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The modelling of corrosion protection systems in seawater is classically based on Boundary Element Method (BEM) and is generally 

limited to static studies. This paper presents an original transient approach coupling a BEM for the modelling of the seawater and a 

circuit representation approach in order to introduce nonlinear polarization laws and Impressed Current Cathodic Protection (ICCP) 

electric system. A special care is taken to the numerical implementation enabling the modelling of complex systems and interface 
phenomena. 

 

Index words — Corrosion protection system modelling, Boundary Element Method (BEM), Equivalent circuit modelling.  

 

I. INTRODUCTION 

Recently, a new type of mine has emerged, based on the 

detection of the corrosion related electric signature produced by 

naval vessels. Two mechanisms are at stake. The first is the 

natural corrosion, the different parts of the ship being connected 

galvanically via the conductive seawater. The less noble 

material (mainly the hull made of carbon steel) corrodes in the 

presence of others materials (for instance NAB alloy of the 

propeller or Zinc of sacrificial anodes). Electric currents are so 

generated depending on the materials electrochemical 

polarization laws of the hull/water interface and on the 
resistance of the water. The second mechanism is due to the 

corrosion protection systems. In order to protect the hull, a 

solution is to inject electric current in the seawater that places 

the steel in its passivation domain. This corrosion protection 

system is called ICCP (Impressed Current Cathodic Protection) 

and also contributes to the electric signature of the ship (Fig. 1). 

  
 

Fig. 1. Electrical field generated in seawater by a ship’s hull under cathodic 

protection with the Impress Current Cathodic Protection system (“ICCP”). 
 

The development of numerical tools to predict the electric 
signature of ships is an active research field [1],[2] and various 

modelling approaches has already been proposed. A classical 

assumption is to consider that the seawater has a homogenous 

conductivity and the phenomena have a sufficiently low 

frequency to neglect inductive and propagative effects. The 

problem is then considered static and consists in solving the 

Laplace equation in an unbounded domain. The Boundary 

Element Method (BEM) is the most used because only the 

interface between water/hull has to be discretized [3]. 

Combined with the method of images to represent air/water and 

sea floor/water interfaces, it has shown excellent performances 

for complex geometries [4], [5]. 

However, aforementioned static BEM models are limited to 

model all the phenomena. Indeed, dynamic effects like the 

ICCP triggering or the influence of the moving propeller need 

to be taken into account. It is, therefore, important to develop 

transient approaches to be more realistic and to take into 

account the time dependency. To our knowledge, only few 
papers address this point. In [6], a transient modelling of ICCP 

systems has been proposed, but the approach is not transient, 

but rather multi-static. Recently, a transient BEM approach has 

been presented [7] but the application field and the associated 

assumptions are too far from the ICCP modelling.  

In this paper, we propose a new approach to compute transient 

electric signatures due to the corrosion and the control of the 

ICCP systems. Compared to [6], the main advance is that our 

model can take into account the dynamic electrochemical 

phenomena located at the interface between the hull and the 

seawater. Moreover, our model has been though to enable an 
easy integration of models that represent the corrosion at 

interfaces. Traditionally, electrochemists handle compact 

equivalent electrical networks including resistances and 

capacitances [8]. These equivalent circuits represent the local 

phenomenon at the interface and need to be coupled to a BEM 

in order to model the resistive behaviour of the conducting 

seawater. An original facet of this work is the implementation 

of this coupling. We will see in the following that it is possible 

to understand BEM as an electric circuit. Both approaches 

become compatible and can be efficiently hybridized and 

solved with powerful techniques dedicated to the resolution 

electromagnetic transient problems. 
The paper is structured as follows. In a first part, we will 

present the classical BEM approach. In a second part, the 

hybridization method will be described. Finally, some 

numerical results will validate the method and will illustrate its 

efficiency. 
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II. BOUNDARY ELEMENT METHOD  

Let us consider a conductive media Ω with a homogeneous 

conductivity σ (S·m−1) and delimited by its boundary S. The 

electric field derives from an electric scalar potential U (V) and 

is linked to the current density 𝐉 (A/m2) by the Ohm’s law. 

Considering the free-divergence of the current, we have: 

ΔU = 0   (1) 

Equation (1) needs to be completed by two boundary conditions 

on S:  

 Neumann boundary condition where normal derivative of 
the current is imposed (ICCP and insulator).  

 Robin boundary condition where the normal derivative of 

the potential is linked to the potential by a nonlinear law 

which represents electrochemical phenomena at the 

interface and which is known as polarization law. 

