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1. Introduction
Approximately half of the carbon dioxide (CO2) released annually by the combustion of fossil fuels stays in 
the atmosphere (Friedlingstein et  al.,  2022; Keeling et  al.,  1976; Schimel et  al.,  2001). The remaining CO2 
is taken up by the terrestrial biosphere and ocean in roughly equal proportions (Keeling & Manning,  2014; 
Khatiwala et al., 2009; Sabine et al., 2004). The efficiency of the ocean and land sinks varies with both climate 
and atmospheric CO2, representing an important feedback in the climate system (e.g., Ballantyne et al., 2012; 

Abstract Understanding terrestrial ecosystems and their response to anthropogenic climate change 
requires quantification of land-atmosphere carbon exchange. However, top-down and bottom-up estimates 
of large-scale land-atmosphere fluxes, including the northern extratropical growing season net flux (GSNF), 
show significant discrepancies. We developed a data-driven metric for the GSNF using atmospheric carbon 
dioxide concentration observations collected during the High-Performance Instrumented Airborne Platform for 
Environmental Research Pole-to-Pole Observations and Atmospheric Tomography Mission flight campaigns. 
This aircraft-derived metric is bias-corrected using three independent atmospheric inversion systems. We 
estimate the northern extratropical GSNF to be 5.7 ± 0.3 Pg C and use it to evaluate net biosphere productivity 
from the Coupled Model Intercomparison Project phase 5 and 6 (CMIP5 and CMIP6) models. While the 
model-to-model spread in the GSNF has decreased in the CMIP6 models relative to that of the CMIP5 
models, there is still disagreement on the magnitude and timing of seasonal carbon uptake with most models 
underestimating the GSNF and overestimating the length of the growing season relative to the observations. We 
also use an emergent constraint approach to estimate annual northern extratropical gross primary productivity 
to be 56 ± 17 Pg C, heterotrophic respiration to be 25 ± 13 Pg C, and net primary productivity to be 28 ± 12 
Pg C. The flux inferred from these aircraft observations provides an additional constraint on large-scale 
gross fluxes in prognostic Earth system models that may ultimately improve our ability to accurately predict 
carbon-climate feedbacks.

Plain Language Summary The exchange of carbon between the land and atmosphere is an 
important part of the Earth's climate, and this exchange might change due to human-caused climate change. 
However, estimates of land-atmosphere carbon fluxes made using different techniques do not agree with each 
other. We use atmospheric carbon dioxide observations collected during two flight campaigns to show that 
5.7 Pg C is exchanged between the atmosphere and the land in the northern hemisphere during the summer 
growing season. This estimate is used to evaluate the performance of two generations of climate prediction 
models. The newer generation of models show less spread than the older generation, but there is still significant 
disagreement on the magnitude and timing of land-atmosphere carbon exchange among models. Most models 
underestimate the growing season net flux and overestimate the length of the growing season. We also use 
our observational estimate to reduce the spread on component fluxes of carbon exchange, namely uptake by 
photosynthesis and release by respiration.
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Key Points:
•  Aircraft observations of atmospheric 

carbon dioxide concentrations are 
used to infer the net flux of the 
northern extratropical growing season 
net flux

•  The observations suggest a larger 
net flux and shorter growing season 
than those simulated in Earth system 
models

•  An emergent constraint approach is 
used to estimate productivity and 
respiration fluxes
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Fernández-Martínez et al., 2019; Fung et al., 2005). The strength of the land sink may be related to the ampli-
tude of the seasonal cycle of atmospheric CO2 (e.g., Keeling et al., 1996; Randerson et al., 1997) via annual and 
seasonal imbalances between photosynthesis and respiration. However, the magnitude and spatial and temporal 
distributions of gross primary productivity (GPP) and net primary productivity (NPP) vary noticeably among 
Earth system models (ESMs) (e.g., Hu et al., 2022). Furthermore, models typically underestimate the change in 
amplitude of seasonal CO2 exchange in northern land ecosystems over time (e.g., Graven et al., 2013) or under-
estimate CO2 uptake in the Northern Hemisphere mid-high latitudes (e.g., Canadell et al., 2021, Figure 5.24).

Multi-model ensembles of coupled carbon-climate models show large differences in their land sink projec-
tions, especially for terrestrial carbon uptake (e.g., Arora et  al.,  2020; Cadule et  al.,  2010). For example, 
Friedlingstein et al. (2014) showed that the Coupled Model Intercomparison Project phase 5 (CMIP5) models 
range between −173 and 758 Pg C in simulations of cumulative land carbon uptake for 1850 to 2100 when 
forced by RCP8.5. This uncertainty exists in historical simulations where models both overestimate and under-
estimate the historical atmospheric CO2 increase by over 20%. These differences are mainly due to uncer-
tainties in the land carbon cycle response, with differences in their cumulative land flux estimates of 214 Pg 
C for 1850–2005, more than double the differences in their cumulative ocean flux estimates (Friedlingstein 
et al., 2014).

Quantifying the exchange of carbon between the atmosphere and the land surface at hemispheric and global 
scales is challenging because the heterogeneity of the Earth's surface makes it difficult to upscale local flux meas-
urements (e.g., Friend et al., 2007; Kumar et al., 2016). Atmospheric inversion, wherein carbon fluxes are esti-
mated from atmospheric CO2 observations using atmospheric tracer transport models, provides a method to infer 
large-scale carbon fluxes (e.g., Ciais et al., 2010; Tans et al., 1990; Thompson et al., 2016); however, this method 
has been shown to be sensitive to uncertainty due to the simulation of vertical transport (Schuh et al., 2019; 
Stephens et al., 2007; Verma et al., 2017). Atmospheric inversions that rely only on surface observations must 
accurately represent vertical mixing to estimate CO2 concentrations aloft. Uncertainty in atmospheric inversion 
flux estimates can be characterized through the use of observations of the vertical profile of atmospheric CO2 
(e.g., Peiro et al., 2022; Stephens et al., 2007).

Global-scale aircraft observations, such as those made during the High-Performance Instrumented Airborne Plat-
form for Environmental Research (HIAPER) Pole-to-Pole Observations project (HIPPO, 2009–2011) and the 
Atmospheric Tomography Mission (ATom, 2016–2018), are representative of large regions and capture the verti-
cal profile of atmospheric CO2 (Thompson et al., 2022; Wofsy, 2011). These campaigns measured the vertical 
structure of CO2 in the atmosphere across a range of latitudes and over the full seasonal cycle and allowed for the 
analysis of seasonal changes in hemispheric-scale atmospheric CO2 (e.g., Jin et al., 2021), which are dominated 
by land exchange. We use the seasonal cycle of atmospheric CO2 concentrations measured during the HIPPO 
and ATom flight campaigns to develop a metric for evaluating the simulation of terrestrial CO2 exchange in 
prognostic ESMs.

