y = f(x) (see Figure 2). 3 We say that f is concave on I if every time we select two points a, b ∊ I, then no points on the line segment between (a, f(a)) and (b, f(b)) will be above the function graph (see Figure 3). (Lindstrøm, 2016, p. 314) The author continues to build up elements in the logos block, which allows him to deduce a connection between concavity and the second derivative of a function twice differentiable. To be able to use the mean value theorem in the proof of the theorem that establishes the sought relationship, the following lemma using difference quotients is presented (p. 315):

6.4.6 Lemma A function is convex on an interval I if and only if the following applies. For all points a, b, c ∊ I such that a < c < b, we have

!(#)%!(&) #%& ≤ !(')%!(#) '%#
.

(1)

Correspondingly, f is concave on I if and only if

!(#)%!(&) #%& ≥ !(')%!(#) '%# . ( 2 
)
The author writes that the two statements can be proved the same way and presents a proof for the convexity part of the lemma:

Proof: Assume first that f is convex. Then the point (c, f(c)) cannot be above the segment connecting (a, f(a)) and (b, f(b)), and we must have the situation shown in Figure 4a.

When we compare the slopes k, k1, and k2 of the three segments in the figure, we see that k1 ≤ k ≤ k2, which means that

!(#)%!(&) #%& ≤ !(')%!(&) '%& ≤ !(')%!(#)
'%# . If we omit the middle part, we get (1). (Lindstrøm, 2016, p. 315) The next step of the author is assuming that f is not convex and showing, consequently, that (1) does not hold:

Since f is not convex, we can find points a, b, c ∊ I so that a < c < b and (c, f(c) is above the segment connecting (a, f(a)) and (b, f(b)); this means that we have the situation shown in Figure 4b.

We now see that the ratio between the slopes is k1 > k > k2 -in other words

!(#)%!(&) #%& > !(')%!(&) '%& > !(')%!(#) '%#
.

If we omit the middle part, we get the inverse inequality of (1). ∎ (Lindstrøm, 2016, pp. 315-316) Then everything is ready to state the theorem that is the central theoretical element in the author's mathematical organisation of the logos part of concavity of functions:

Theorem

Assume that f is continuous on an interval I and that f ″(x) ≥ 0 for all inner points x ∊ I. Then f is convex on I. If instead f ″(x) ≤ 0 for all inner points of I, then f is concave on I. (Lindstrøm, 2016, p. 316) The proof addresses the convexity part of the theorem, using the above lemma:

Proof: Choose three points a, b, c ∊ I so that a < c < b. According to Lemma 6.4.6, it suffices to prove that

!(#)%!(&) #%& ≤ !(')%!(#) '%#
. By the mean value theorem, there exist two numbers c1 ∊ (a, c) and c2 ∊ (c, b) so that

!(#)%!(&) #%& = 𝑓′(𝑐 ( ) and !(')%!(#) '%# = 𝑓′(𝑐 ) ). Since f ″(x) ≥ 0, f ′ is increasing and, consequently, f ′(c2) ≥ f ′(c1) [because c1 < c < c2]. Hence !(#)%!(&) #%& = 𝑓 * (𝑐 ( ) ≤ 𝑓 * (𝑐 ) ) = !(')%!(#) '%# . ∎ (p. 316)
After this, two examples are given that discuss convexity / concavity. The second example introduces the notion of inflection point with this formulation: "a is an inflection point for f if f is continuous at a and there exists an ε > 0 so that f is convex on one of the intervals (a -ε, a), (a, a + ε) and concave on the other" (p. 318). An inflection point is a point where a function changes from being concave to being convex or vice versa. This is succeeded by 18 tasks that address appearances of curves more broadly.

The above is a brief account of the "scientific" treatment of the concept of concavity in Kalkulus, which describes the constituent parts of the logos block of concavity: 1) a definition of convex / concave function; 2) the mean value theorem (proved in a previous section) used in the proof of a lemma to be used in the proof of a central theorem with respect to the concept at stake; 3) the mentioned lemma (with proof); 4) the central theorem (with proof) declaring a connection between the sign of the second derivative and the concavity / convexity of a function; 5) a definition of inflection point.