Using the third Green’s identity combined with a Galerkin’s 

projection method, we get a linear matrix system linking both 

potential and its normal derivative on S. The surface S is meshed 

with N surface elements with 0-order piecewise functions that 

are used to interpolate both quantities. Thus, we have [3]:  

𝐇𝑈𝐵𝐸𝑀 + 𝐓
𝜕𝑈𝐵𝐸𝑀

𝜕𝒏
= 0   (2) 
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where n is the outward normal of S, G = 1/4𝜋𝑟 is the standard 
3D Green’s function, Si is the integration surface of element i, 

𝐇 ∈ ℝN×N, 𝐓 ∈ ℝN×N, 𝑈𝐵𝐸𝑀 ∈ ℝN and 
𝜕𝑈𝐵𝐸𝑀

𝜕𝒏
∈ ℝN.  

J
ni

 is the normal current density associated to element i. It is 

linked to the normal derivative of the electric potential by: 

 J
ni

= −σ
∂UBEMi

∂𝐧
    (3) 

The expression of the total current flowing through element i of 

surface si is then : 

Ii = −σsi

∂UBEMi

∂𝐧
    (4) 

Let us notice that both 𝐇 and 𝐓 are fully dense. Classically, 

system (2) is solved with an iterative Newton-Raphson loop to 

deal with the nonlinear of the Robin condition [3]. 

III. BEM COUPLING WITH ELECTRIC CIRCUIT 

A. Dynamic polarization law 

The corrosion occurring at the interface between hull materials 

and water can be represented by a differential equation that links 

the current to the voltage jump at the interface. It is classical to 

represent it by an electric dipole which has the following 

topology (Fig. 2) [8]. 

  

Fig. 2. Electric dipole modelling the corrosion phenomena at the interface 

between water and the hull (left). Typical static polarization curve of the steel 

Js = fs(Upol) (right). 

 

Let us define IPOL as the total current flowing through the 

interface and Upol as the voltage jump between the water and 

the hull. We have: 

IPOL = C
∂UPOL

∂t
+ f𝑠(Upol)   (5) 

where C is a linear capacitance (constant and not depending on 

the polarization point), f𝑠 is the static polarization law which is 
non-linear and t is the time. This model is classically obtained 

using an electrochemical cell that allows characterizing various 

material during laboratory tests. 

B. Global electric circuit 

The BEM model and the electric dipoles associated to 

corrosion are merged in a global electric circuit (Fig. 3). Region 
associated to Neumann boundary condition (imposed currents) 

can be seen as a current source with an unknown voltage UI. 
 

 

Fig. 3. Global equivalent electric circuit of the problem including polarized 

element and imposed current elements. Each branch of the circuit is associated 

to a surface element of the mesh. 
 

The circuit is composed of N = NPOL + NI branches 

(associated to NPOL elements with the Robin conditions and NI 

elements with Neumann boundary conditions) and N+2 electric 

nodes with potential V. The potential of the hull is the reference 

and set to 0V. The BEM region can be seen as a network of 

resistances. An admittance matrix 𝐘, which links the currents to 

the boundary potentials, can be defined from (2) and (4).  

𝐘 =  −σ𝑠𝐓−𝟏𝐇    (6) 

where 𝑠 is a vector containing the element surfaces si. 

C. State-space representation 

The global electric circuit is solved in the time-domain with a 
nodal approach. It consists in writing a Kirchhoff’s equation at 

each node. The state-space representation is governed by the 

following matrix system [8]: 

𝐄 ∙
𝑑𝑥

𝑑𝑡
= 𝐀 ∙ 𝑥 + 𝐁 ∙ 𝑢    (7) 

with 

𝐄 =  [
0 0 −𝐌𝐏𝐎𝐋𝐂
0 0 0
0 0 0

]         𝐀 = [
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where 𝑉 is a vector containing the electric potentials at nodes 

(N+1 values, N potentials for the meshed element + potential 

Ve). 𝐌𝐁𝐄𝐌, 𝐌𝐏𝐎𝐋, 𝐌𝐈 are the incidence matrices linking the 

branches to the nodes of the electric circuit. 𝐌𝐁𝐄𝐌 is the 

incidence matrix associated to BEM circuit and 𝐌𝐏𝐎𝐋 and 𝐌𝐈 

are associated to polarized interfaces and current sources 

respectively. 𝐈𝐝𝐈 and 𝐈𝐝𝐏𝐎𝐋and is the identity matrix. 𝐂 is a 

diagonal matrix with the capacitance values of each 

polarization laws. 𝐀, 𝐄 ∈ ℝ(2N+1)×(2N+1), 𝐁 ∈ ℝ(2N+1)×N, 𝑥 ∈
ℝ2N+1, 𝑢 ∈ ℝN. Let us notice that in (7), 𝑈𝑃𝑂𝐿 and 𝐼𝑃𝑂𝐿  are 

nonlinearly coupled by (5). 