We derive estimates of the northern hemisphere net land flux integrated over the growing season, or growing 
season net flux (GSNF), as a benchmark for model evaluation (e.g., Collier et al., 2018). The creation of flux 
benchmarks allows for a direct comparison of observations and model simulations at the flux level rather than 
at the concentration level (e.g., Keppel-Aleks et al., 2013), which requires either using an atmospheric trans-
port model or emulator (Liptak et al., 2017) to translate fluxes into atmospheric mole fraction variations. This 
research explores an alternative approach to formal inverse modeling to constrain net land-atmosphere carbon 
fluxes at the hemispheric scale. We use CO2 measurements from the HIPPO and ATom flight campaigns 
to infer the GSNF with only minimal reliance on atmospheric transport models. Thus, our estimated flux 
is less sensitive to errors in transport simulation and gives a more robust insight into prognostic model 
inconsistencies.

We describe the data sets and methods used to derive GSNF in Section 2. We discuss the GSNF and compare it 
to ESM estimates of net biosphere productivity (NBP), GPP, heterotrophic respiration (RH), and NPP using the 
output from the Coupled Model Intercomparison Project phases 5 and 6 (CMIP5 and CMIP6) in Section 3. This 
is followed by a discussion of those results in Section 4 and conclusions in Section 5.
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2. Data and Methods
2.1. Aircraft Observations

We used dry air mole fractions of CO2 measured in the free troposphere during the HIPPO and ATom aircraft 
campaigns. HIPPO (Wofsy, 2011; Wofsy et al., 2017) used the NSF/NCAR HIAPER Gulfstream V aircraft to 
make measurements primarily over the remote Pacific from 87°N to 67°S (Figure 1a) during five campaigns 
that spanned all four seasons between 2009 and 2011 (Table 1). The aircraft flew vertical profiles from near 
the surface to an altitude of 14 km; typically, a full profile was completed over ∼2.2° of latitude (Figure 1b). 
During these flights, measurements were made of greenhouse gasses and related tracers. CO2 mole fractions were 
measured using three different in situ instruments and two whole air samplers: the Harvard Quantum Cascade 
Laser System (QCLS, Santoni et al., 2014), the Harvard Observations of the Middle Stratosphere (OMS, Daube 
et  al.,  2002) instrument, the National Center for Atmospheric Research (NCAR) Airborne Oxygen Instru-
ment (AO2, Stephens et  al.,  2021), the National Oceanic and Atmospheric Administration (NOAA) Portable 
Flask Packages (PFP, Sweeney et  al.,  2015), and the NCAR/Scripps Medusa Whole Air Sampler (Stephens 

et al., 2021). For our analysis, we used the recommended CO2.X variable, 
which is derived primarily from QCLS measurements with calibration peri-
ods gap-filled using OMS measurements, reported as part per million dry air 
mole fractions (Wofsy et al., 2017). We used the 10-s merge data product and 
all CO2 measurements are reported to be within 0.2 ppm with respect to the 
WMO X2007 scale (Santoni et al., 2014). The mean bias between QCLS and 
NOAA flask measurements across all five HIPPO campaigns was 0.11 ppm 
(Santoni et al., 2014). We used comparisons to the other four systems as a 
measure of analytical uncertainty. We also used observations of N2O made by 
QCLS to identify stratospheric samples.

ATom (Thompson et al., 2022; Wofsy et al., 2021) is a more recent series 
of flight campaigns that used the NASA DC-8 aircraft to measure atmos-
pheric trace gas concentrations by traveling south over the Pacific and north 
over the Atlantic (Figure  1c) and which included a much larger scientific 
payload. As with HIPPO, a full annual cycle was measured, with flights that 
occurred in each of the four seasons over a three-year period from 2016 to 
2018 (Table 1). Flights spanned 83°N to 86°S and sampled vertical profiles 

Figure 1. Flight paths for (a) HIPPO-2, which flew over the remote Pacific in November 2009, and (c) ATom-1, which flew over the Pacific and Atlantic in August 
2016. All other campaigns followed similar flight paths. Flight path with continuous vertical profiling for flight 3, which flew from Anchorage, AK to Kona, HI for (b) 
HIPPO-2 and (d) AToM-1. All other flights flew a similar path.

Table 1 
Aircraft Data Used in This Study

Deployment

Northern Hemisphere 
(southbound) dates and ocean 

basin

Northern Hemisphere 
(northbound) dates and 

ocean basin

HIPPO-1 1/8/09–1/16/09, Pacific 1/28/09–1/30/09, Pacific

HIPPO-2 10/31/09–11/7/09, Pacific 11/16/09–11/22/09, Pacific

HIPPO-3 3/24/10–3/31/10, Pacific 4/10/10–4/16/10, Pacific

HIPPO-4 6/14/11–6/22/11, Pacific 7/4/11–7/11/11, Pacific

HIPPO-5 8/9/11–8/24/11, Pacific 9/3/11–9/8/11, Pacific

ATom-1 7/29/16–8/6/16, Pacific 8/17/16–8/23/16, Atlantic

ATom-2 1/26/17–2/3/17, Pacific 2/15/16–2/21/17, Atlantic

ATom-3 9/28/17–10/6/17, Pacific 10/19/17–10/28/17, Atlantic

ATom-4 4/24/18–5/1/18, Pacific 5/14/18–5/21/18, Atlantic
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from 0.2 to 12  km in altitude (Figure  1d). ATom measured CO2 using the QCLS, AO2, Medusa, and PFPs 
similar to HIPPO but also included a NOAA Picarro instrument. For our analysis, we used the CO2.X variable, 
which consists of NOAA Picarro measurements gap-filled using QCLS measurements. However, during the 
first two flights of ATom-1, the NOAA Picarro measurements were not reported due to an inlet problem. Simi-
lar to HIPPO, we used the 10-s merge data product (Wofsy et al., 2021). To identify and remove stratospheric 
samples, we used observations of N2O from QCLS and the NOAA PAN and Trace Hydrohalocarbon ExpeRiment 
(PANTHER, ATom-1 only). While the WMO CO2 scale has been recently updated, both the HIPPO and ATom 
observations used here have been calibrated with respect to the previous, WMO X2007, scale.

2.2. Curtain Averages From Atmospheric Concentrations

CO2 observations from all flight campaigns are combined to estimate the average northern extratropical tropo-
spheric CO2 seasonal cycle (Bent, 2014). We then use a set of transport models to convert the time derivative of 
this cycle into estimates of northern extratropical terrestrial CO2 flux. We refer to this process as “bias correction.”

To isolate tropospheric CO2 signals, we define an upper cutoff of 300 hPa and remove any remaining obser-
vations with detectable stratospheric influence using the measured concentration of nitrous oxide (N2O) and a 
cutoff value of 319 parts per billion (ppb) after detrending the data to 2009; samples whose N2O concentration 
falls below this threshold are removed from the observations (Bent, 2014). We also manually removed outly-
ing samples primarily obtained during takeoffs and landings to avoid strong local influences from biospheric 
exchange or fossil emissions. The flights and times filtered are identified in Data Sets S1 and S2 of Support-
ing Information S1. We filter output at the same locations and times for the transport model CO2 mole fractions 
simulated along the flight tracks as discussed in Section  2.3. This stratospheric and local influence filtering 
removes 2.8% of the observations within the defined domain from the HIPPO and ATom data sets. We did not use 
observations from the northbound leg of HIPPO-1 because it only extended to 40°N, and both QCLS and OMS 
were filtered for altitude-dependent biases on these flights.