The Mathematical Organisation of Concavity of Functions in Mønster

Here, we analyse the treatment of concavity of functions in Mønster [START_REF] Kalvø | Mønster: Matematikk R1 [Patterns: Mathematics for the theoretical programme[END_REF] One remarkable point is that the section devoted to concavity issues is entitled "The Second Derivative". The question of the concavity of functions is thus presented as an application of the notion of second derivative. The words concave and concavity do not appear in the textbook: they are replaced by the expressions "hollow side" (hul side)4 -the side that faces either down or up-and "curvature" (krumning), respectively. We will see that this is a "symptom" of the treatment of concavity by the given textbook. These notions appear in the following passage:

We compare this with the graph of f and see the following: • When f″ is negative, f ′ is decreasing and the graph of f turns its hollow side down.

• When f″ is positive, f ′ is increasing and the graph of f turns its hollow side up. A function with a graph turning its hollow side up or down is not linear. We say that the graph curves, and we mark the curvature of the graph with an arc below the sign line (see Figure 5). (Kalvø et al., 2021, pp. 211-212) Figure 5. Sign Line for the Second Derivative (adapted from Kalvø et al., 2021, p. 211) In this way, words that are traditional in mathematics (concave/convex, concavity/convexity) but which, a priori, mean nothing to the students, are replaced by expressions (hollow side facing down/up, curvature) that make sense in everyday language, which in this case have a metaphorical value, and which are used here as definitions. The same is true for inflection point, where the authors use the notion "turning point" (vendepunkt). The technology of this technique (using a sign line for the second derivative) is in fact reduced to a minimum. The authors of the textbook have adopted a "naturalistic" approach to functions. They do so by considering a specimen function regarded as generic, in this case the function defined by 𝑓(𝑥) =

! " 𝑥 # + ! $
𝑥 $ for all x ∈ ℝ. The graphs of f and f′(x)

= ! $
𝑥 $ + 𝑥 are shown in Figure 6 (adapted from Kalvø et al., 2021, p. 211). Looking at the graph of f, we "see" that f first increases, reaches a maximum at a point that appears to be -2, then decreases and reaches a minimum at x = 0, before increasing again. Let us then try to determine "visually" the intervals in which f is either concave or convex. The function f is first concave, up to a value x0 somewhere between -2 and 0; then it becomes convex after x0. How can we determine x0? To do this, we need to look not at the values of the derivative, but at how the derivative varies-that is, how the slope of the tangent to the graph of f′ changes.

Instead of examining the graphs of f and f ′, it is technically more concise to simply examine the graph of f ″ (see Figure 6). Here, f ″(x) = x + 1. The second derivative f ″ is therefore represented by a straight line with slope 1. It is strictly negative when x < -1, zero for x = x0 = -1 and strictly positive when x > -1. The reader can examine two animated GIFs, where the first GIF (first link) highlights the values (positive, negative) of f ′ while the second GIF (second link) highlights the fact that f ′ is increasing or decreasing.

https://commons.wikimedia.org/w/index.php?title=File:Tangent_function_animation.gif &oldid=507127692 https://upload.wikimedia.org/wikipedia/commons/7/78/Animated_illustration_of_i nflection_point.gif.

If we look at the treatment of concavity in Mønster as a certain praxeology, we can analyse it as explained in the following paragraphs.

The type of tasks T studied is formulated more allusively than explicitly. A task t of type T consists in determining the curvature of the graph of a given function f and finding its possible turning point(s). This involves determining intervals of ℝ on which f is either "concave down" or "concave up" by examining a "sign line" as shown in Figure 5.

The notion of concavity is hinted at, rather than properly defined. This is made possible, among other things, by a linguistic "manipulation" which is one of the keys to the didactic transposition carried out by the authors: the words concavity and inflection point do not appear. "Concavity" is replaced by the expression "hollow side down / up" associated with the expression "curvature"; "inflection point" is replaced by "turning point". While the words "concavity" and "inflection point" are relatively opaque words in ordinary language, and therefore require comments, if not a precise definition, the expressions by which they are replaced belong to everyday language and are known to all, which authorizes the authors not to say more about them.

The technique τ to perform a task t ∈ T consists in calculating the second derivative f ″ (differentiating a function: type of tasks T1) and studying its sign (determining the sign of a function: type of tasks T2). In essence, both T1 and T2 are assumed to have been studied beforehand and to be now largely routinised. The only new feature is that, given the function f, the derivatives f ′ and f ″ must be calculated successively.

The technology θ of the technique τ is reduced to next to nothing. One would expect that when f is concave down, the authors would point out to their readers that the slope of the tangent decreases. Instead, they invite them to observe, on the graph of f ′, that f ′ is decreasing. Even more so, they do not care to mention the equivalence of various properties such as -the slope of the tangent decreases; -the curve is below its tangents; -for any point a on an interval I on which f is defined, the function ra: x ↦ ra(x) = The third of these properties corresponds to Lemma 6.4.6 in Kalkulus (explained in the previous section).