D. Time-stepping solving 

To solve (7), the backward Euler method is used. The 

nonlinear problem is solved using the Newton-Raphson method 

with the vector quantity 𝑅𝑒𝑠 defined at each time step by: 

𝑅𝑒𝑠(𝑥𝑖+1) = 𝐄 (
𝑥𝑖+1− 𝑥𝑖

∆t
) −  𝐀𝑥𝑖+1 − 𝐁𝑢𝑖+1  (8) 

where Δt is the time step and 𝑥𝑖is the solution at time step i. The 

derivative of 𝑅𝑒𝑠 versus 𝑥𝑖+1 is: 
∂𝑅𝑒𝑠

∂𝑥𝑖+1
(𝑥𝑖+1) =

1

∆t
𝐄 −  𝐀 − 𝐁

𝜕𝑢𝑖+1

𝜕𝑥𝑖+1
   (9) 
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𝜕𝑓𝑆(𝑈𝑃𝑂𝐿)

𝜕𝑈𝑃𝑂𝐿
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] 

This last term corresponds to the derivative of the static 

polarization law which can be computed numerically.  

E. Final resolution technique  

At each Newton-Raphson iteration, the linear system (7) could 

be solved directly by an LU decomposition. However, it is 

unrealistic in practice. We prefer to use a GMRES iterative 

solver based on the vector-product computation and compatible 

with compression techniques for BEM matrices [10]. So, to 

solve (8) requires the evaluation of the A-vector product (𝐄-

vector product being very fast to compute due to the sparsity of 

the matrix). Moreover, it must be pointed out that the building 

of admittance matrix 𝐘 in A requires the inversion of the fully 

dense matrix 𝐓 which is prohibitive. This is why we propose a 

two-steps solving process. The 𝐓−𝟏𝐇 𝐌𝐁𝐄𝐌
𝐓𝑉 product called 𝜉 

is first computed by solving the internal matrix system: 

𝐓𝜉 = 𝐇𝐌𝐁𝐄𝐌
𝐓𝑉 (10) 

It consists in solving an internal matrix system at each GMRES 
iteration of the global resolution. The resolution time of this 

step can be speed-up thanks to the Hybrid-Cross 

Approximation (HCA) compression technique applied to 𝐇 and 

𝐓 preventing the integration of dense matrix and avoiding a 

parabolic increase of the memory and the computation time 

[10]. The matrix-product is then very fast and an incomplete H-

LU decomposition of 𝐓 matrix is used as a preconditioner to 

solve (10) in only few iterations. 

The global system has also to be preconditioned. Considering 
that the static term is dominant in (7), an approximation of the 

inverse of the A matrix is sought. A good option is to sort 

branches and nodes in order to make 𝐌𝐁𝐄𝐌 very close to the 

identity matrix. If the i-th electric node is associated with the i-

th branch, 𝐌𝐁𝐄𝐌 has N+1 row and N columns. The top N×N 

block is then a diagonal block scaled by -1. The last row is 

composed only of 1 coefficient imposing a sum of current equal 

to zero for the 𝑉𝑒  node. The 𝐌𝐁𝐄𝐌𝐘𝐌𝐁𝐄𝐌
𝐓 vector product is then 

almost equivalent to 𝐘-vector product which is almost 

equivalent to 𝐘-vector product except for the last row and the 

last column product. Let us consider the structure of 𝐀 : 

𝐀 = [ 𝐘 𝟎
𝐌 𝐈𝐝

] 

Its approximated inverse can be lightly computed with the 

Schur complement method: 

𝐀−𝟏 ≈ [
𝐙 𝟎

−𝐌𝐙 𝐈𝐝
] 

𝐙 being the impedance matrix (i.e. the inverse of the admittance 

matrix). However, to express 𝐙 is too expensive. A good option 

is to approximate 𝐙 by:  

𝐙 ≈  − diag(𝐇)−1 𝐓σ−1s−1 (11) 

where diag(𝐇)−1 is a diagonal matrix containing the inverse of 

the diagonal coefficients of 𝐇 and s−1 contains the inverse of 

the surface of the elements of the mesh. 