We then detrend the filtered data by removing the long-term trend in the NOAA Mauna Loa in situ CO2 mole 
fraction record (Thoning et al., 2022), found by Seasonal-Trend decomposition using locally estimated scatterplot 
smoothing (STL, Cleveland & Cleveland, 1990) with a 2-year smoothing window. By detrending, the overall 
annual mean level of flux is removed, leaving only the (relative) seasonal cycle.

We calculate the extratropical mean drawdown by first aggregating the detrended data in latitude and pressure 
bins. We discretized the atmosphere into bins of 5° in latitude and 50 hPa in pressure for the latitude range 20°N 
to 90°N and the pressure range 300 hPa to 1,000 hPa. Observations at latitudes south of 20°N are excluded 
because of the differences in the phasing of the tropical seasonal cycle to that north of 20°N, and observations at 
pressures below 300 hPa were excluded because measurements were sparse and frequently in the stratosphere. 
Within each bin, we average all data collected for a given day of the year and then fit a second-order harmonic 
as a function of day of the year with an offset due to the difference in the annual mean relative to Mauna Loa 
(Figure S1 in Supporting Information S1). We then generate seasonal time series at the daily resolution from the 
harmonic fits and take the pressure-weighted average of these values for each latitude bin. These partial columns 
are then integrated over latitudes from 20°N to 90°N (Equation 1), using cosine(lat) weighting to reflect the 
influence on the zonal volume below 300 hPa at latitudes where observations were made. We call the result of 
this integration the “curtain average” concentration of atmospheric CO2 (Bent, 2014).

CurtainAvg =
∫

90◦𝑁𝑁

20◦𝑁𝑁
∫

1,000 hPa

300 hPa
aveCO2(𝜑𝜑, 𝜑𝜑 ) d𝑝𝑝 cos𝜑𝜑d𝜑𝜑

∫
90◦𝑁𝑁

20◦𝑁𝑁
∫

1,000 hPa

300 hPa
d𝑝𝑝 cos𝜑𝜑d𝜑𝜑

 (1)

The curtain average is shown in black in Figure 2, and is compared to the northbound and southbound legs of each 
HIPPO and ATom mission where each point is found by filtering, detrending, interpolating and extrapolating to 
get a full altitude and latitude slice, then taking a pressure and cosine of latitude-weighted average (Akima, 1978).

The derivative, found as a finite-difference, of the curtain average concentration fit line with respect to time, then 
gives the rate of change in CO2 of this atmospheric volume as a function of the day of the year.

We convert from a rate of change in dry air mole fraction to a rate of change in mass balance (MB) by multiplying 
the mole fraction by the mass of dry air north of 20°N and between the surface and 300 hPa in pressure. This mass 
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is found using the ERA5 reanalysis fields used by Tracer Model 5 (TM5) within CarbonTracker 2019 (Jacobson 
et al., 2020; Krol et al., 2005). We use the time mean mass of 𝐴𝐴 1.21087452 × 1018 kg within the domain across the 
HIPPO and ATom time periods, neglecting annual and seasonal variations, which are less than 0.2%.

2.3. Flux Estimates Using Atmospheric Transport Models

Although the HIPPO and ATom observations over the remote ocean provide representative estimates of back-
ground values, the sampling and discretization methods, zonal gradients, and mixing out of the domain result 
in differences between our MB time derivatives and zonal fluxes. Also, fossil fuel emissions and air-sea gas 
exchange make small contributions to the observed cycles. We use atmospheric transport models to account for 
the cumulative effects of (a) atmospheric mixing across the southern boundary and above the pressure boundary; 
(b) spatial sampling biases associated with specific flight tracks; (c) zonal sampling bias; (d) temporal sampling 
biases associated with synoptic variability, subseasonal sample distribution, and interannual variability; and (e) 
contributions from fossil-fuel emissions and ocean uptake.

Atmospheric inversions provide optimal estimates of surface-atmosphere CO2 exchange derived from both 
atmospheric CO2 mole fraction data and initial estimates for land-atmosphere and ocean-atmosphere exchange 
in the context of an atmospheric transport model. We use posterior concentrations from three different inver-
sions (Table 2) to reduce the uncertainty that may arise due to biases present in the choice of transport model 
as differences in transport have previously been shown to lead to large differences in optimized fluxes (Gurney 
et al., 2002; Schuh et al., 2019; Stephens et al., 2007).

CarbonTracker is a data assimilation system consisting of the TM5 atmospheric transport model coupled to an 
ensemble Kalman filter (Jacobson et al., 2020; Peters et al., 2007). TM5 is a global two-way nested transport 

Figure 2. Two-harmonic fit to detrended average carbon dioxide concentration in ppm as a function of day of year for HIPPO 
and ATom flight campaigns in the atmospheric curtain between 20°N and 90°N in latitude and between 1,000 and 300 hPa 
in pressure. The points are found by filtering, detrending, interpolating and extrapolating to get a full altitude and latitude 
slice, then taking a pressure and cosine of latitude-weighted average. The black line is the average of all fits to individual 
latitude-pressure bins with the annual mean removed. The direction of flight (southbound or northbound) is shown with filled 
and unfilled symbols because southbound flights occurred 2–3 weeks earlier than northbound flights.

Table 2 
Inverse Models Used in This Study

CT2019B MIROC4-ACTM CAMS

Years Available 2000–2018 1996–2018 1979–2020

Years Used 2009–2018 2009–2018 2009–2018

Transport TM5 ACTM LMDZ

Meteorology ERA5 JRA55 ERA5

Resolution (lat × lon in degrees) Glb2 × 3, N America 1 × 1 Glb2.8 × 2.8 Glb1.9 × 3.75

Fossil Fuels Miller and ODIAC EDGARv432 GCP-GridFEDv2021.2

Reference Jacobson et al. (2020) Chandra et al. (2022) Chevallier et al. (2005)
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model driven by 3-hr meteorological forcing from the ERA5 operational forecast model (Krol et al., 2005). We 
used the output from the most recent Carbon Tracker release (CT2019B, Jacobson et al., 2020), which includes 
optimized carbon fluxes through the HIPPO and ATom time period, and CO2 mole fractions simulated along the 
flight paths for the HIPPO and ATom campaigns, which match the dates, times, and locations for the HIPPO and 
ATom data included in the GLOBALVIEWplus v5.0 ObsPack product (Cooperative Global Atmospheric Data 
Integration Project, 2019). CT2019B assimilated 460 time series data sets including data from the HIPPO and 
ATom campaigns. The data sets assimilated in CT2019B were mostly surface in situ, surface flask, and tower in 
situ observations from sites around the world.

The Model for Interdisciplinary Research on Climate version 4 atmospheric general circulation model based 
chemistry transport model (MIROC4-ACTM) provides posterior 4-D CO2 fields and optimized surface fluxes 
through the HIPPO and ATom periods (Chandra et al., 2022). Atmospheric CO2 transport in MIROC4-ACTM 
was simulated by the Japan Agency for Marine-Earth Science and Technology's ACTM, a transport model driven 
by meteorological parameters from the Japanese 55-year Reanalysis (JRA55, Patra et al., 2018). We used the 
2020 version of MIROC4-ACTM output and MIROC CO2 mole fractions simulated along the flight paths for the 
HIPPO and ATom campaigns matching the dates, times, and locations for the HIPPO and ATom data included 
in the GLOBALVIEWplus v5.0 ObsPack product. MIROC4-ACTM assimilated surface flask data from 50 sites 
around the world (Chandra et al., 2022).