Finally, about the praxeology of concavity in Mønster, we have uncovered that there is no theory ϴ justifying the technology θ. This can be explained by two factors: first, θ is almost non-existent; second, the authors make no real attempt to justify what little exists of θ. We would like to state here what the theory (according to the ATD) would be: a system of statements (definitions, axioms, lemmas, theorems, corollaries…) from which we can derive a justification of θ. Let us suppose, for example, that we want to justify the fact that, when the derivative f ′ decreases, "the curve is below its tangents". We have (see Figure 8

): f(a) + ε f ′(a) -f(a + ε) = ε f ′(a) -[f(a + ε) -f(a)].
According to the mean value theorem, there exists γ ∈ (0, 1) such that f(a + ε) -f(a) = ε f ′(a + γ ε). We thus have:

f(a) + ε f ′(a) -f(a + ε) = ε f ′(a) -ε f ′(a + γ ε) = ε [f ′(a) -f ′(a + γ ε)]. Since f ′ decreases, f ′(a) > f ′(a + γ ε) and therefore f(a) + ε f ′(a) -f(a + ε) = ε [f ′(a) -f ′(a + γ ε)] > 0. ∎
In that case, we could look for the mathematical "principles" that justify the mean value theorem and the tools used to establish it (e.g., Rolle's theorem). 

DISCUSSION

The presentation of concavity of functions in the secondary school textbook is but a "technical notice" expressed in a casual way, with as little mathematical "logos" as possible, most likely to make it accessible to a wider range of students. This contrasts with the presentation of the same theme in the university textbook, where we found a logos block consisting of definitions and proved results (theorems, lemma). In the school textbook, the notion of concavity has been substituted by an application of the notion of second derivative and, consequently, there is an exclusion of questions where concavity could have come into play. There are two other mathematics textbook series for the theoretical programme in upper secondary school in Norway: one is written by [START_REF] Borgan | Matematikk R1 [Mathematics for the theoretical programme[END_REF], the other by [START_REF] Oldervoll | Sinus R1: Matematikk [Sinus: Mathematics for the theoretical programme[END_REF]. They have a very similar treatment of concavity of functions, using exactly the same notions as the textbook analysed here.

How can we summarise the effect of didactic transposition on the notion of concavity of a function as it manifests itself here? The main fact is that, while in the university presentation, the graphical notion of concavity is mathematised, in secondary school textbooks it remains non-mathematised: concavity is to be seen on the graph of the function. At best, authors simply translate this visual property by saying that the slope of the tangent to the curve decreases or increases. This visually established property is then translated mathematically by the sign of the second derivative. The crucial gain is obvious: the subtle work required to mathematise the graphical notion of concavity is avoided, so that its presentation is accessible to a wider audience.

Another gain stems from an "iron law" of curriculum crafting: a new item benefits from appearing as an "application" of an established item-here the notion of second derivative. Is there a loss? Yes, there is. Whereas, at university, under appropriate regularity conditions, one can prove that, if a function is concave down, its second derivative is negative, and conversely, at the secondary level, for lack of a mathematical definition of concavity, students will miss this particular opportunity for a simple, founding experience in their mathematics education: tackling a theorem, and then its reciprocal. Didactic transposition thus surreptitiously makes its mark, and sometimes takes its toll, on students' and teachers' praxis and logos by distorting and, often, damaging the mathematical equipment which is available to them.
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 1 Figure 1. Didactic Transposition Processes (adapted from Chevallard & Bosch, 2014, p. 171)
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 4 Figure 4. Convexity (left image) and Non-convexity (right image) (taken from Lindstrøm, 2016, pp. 315-316)

  The point where the graph goes from facing the hollow side up to [facing] the hollow side down (or vice versa), is called the turning point. At the turning point, the sign of the derivative changes.(p. 211) 

Figure 6 .

 6 Figure 6. The Graphs of f, f′, and f′′

Figure 7 .

 7 Figure 7. Chords and Tangent for a Function f

Figure

  Figure 8. Decreasing Derivative

  

Quotations from these textbooks have been translated into English by the first author.

For functions, being convex and concave is synonymous with being "concave up" and "concave down", respectively (as used by e.g.[START_REF] Adams | Calculus: A complete course[END_REF].

Figures taken from Kalkulus used in this paper are given titles by the authors (figures are untitled in the source). Moreover, we have renumbered them to have continuous numbering of figures.

Throughout the paper, italicized words in parentheses refer to Norwegian words used in Mønster.