System (7) is solved and the 𝑥 vector is obtained at each 

time step. Introducing the solution in the BEM model allows 

the computation of the electric field in the conductive media 

thanks to a classical post-processing [3]. 

IV. VALIDATION AND NUMERICAL EXAMPLE 

We have tested our method on the following simplified 

problem: We consider a 1m side cube filled with water (5 S/m). 

The cube surface is meshed with 384 quadrangles. The cube is 

fed by two opposite faces. The interest of such a geometry is that 

the resistance can be calculated analytically (0.2Ω), the current 

path being perfectly straight. One electrode is associated to a 

static polarization curve of steel (Fig. 2) and a capacitance C = 

20 F. The other electrode is associated to a current generator. 

Others faces of the cube are insulating. As all the electric 
parameters are known, it is also possible to simulate the problem 

with the circuit solver LTSpice. The scenario is the following. 

At t=0s, we impose a current of 250 µA with the generator and 

switch it off after 30s. Comparison between LTSpice and the 

hybrid BEM solver are presented in Fig. 4., validating our 

model. 

 

 
Fig. 4. Comparison of hybrid BEM and LTspice models. Right : mesh and 

current source. Left : Imposed current (grey dotted). Current I𝑠 flowing in the 

other electrode computed by LTspice (black) and hybrid-BEM (red dotted). 
 

In a second step, the method is tested in order to compute the 

varying signature of a ship model. This problem is schematized 

in Fig. 5 and consists in a volume of water with an immersed 

part of a ship. Four surface regions are considered. The ICCP 

region composed of two electrodes symmetrically located on 

each side and an insulating part which corresponds to the painted 
hull. The front of the hull and the propeller are respectively 



 

associated to the polarization laws of uncovered steel and 

bronze. 

 
Fig. 5: Schematic representation of the studied case. The immerged front part 

is assimilated to an anode and the propeller to a cathode. 
 

A transient simulation is carried out. The initial state consists 

in a galvanic coupling between the two materials (bronze and 

steel) through the seawater. At a given time, the ICCP is 

switched-on in order to protect the steel. The simulation aims 

to compute the modification of the electric anomaly generated 

by the corrosion protection system. Figure 6 presents the 

discretization of the problem.  
 

 
 

Fig. 6. Mesh of the model with 3712 elements. Air/water interface is taking into 

account with the method of images avoiding its mesh. 
 

The initial condition corresponds to the equilibrium state 

defined by the polarization laws of both materials (duration of 

4s). Then, at t = 4s, a current of 0.5 A/m² is injected by the ICCP 

electrode in order to protect the steel from corrosion. A new 

equilibrium is reached with a characteristic time of around 1s. 

Concerning the performance, 9 Newton Raphson iterations are 

needed for the initial static resolution (less for other resolutions 

because the last solution is taken as started point). Only very 

few GMRES iteration are needed for the resolution of the 

internal matrix system and about fifty for the global one leading 

to a good computation time. For this example, 200 time-steps 
have been computed in only 2500s.  

It is also possible to study the time dependency of the 

electrical field computed on the support line presented in Fig. 5 

just 1m under the ship. Figure 7 shows both signatures at t = 0s 

and at t = 10s after the ICCP has been triggered. For both cases, 

the general aspect of the signature is in agreement with the 

physic. We observe two peaks corresponding to both materials 

contribution on the signature. When the steel is protected, only 

the ICCP and bronze contribute to the signature. Figure 8 shows 

the temporal evolution of the electrical signature. When the 

ICCP is triggered, we find again the transition phase between 
the two equilibriums (with the same characteristic time of 1s). 

Let us notice that the electrical signature remains very 

important even if the ICCP protects the hull from corrosion. 

V. CONCLUSION 

In this paper, we proposed an original approach to solve 

transient problems of corrosion and cathodic protection. The 

hybridization of BEM and circuit-like representation allows a 

time-stepping modelling. The numerical performance of the 

method is quite good thanks to the use of matrix compression 

techniques associated to efficient preconditioning approach. Let 

us notice that the approach is general and can be extended to 

other problems where the coupling between BEM and circuit 

representation is required. 

 

 
Fig. 7: Module of the electric field signature at t=0s (natural corrosion) and 

t=10s (steel passivated by a current injected in the ICCP). 

 
Fig. 8: Evolution of the electric signature computed on a line under the hull. 
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