We used a third set of inverse modeling output from the Copernicus Atmosphere Monitoring Service (CAMS; 
Chevallier et al., 2005). Within CAMS, transport of atmospheric CO2 is simulated by the global climate model 
of the Laboratoire de Météorologie Dynamique, zoom capacity (LMDZ) driven by meteorological parameters 
from ECMWF (Chevallier et al., 2005). We used CO2 mole fractions simulated along the HIPPO and ATom flight 
paths matching the dates, times, and locations for the HIPPO and ATom data included in the GLOBALVIEWplus 
v5.0 ObsPack product, and posterior carbon fluxes from CAMS v20r1, which contains output through the HIPPO 
and ATom period. CAMS v20r1 assimilated surface air-sample data from 159 sites around the world.

For each model, we calculate the annual cycle of the northern extratropical net land flux by removing the 
long-term annual mean of the posterior land flux, which excludes fossil fuel emissions and ocean fluxes, from 
2000 to 2018 at each grid cell and then taking an area-weighted average north of 20°N. We linearly interpolate 
between monthly means to obtain an annual cycle at daily resolution to allow direct comparison to the aircraft 
observation-derived MB.

To correct for bias, we match the model ObsPack output date, time, and location to the 10-s merge files for 
HIPPO and ATom, then repeat the analysis described in Section 2.2 using posterior CO2 mole fractions simulated 
along the HIPPO and ATom flight tracks to calculate the curtain average and MB for each atmospheric inversion 
system. The averaged posterior land flux is then subtracted from the MB to derive a seasonal correction. The 
MB found using posterior CO2 mole fractions simulated along the HIPPO and ATom flight tracks is the MB 
that would be observed if transport and fluxes in our world perfectly matched transport and fluxes in the model, 
with a time delay between the two curves due to the time taken for the signal of land fluxes to reach the location 
where measurements are made. Thus, in each model, we assume that the difference between the MB for each 
model (solid lines in Figure 3a) and northern extratropical average posterior land flux (dashed lines in Figure 3a) 
is primarily due to mixing outside the domain, model fluxes, and time delay, with additional influences listed 
above. We determine the correction for each model and subtract it from the observationally derived MB (dotted 
black line in Figure 3b), resulting in transport model-specific flux estimates (solid color lines in Figure 3b). The 
average difference across the three models (dashed black line in Figure 3b) is subtracted from the observationally 
derived MB to estimate the seasonal cycle of the average net flux, hereafter referred to as the “flux cycle”, into 
the atmosphere (solid black line in Figure 3b).

We find that the contribution of atmospheric transport uncertainty for the large spatial scale over which we aver-
age is small. In particular, noted variations in representations of vertical mixing (Schuh et al., 2019; Stephens 
et al., 2007) may change the distribution of CO2 within our domain but not the domain average.

2.4. Growing Season Net Flux From Seasonal Flux Cycles

We then calculate the net atmospheric carbon exchange during the growing season, or GSNF, as the integral of 
the flux cycle during the growing season, defined to be when the bias-corrected flux cycle is negative, which 
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is nominally equivalent to the period when detrended atmospheric CO2 is declining, primarily due to additional 
uptake by the biosphere as GPP outpaces respiration.

By detrending the observations, this estimate excludes the annual mean flux of CO2, which itself includes fossil 
fuel emissions and terrestrial and oceanic sinks. Thus, our estimate of GSNF reflects the seasonal-only compo-
nent of terrestrial exchange; the actual net uptake by the terrestrial biosphere during the growing season is larger 
when the annual component (long-term sink) is included. This approach is consistent with prior use of GSNF 
(e.g., Fung et  al.,  1983; Yang et  al.,  2007). Seasonal variations in fossil-fuel emissions and air-sea exchange 
contribute to seasonal variations in atmospheric CO2, but these influences are small at about 3% and 5% of land 
exchange, respectively, on average for the three inversion systems, and have been removed by our use of the land 
flux in our model-based bias correction.

2.5. Earth System Models (CMIP5 and CMIP6)

The CMIP is an international, multi-model research intercomparison project whose purpose is to compare a 
coordinated set of simulations from ESMs in order to gain a better understanding of our ability to model climate 
change and associated feedback (Friedlingstein et al., 2006). The ESMs that participate in the CMIP simulate 
relevant physical, chemical, and biological processes within the coupled Earth system (Eyring et al., 2016) using 

Figure 3. (a) Time derivative of concentrations from observations and inverse models along with model fluxes. The dashed 
lines show the area weighted average of posterior land fluxes from each inversion system in the domain 20°N–90°N. The 
solid lines are found by using the carbon dioxide mole-fractions along the flight track for each model to calculate the 
MB as described in Section 2.2. The solid black line is the time derivative of concentrations using the HIPPO and ATom 
observations. The estimated flux for the observations is bias corrected by finding the difference between the dotted and solid 
lines for a given model and applying that difference to the time derivative of the concentration. (b) Estimated flux after bias 
correction. The colored lines are found by calibrating using only the model indicated and the solid black line is found using 
the average correction. The dotted black line is the time derivative of concentration before the correction.
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models developed by individual modeling centers worldwide, with the goal of including the most important 
processes that feed back into the climate system.

Here, we analyzed the historical simulations for CMIP5 and CMIP6 (Table 3) that span the period from 1850 to 
2005 for CMIP5 and 2014 for CMIP6. We analyzed CO2 concentration-driven historical simulations in which 
environmental forcing, such as greenhouse gas concentrations and solar forcing, are prescribed. Land and 
ocean fluxes are allowed to evolve prognostically in response to greenhouse gasses and other forcings (Eyring 
et al., 2016).

The northern extratropical seasonal land flux for the CMIP5 and CMIP6 models is calculated by removing the 
long-term annual mean and taking the area-weighted average of each model's NBP output north of 20°N, line-
arly interpolating between monthly mean values, similar to the method used for the inversion posterior fluxes 
(Section 2.3). In addition, we fit a second-order harmonic to the NBP seasonal cycle to find seasonal timing within 
the models. We define the growing season in each model as the period for which the model simulates net terres-
trial uptake, which allows us to evaluate each model's growing season start and end dates against those inferred 
from the aircraft observations. In ESMs, NBP reflects the balance of gross photosynthetic uptake, ecosystem 

Table 3 
Earth System Models Used in This Study

Model Generation Land component Ocean component Institution ID Reference

ACCESS-ESM1-5 CMIP6 CABLE2.4 ACCESS-OM2 (MOM5) CSIRO Ziehn et al. (2019)

CanESM5 CMIP6 CLASS3.6/CTEM1.2 NEMO3.4.1 CCCma Swart et al. (2019)

CESM2 CMIP6 CLM5 POP2 NCAR Danabasoglu (2019a)

CESM2-FV2 CMIP6 CLM5 POP2 NCAR Danabasoglu (2019b)

CESM2-WACCM CMIP6 CLM5 POP2 NCAR Danabasoglu (2019c)

CESM2-WACCM-FV2 CMIP6 CLM5 POP2 NCAR Danabasoglu (2019d)

CMCC-CM2-SR5 CMIP6 CLM4.5 NEMO3.6 CMCC Lovato and Peano (2020)

CMCC-ESM2 CMIP6 CLM4.5 NEMO3.6 CMCC Lovato et al. (2021)

GISS-E2-1-G CMIP6 GISS LSM GISS NASA-GISS NASA/GISS (2018)

GISS-E2-1-H CMIP6 GISS LSM HYCOM NASA-GISS NASA/GISS (2019)

IPSL-CM6A-LR CMIP6 ORCHIDEE NEMO-OPA IPSL Boucher et al. (2018)

MPI-ESM-1-2-HAM CMIP6 JSBACH3.2 MPIOM1.63 HAMMOZ-Consortium Neubauer et al. (2019)

MPI-ESM1-2-LR CMIP6 JSBACH3.2 MPIOM1.63 MPI-M Wieners et al. (2019)

NorCPM1 CMIP6 CLM4 MICOM1.1 NCC Bethke et al. (2019)

NorESM2-LM CMIP6 CLM MICOM NCC Seland et al. (2019)

NorESM2-MM CMIP6 CLM MICOM NCC Bentsen et al. (2019)

TaiESM1 CMIP6 CLM4 POP2 AS-RCEC Lee and Liang (2020), Lee et al. (2020)

CanESM2 CMIP5 CLASS2.7 and CTEM1 CanOM4 and CMOC1.2 CCCma Arora et al. (2011)

CCSM4 CMIP5 CLM4 POP2 NCAR Gent et al. (2011)

CESM1-BGC CMIP5 CLM BEC NSF-DOE-NCAR Long et al. (2013)

GFDL-ESM2G CMIP5 LM3 TOPAZ NOAA GFDL Dunne et al. (2013)

HadGEM2-CC CMIP5 MOSES2 and TRIFFID HadGOM2 MOHC Bellouin et al. (2011)

HadGEM2-ES CMIP5 MOSES2 and TRIFFID HadGOM2 MOHC Bellouin et al. (2011)

INM-CM4.0 CMIP5 - - INM Volodin et al. (2010)

IPSL-CM5A-LR CMIP5 ORCHIDEE ORCA2 IPSL Dufresne et al. (2013)

IPSL-CM5A-MR CMIP5 ORCHIDEE ORCA2 IPSL Dufresne et al. (2013)

MIROC-ESM CMIP5 MATSIRO COCO MIROC Watanabe et al. (2011)

MIROC-ESM-CHEM CMIP5 MATSIRO COCO MIROC Watanabe et al. (2011)

NorESM1-M CMIP5 CLM MICOM NCC Tjiputra et al. (2013)

Note. Models in bold are included in the subset used to analyze gross primary productivity, heterotrophic respiration, and net primary productivity.
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respiration, and disturbance and harvest fluxes and corresponds to the land-atmosphere carbon exchange, making 
it comparable with our observationally derived flux. We note that ESMs generally do not represent lateral carbon 
fluxes in rivers, but we expect these to have a relatively minor contribution to our observed seasonal variations. 
We average multiple years of NBP output from the CMIP models to derive climatology; for CMIP6, we average 
over 2009–2014, and for CMIP5, we average over 2000–2005 because the output is not available through the 
HIPPO and ATom timeframes (Figure 4). We evaluate the ensembles as a whole by taking the median of each 
ensemble of models. We also evaluated area-weighted averages of three major component fluxes: GPP, RH, and 
NPP. Instead of analyzing the fluxes integrated over the growing season, we analyze the fluxes integrated over 
the entire year for GPP, RH, and NPP, which still correlate with the GSNF and are more useful than the seasonal 
fluxes when analyzing the carbon budget (e.g., Ballantyne et al., 2015; Tans et al., 1990). For the flux analysis, 
we use a subset of the models (9 of 12 CMIP5 models and 13 of 17 CMIP6 models, Table 3) for which historical 
NBP, GPP, RH, and NPP are available.

3. Results
Observations of atmospheric carbon dioxide from the HIPPO and ATom aircraft campaigns were used to estimate 
a GSNF of 5.7 ± 0.3 Pg C out of the atmosphere north of 20°N averaged over the period 2009–2018 (Figure 5). 

Figure 4. Corrected flux estimated from the HIPPO and ATom campaigns in comparison to area-weighted average 
NBP in the same domain from the (a) Coupled Model Intercomparison Project phase 5 (CMIP5) and (b) Coupled Model 
Intercomparison Project phase 6 (CMIP6) models. The bias corrected observation error is the standard deviation between 
correction using the three different inverse models. While the spread in magnitude and timing of the flux in the CMIP6 
models is smaller than that of the CMIP5 models, there is still disagreement between the models.
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This value is equivalent to the net CO2 exchange between the land and atmosphere during the growing season 
after removing the annual mean. The growing season is defined as the period when seasonal fluxes are negative 
(net uptake by land greater than the annual mean) and occurs between day 117 in late April and day 248 in early 
September. This corresponds to the day when the curtain average is maximum to the day when the curtain average 
is minimum (Figure 2). The flux cycle shows maximum uptake on day 196 (Figure 3b).

We conducted sensitivity tests to ensure that our choices for the latitudinal boundary of the domain, vertical 
boundary of the domain, and bin size did not have a large influence on the calculated GSNF. Expanding the 
region north (south) of 20°N by 5°N resulted in a decrease (increase) in the strength of the GSNF of just under 
1%. The GSNF was also generally robust to the choice of pressure ceiling for the aircraft observations, increas-
ing by just over 1% when we instead used 350 hPa as a ceiling. The relative standard deviation for all boundary 
combinations tested (all possible combinations of pressure cutoffs of 300, 325, 350, 375, and 400  hPa with 

Figure 5. Growing season net flux plotted against the (a) start of the season, defined to be the first day when the seasonal component of atmospheric CO2 is decreasing 
(seasonal component of flux changes from positive to negative), (b) end of the season, defined to be the last day when the seasonal component of atmospheric CO2 is 
decreasing (seasonal component of flux changes from negative to positive), (c) length of the season, and (d) max of season, defined to be the day when flux is most 
negative. The black point is the number inferred from the observations with gray lines showing uncertainty. Coupled Model Intercomparison Project phase 5 (CMIP5) 
models are shown in blue and Coupled Model Intercomparison Project phase 6 (CMIP6) models are shown in orange. The blue and orange points are the multi-model 
mean for the CMIP5 and CMIP6 ensembles, respectively. The surrounding ellipses show the covariance to one standard deviation. Only models where gross primary 
productivity, heterotrophic respiration and net primary productivity output were available are included.
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latitude cutoffs of 20°N and 25°N) was 2%. Similarly, we saw just over a 1% 
increase in GSNF magnitude for a doubling of latitude or pressure bin size. 
The relative standard deviation for all bin sizes tested (all possible combina-
tions of pressure bin sizes of 25, 50, and 100 hPa with latitude bin sizes of 
5° and 10°) was 1%.

Given the small differences that the choice of boundary and bin size make 
on the magnitude of the calculated GSNF, most of the uncertainty in GSNF 
results from the transport model bias correction process. We see a spread 
of 0.2 Pg C or 4% when using CT2019B alone to bias correct versus using 
CAMS alone to bias correct. Additionally, the interannual variability, calcu-
lated as the standard deviation of the GSNF estimated from the average of 
the three inversion fluxes for each year over the period 2009–2018, is less 
than 0.2 Pg C or just over 3%. When adding the uncertainty from bin size, 
boundary choice, bias correction, and interannual variability in quadrature, 
assuming uncorrelated errors, the 1-sigma error of GSNF is 0.3 Pg C and on 
the start and end of the growing season is 2 days.

Considering the extensive altitude-latitude coverage of the aircraft observa-
tions, the inferred flux represents a unique and robust hemispheric estimate 
of terrestrial biosphere exchange and its seasonal phasing. We used the obser-
vationally inferred GSNF metric to evaluate NBP and its seasonal phasing 
from the CMIP5 and CMIP6 ensembles (Figure 5). CMIP6 models (mean 
GSNF: 5.3 ± 1.6 Pg C, range: 1.5–6.9 Pg C) on the whole have less spread 
than CMIP5 models (mean GSNF: 5.7 ± 2.4 Pg C, range: 2.5–10.0 Pg C) 
(Figure 5). Three of the 13 CMIP6 ensemble members evaluated, CESM2, 
CESM2-WACCM, and MPI-ESM1-2-LR, were within 0.3 Pg C of the 
observed value, and most of the models with a large bias underestimated the 
GSNF.

We note that some modeling centers showed substantial improvement in 
capturing GSNF between CMIP5 and CMIP6 (Figure 6) by decreasing the 
absolute value of their z-score, which indicates how many standard devia-

tions away from the observed value a model falls. For example, the two versions of the IPSL model overestimate 
GSNF by more than 4 Pg C in CMIP5, which improved substantially in CMIP6 to underestimate the GSNF by 
less than 1 Pg C. In both CMIP5 and CMIP6, the majority of ensemble members underestimate the seasonal flux, 
falling below the horizontal gray bar in Figure 5.

A decrease in GSNF model spread in the newer generation has not necessarily led to an improved agreement 
between models and observations on the phasing of the seasonal cycle. For example, The CMIP5 ensemble 
median start day (Julian day 119 ± 17) is closer to the observed start day (Julian day 117 ± 2) than the CMIP6 
ensemble mean start day (Julian day 98 ± 14) (Figure 5a). None of the 13 CMIP6 models evaluated fell within 
2  days of the observed start day, while three of the 9 CMIP5 models evaluated fell within the 2-day uncer-
tainty range (Figure 5a). These observations suggest that the growing season onset has become more biased in 
CMIP6. However, the CMIP6 ensemble did show a smaller bias than CMIP5 for the model-median end day, 
which was Julian day 241 ± 16 for CMIP6 and 258 ± 18 for CMIP5, in contrast to day 248 ± 2 in the observa-
tions (Figure 5b). At 143 ± 9 days, the CMIP6 ensemble median growing season length is 12 days longer than 
the observed length of 131 ± 2. In comparison, the CMIP5 ensemble median growing season length is 11 days 
longer at 140 ± 12 days (Figure 5c). While the CMIP6 ensemble median end day compares more favorably with 
the observed end day than does the CMIP5 ensemble median end day, in both cases, the simulated growing season 
is longer than what is observed (Figure 5c).

Seasonal phasing in general does not appear to be correlated with GSNF in the model ensembles, suggesting that 
phasing is not a dominant driver of GSNF spread among models. No correlation was seen (r 2 < 0.2, p > 0.05) 
between GSNF magnitude and the start day, end day, length, or max day across models (Figure 5). This suggests 
that factors other than the phasing of the growing season may explain inter-model differences.

Figure 6. Coupled Model Intercomparison Project phase 5 and Coupled 
Model Intercomparison Project phase 6 model absolute values of z-score 
calculated for all models. The color gray and the label, none have been used 
when one generation of a model is not used or not existent.
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We analyzed GPP, RH, and NPP for the subset of CMIP5 and CMIP6 ensemble members, which include these 
outputs to determine if these component fluxes might explain model disagreement on GSNF (Figure 7). We found 
that in both the CMIP5 and CMIP6 ensembles, GSNF was correlated (r 2 = 0.68, p < 0.05) with GPP, where 
models with larger GPP generally had larger GSNF. Models with large GPP also tend toward higher respiration 
values with an r 2 value of 0.77 between GPP and RH, as GPP provides the inputs to support RH. RH showed 
a weaker correlation with GSNF than did GPP; however, the correlation is still moderately strong (r 2 = 0.52, 
p < 0.05). As expected, models with higher GPP values also tend toward higher NPP values, and the correlation 
between NPP and GSNF is moderately strong with an r 2 value of 0.66 and a p-value less than 0.05.

Figure 7. Growing season net flux (GSNF) plotted as a function of (a) integrated gross primary productivity (GPP) and (b) integrated heterotrophic respiration (RH), 
and (c) integrated net primary productivity (NPP) for the Coupled Model Intercomparison Project phase 5 (CMIP5) and Coupled Model Intercomparison Project phase 
6 (CMIP6) models. The estimated GSNF from the HIPPO and ATom observations is shown in gray, CMIP5 models are shown in blue, and CMIP6 models are shown in 
orange. Only models where GPP, RH, and NPP data were available were included.
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We see a large range for GPP, RH, and NPP across the CMIP5 and CMIP6 ensembles. The range in GPP is 
smaller for the CMIP6 ensemble (median = 51 ± 9 Pg C, spread = 37 Pg C) than for the CMIP5 ensemble 
(median = 60 ± 17 Pg C, spread = 47 Pg C) where the error in the median is one standard deviation. However, 
this decrease in the model range between ensemble generations is not seen for RH or NPP. The spreads for RH 
were 23 Pg C (median = 27 + 8 Pg C) for CMIP5 and 27 Pg C (median = 21 ± 7 Pg C) for CMIP6. NPP from 
CMIP5 and CMIP6 had median values of 32 ± 9 and 24 ± 7 Pg C, respectively, and a spread of 28 Pg C for both 
CMIP5 and CMIP6. We note that two models in the CMIP6 ensemble have GSNF values consistent with the 
observational constraint, MPI-ESM1-2-LR and IPSL-CM6A-LR, but the GPP values spanned by these models 
are over 10 Pg C, the RH values spanned by these models are 10 Pg C, and the NPP spanned by these models 
are 9 Pg C.

The strong correlations and large ensemble spread enabled us to indirectly constrain northern extratropical GPP, 
RH, and NPP through an “emergent constraint” (EC) approach (e.g., Eyring et al., 2019; Simpson et al., 2021; M. 
S. Williamson et al., 2021). ECs are correlations between some observable element X that varies across the ESM 
ensemble and some important variable Y assuming a physically meaningful relationship exists between X and Y. 
Here, we assumed GSNF to be X and assumed a physically meaningful relationship between the net flux and its 
component fluxes GPP, RH, and NPP (Figure 7). The CMIP5 and CMIP6 ensembles can be analyzed separately 
to estimate GPP, RH, and NPP. The CMIP5 ensemble EC estimate for GPP is 58 ± 23 Pg C, for RH is 28 ± 13 
Pg C, and for NPP is 31 ± 12 Pg C where the error is the 95% prediction interval from a hypothetical sample 
generated using a Monte Carlo simulation of n = 10,000 and assuming a Gaussian distribution (D. B. Williamson 
& Sansom, 2019). Similarly, the CMIP6 ensemble EC estimate for GPP is 54 ± 13 Pg C, for RH is 24 ± 13 Pg 
C, and for NPP is 26 ± 10 Pg C. However, we can also combine the two ensembles to create a larger sample size 
as the estimates agree within error and the modeled relationship does not change substantially between the two 
generations. The combined EC estimate for GPP is 56 ± 17 Pg C, for RH is 25 ± 13 Pg C, and for NPP is 28 ± 11 
Pg C. Although we did not constrain autotrophic respiration (RA) explicitly, the constraint on GPP and NPP 
imply RA is 28 ± 20 Pg C where the error has been propagated by summing the errors in quadrature. Applying 
an emergent constraint explicitly to RA would likely give smaller errors.

4. Discussion
Here we derive an observational constraint on northern extratropical GSNF from two novel aircraft campaigns 
that measured the atmospheric CO2 curtain over remote oceans. Our estimated GSNF of 5.7 ± 0.3 Pg C is signif-
icantly smaller in magnitude than the GSNF of 7.9 Pg C yr −1 out of the atmosphere estimated north of 30°N by 
Yang et al. (2007) based on total column observations and spatially sparse aircraft profiles in North America. 
These differences are most likely due to differences in methodology, as Yang et al. used a combination of total 
column and aircraft measurements at 8 locations between 30°N and 70°N to scale fluxes from a terrestrial ecosys-
tem model (TEM), while we used aircraft data that were sampled nearly continuously between our cutoff of 20°N 
and roughly 87°N to estimate GSNF without using a specific TEM. When our cutoff was changed from 20°N to 
30°N, our estimate increased to 5.8 Pg C. Fung et al. (1983) quantified GSNF in the Northern Hemisphere using 
a three-dimensional tracer transport model. When our cutoff is changed to the Equator, our estimate increases 
to 6.1 Pg C, which falls within the 3.4–10.7 Pg C range given by Fung et al. (1983). However, the range given 
by Fung et al. (1983) is large. The uncertainty on northern hemisphere GSNF could likely be reduced with the 
application of multiple transport models to existing records.

We may expect to see an increase in GSNF over time due to the observed increase in the CO2 seasonal cycle 
amplitude (SCA). Graven et al. (2013) saw an increase of 32%–59% in the NH SCA in the 50-year period from 
1958 to 1963 to 2009–2011. This equates to an increase of 0.56%–0.93% yr −1. If this trend continued through the 
HIPPO and ATom time periods, we would expect to see a 4.0%–6.7% increase across the 7 years between these 
two missions. Applying the methodology to HIPPO alone, which covers 2009–2011, gives a value of 11.2 ppm 
for the SCA of the curtain average versus 10.7 ppm when using ATom alone, which covers 2016–2018. This 
corresponds to a more than 1% decrease contrary to the increase expected from Graven. However, this may not 
be accurate as there may not be enough data in either mission alone to fully constrain the seasonal cycle (Figure 
S3 in Supporting Information S1) and account for interannual variability in CO2 fluxes, which were shown by Jin 
et al. (2021) to be non-negligible.

Despite any interannual variability, the expected increase in GSNF is not apparent when comparing the flight-based 
estimates to previous estimates. Yang et  al.  (2007) estimated a larger GSNF despite covering an earlier time 
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period. The large range given by Fung et al. (1983) means that the increase in GSNF may be seen if the true 
GSNF in 1982 fell within the range of 4.6–5.2 Pg C. Looking at surface records, Keeling and Graven (2021) saw 
an increase in the amplitudes at Mauna Loa and Barrow between 2010 and 2017 equating to 10.9% at Mauna Loa 
and 1.1% at Barrow using 5-year running means, suggesting possibly a shift to less SCA growth at high latitudes. 
These results should be interpreted with caution as large interannual variability may dominate when looking at 
the short time period of 2010–2017.

The HIPPO and ATom observations reflect the atmospheric mass of carbon integrated over a large latitudinal 
and altitudinal extent; thus, our estimate is less sensitive to specific representations of atmospheric transport than 
are other estimates. For example, the GSNF estimated over our domain, bias corrected with the three inverse 
models individually, only varied by just 0.2 Pg C or less than 4% (Figure 3b), even while previous research has 
reported the relative spread of 10 simulations for the posterior annual mean northern extratropical land flux to 
be 13% (Gaubert et al., 2019). Additionally, inverse models seem to be converging on the land flux as the GSNF 
estimated from the posterior inversion land fluxes averaged 5.8 Pg C, slightly larger than the observationally 
based estimate of 5.7 Pg C and varied by just 0.2 Pg C. The small differences among the inverse models at the 
hemispheric scale mean that, even though it represented the largest source of uncertainty, the bias correction 
process imparted minimal uncertainty on our ultimate GSNF value.

Use of the transformed coordinate, Mθe, introduced by Jin et al. (2021) may further reduce uncertainty. Mθe is 
defined as the dry air mass under a given equivalent potential temperature surface within a hemisphere and its 
relationship with latitude and altitude is nearly fixed over the seasonal cycle. When integrating to find the curtain 
average, Jin et al. (2021) show that using the transformed coordinate as an alternative to latitude reduces error in 
the curtain average due to sparse sampling and synoptic variability.

The low uncertainty on the hemispheric integral makes GSNF and its phasing robust targets for evaluating TEMs 
and the land components of ESMs. Although direct comparison with atmospheric CO2 mole fraction has been 
used to evaluate ESMs previously, these comparisons rely on simulation of the three-dimensional atmospheric 
CO2 mole fraction within the ESM (e.g., Keppel-Aleks et al., 2013) or require estimating CO2 using an offline 
transport model or operator (e.g., Liptak et al., 2017). In contrast, our GSNF constraint can be used to evaluate 
ESMs at the flux level rather than relying on comparisons at the concentration level. Compared to our metric, 
the CMIP6 ensemble has shown some improvements relative to the CMIP5 ensemble, namely a reduction in the 
spread between models (5.5 Pg C vs. 7.3 Pg C) and a more favorable simulation of the timing of the end of the 
growing season (7 days early vs. 10 days late) when considering the ensemble median values (Figures 5b and 5c). 
However, there are still large disagreements, and in some ways, the CMIP5 models perform better in relation 
to the observationally inferred flux than the CMIP6 models. For example, CMIP5 models outperform CMIP6 
models in simulating the start of the growing season (2 days late vs. 19 days early) and the GSNF magnitude 
(5.7 ± 2.4 vs. 5.3 ± 1.6 Pg C compared to observational value of 5.7 ± 0.3 Pg C) when considering the ensemble 
median values (Figure 5). The models tend to underestimate the magnitude of GSNF on the whole with 3 of the 
9 CMIP5 models and 8 of the 13 CMIP6 models underestimating the flux (falling below the horizontal gray 
lines in Figure 5), only 2 CMIP5 and 3 CMIP6 models falling within the uncertainty range, and 4 CMIP5 models 
and 2 CMIP6 models overestimating the net flux. This is consistent with previous results from Keppel-Aleks 
et al. (2013) suggesting that the Community Land Model version 4 (CLM4), a version of which is used as the 
land model for over one-third of the ESMs evaluated, underestimated GSNF. Three of the models with the largest 
underestimate of GSNF (NorCPM1, NorESM1-M, and TaiESM1) utilize CLM4 as their land model; however, we 
note that two of the best performing models (CESM2 and CESM2-WACCM) both utilize the Community Land 
Model version 5 (CLM5) as their land component, reflecting major improvement in CLM5 compared to CLM4 in 
simulating CO2 seasonality (Lawrence et al., 2019). Correlations between GSNF and seasonal phasing were weak 
or nonexistent, meaning that the improvements in CLM5 are more likely due to improvements in simulations of 
the overall magnitude of photosynthesis and respiration than to improvements in simulations of the timing of the 
growing season.

The methods chosen to define the growing season have some effect on model-observation comparisons. We could 
have chosen to prescribe the growing season dates for calculating model metrics from the observations rather 
than allowing the dates to vary from model to model. The primary difference in the results using this approach is 
a slight reduction in the magnitude of the GSNF for most of the CMIP5 and CMIP6 models, a less strong corre-
lation between GSNF and GPP, RH, and NPP, and a slight increase in the inferred values of northern GPP, RH, 
and NPP (Figure S2 in Supporting Information S1).
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Although the aircraft CO2 data provide a constraint on GSNF, this benchmark is also useful for constraining 
component fluxes that are difficult to infer observationally at large spatial scales. We examine the GPP, RH, 
and NPP of the ESM ensembles in relation to GSNF. GPP, RH, and NPP are components of the net flux, and 
we see moderate correlations between simulated GSNF and simulated productivity (both GPP and NPP) and 
RH. It is noteworthy that correlations between GSNF and the various annual fluxes are stronger than those 
between GSNF and seasonal timing, which may indicate that the magnitudes of photosynthesis and respiration 
are more dominant drivers of GSNF than seasonal phasing (Baldocchi et  al., 2018; Valentini et  al., 2000). 
Cadule et  al.  (2010) analyzed three CMIP models and concluded that models generally underestimate the 
seasonal amplitude due to shortcomings in vegetation phenology and RH response to climate. Our results 
generally support this role for discrepancies in component fluxes as driving a discrepancy in the resulting 
GSNF.

These correlations between GSNF and its component fluxes provide an opportunity to constrain GPP, RH, and 
NPP using an emergent constraint approach. Previous estimates of the northern extratropical GPP are highly 
uncertain, with large disagreements between estimates. For example, Mao et al. (2012) used the Moderate Reso-
lution Imaging Spectroradiometer (MODIS) GPP product to estimate Northern Hemisphere GPP averaged over 
2000–2009 as 64.75 ± 0.97 Pg C yr −1. In contrast, the FLUXCOM product, based on upscaled observations 
from FLUXNET sites using various machine learning approaches (Jung et al., 2019), estimated GPP north of 
20°N averaged over 2009–2014 to be 48 Pg C yr −1. Our GSNF-constrained value of 56 ± 15 Pg C for GPP is 
consistent with both of these estimates, given the larger error bars on the emergent constraint approach, and 
indicates that GPP falls between these two estimates. The large value for GPP relative to FLUXCOM is inter-
esting in light of the uncertainty in global GPP. The range in global mean GPP magnitudes for 2008–2010 from 
FLUXCOM members is 106–130 Pg C yr −1 (Jung et al., 2020). This range covers the observation-based estimate 
of global mean GPP of 123 ± 8 Pg C yr −1 found using eddy covariance flux data and various diagnostic models 
(Beer et al., 2010) but is smaller than the GPP magnitudes of 150–175 Pg C yr −1 derived from an isotope-based 
study (Welp et  al., 2011). Our results may indicate a higher global mean GPP than the flux tower upscaling 
yields; however, we are constraining extratropical GPP, which may be affected by different factors than tropical 
GPP. Therefore, these results need to be interpreted with caution.

5. Conclusions
ESMs disagree in their simulation of large-scale carbon fluxes, making it crucial to evaluate models to contextu-
alize their climate predictions. We have presented an approach to constrain the seasonal land flux using aircraft 
data from the HIPPO and ATom flight campaigns. The northern extratropical GSNF of 5.7 ± 0.3 Pg C derived 
from these observations can be used to evaluate prognostic model fluxes for net flux directly and for component 
fluxes via an emergent constraint approach. We note that this constraint is tied to atmospheric transport models 
because the flux is bias corrected by comparing posterior mole fractions from inverse models with their fluxes. 
However, we found that at the hemispheric scale, the constraint is robust to the choice of atmospheric transport 
model since common transport errors tend to cancel out at this scale.

When compared to the CMIP5 and CMIP6 models, the inferred GSNF suggests a larger net flux and shorter 
growing season than those simulated in both model ensembles. This gives modelers an additional observation to 
target during model development and could be added to a benchmarking system such as the International Land 
Model Benchmarking (ILAMB) System (Collier et al., 2018). While there is decreased model spread between 
CMIP6 models, this benchmark also highlights some of the ways in which CMIP6 models have not improved 
from CMIP5, such as in simulating the start of the growing season.

Correlations within the CMIP5 and CMIP6 ensembles allowed us to apply an emergent constraint approach to 
estimate northern hemisphere GPP, RH, and NPP. We found that the GSNF-constrained value for GPP is at the 
higher end of a range of estimates from FLUXCOM, a commonly used ensemble of data products of upscaled 
biosphere-atmosphere fluxes.

Overall, the HIPPO and ATom inferred GSNF provides a robust metric that allows for the evaluation of large-scale 
fluxes in flux space and sheds light on component fluxes, filling a need highlighted by Collier et al. (2018) for 
land model benchmarking. More regular global scale airborne tomography could resolve GSNF at higher time 
resolution and leverage carbon cycle interannual variability for improved tests of ESM process representations.
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Data Availability Statement
HIPPO data are available at the Earth Observing Laboratory (EOL) HIPPO data archive at http://www.
eol.ucar.edu/projects/hippo/. (http://doi.org/10.3334/CDIAC/HIPPO_010). ATom data are available at the 
Oak Ridge National Laboratory DAAC at https://daa.ornl.gov/ATOM/campaign/ (https://doi.org/10.3334/
ORNLDAAC/1925). CarbonTracker CT2019B results provided by NOAA ESRL, Boulder, Colorado, USA from 
the website at http://carbontracker.noaa.gov (https://doi.org/10.25925/20201008). MIROC4-ACTM inversion 
results are available on Zenodo: https://doi.org/10.5281/zenodo.5776197. CAMS inversion results were provided 
by the Copernicus Atmosphere Monitoring Service, part of the European Union's Earth observation programme, 
from the website at https://ads.atmosphere.copernicus.eu/. CMIP5 and CMIP6 model output files are freely avail-
able from the Earth System Grid Federation data replication centers and used under creative commons license CC 
BY-SA 4.0 https://creativecommons.org/licenses/by-sa/4.0/.
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