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Sampling with discrete contamination

ABSTRACT

The sampling variance for a process stream which carries fluctuating levels of
the sought-after analyte and is subject to mass flow variation can be estimated
from the covariance function of the analyte fluctuation and the covariance
function of the mass flow when these covariance functions are well-defined
and can be considered to be a stationary property of the process stream.

However, in the case of sampling a flow of material (a one-dimensional lot)
or from material removed from the hold of a ship (a three-dimensional lot)
which does not possess a covariance function for the analyte of interest,
a different approach must be taken. An important example of such a case
is a shipment of grain that is contaminated by some component such as
genetically modified organisms (GMOs) or by mycotoxins. Depending on
the manner of contamination, the regions of the lot that carry contamination
can be considered as randomly located distributions of concentration. The
distributions themselves may be stochastic in that their mean concentrations
and extents may be statistically defined rather than fixed.

This paper develops the sampling variance for ‘slugs’ of contamination with
a uniform concentration distribution and regular spacing of the sample
increments, based on the assumption that the origins of the slugs are uniformly
and randomly located (a Poisson point process).



INTRODUCTION

When analyte and mass flow covariance functions are defined for a process stream, sampling
theory provides the means to determine the sampling variance. If these functions are not
well-defined, one may assume that the analyte variations are far more random in nature
and it is natural to use a model where the elevated analyte concentrations occur randomly
in time or mass.

The most common method of sampling grain involves taking increments from the lot on a
regular basis. In a one-dimensional flow of material, sample increments are taken at regular
intervals of time or accumulated mass flow. In a three-dimensional case, the increments
may also be taken at regularly spaced locations throughout the lot as it is being unloaded.
Random stratified sampling in the 1D or 3D case can also be undertaken and, apart from
some minor corrections for end effects in the stratum, the following analysis is applicable
as well.

The structure of the sampling problem considered here is similar to the problem addressed
by Paoletti et al. (2003) who sought to evaluate the effect of lot heterogeneity with respect
to GMO content on the sampling variance as a function of the number of increments taken
from the lot using the KeSTE tool. The formulation proposed hereafter is in some respects
more general.

The development shows that it is possible to arrive at an analytic expression for the sampling
variance and this expression is verified by simulation, which also captures the distribution
function of the sample concentration. The results are applied to a practical sampling design
problem for a shipload of grain.

DEVELOPMENT

The sampling period is divided into strata of extent | and the total sampling period is
normalised to unity. A sample increment is taken instantaneously over an interval v. n such
increments are taken, placed centrally within each stratum. The slugs of contaminated
material, in which the concentration of contaminant is taken to be ¢;, are of a constant
duration u and m such slugs occur randomly in the total sampling interval; the slugs may
overlap. The situation is illustrated in Figure 1.

In reality, the slugs of contaminant are not expected to be of uniform concentration; such a
variation can be superimposed on the results presented herein. This analysis seeks to develop
the simplest case to provide a first means of exploring sampling variance. It is substantially
more difficult to vary the size of the slugs; such a case is best dealt with by simulation.

Given these rules for the location of samples and slugs, it is necessary to find the expected
value of the sample concentration and the sampling variance.



stratum

Figure 1 lllustration of disposition of samples and slugs of contaminated material

The statistical analysis of this problem is most effectively viewed as a Bernoulli process in
which slugs are placed into the structure of the sampling increments. The process is one of
‘throwing’ slugs of extent u onto a line that has n equally spaced sample increments of extent
v. A Bernoulli process trial has only two possible outcomes, i.e., the slug hits the sample
increment with probability g, which we define as the success event, or the slug does not hit
the sample increment with probability (1-g), the fail event. Each slug has a probability:

_u+v

7= m

of hitting an increment, regardless of where the increment is placed in the stratum. With m
slugs, the number of hits on the increments will be binomial with:
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This is the classic result that gives the probability of having j successes from m independent
trials, given the probability g of success in a single trial. The expected value and variance of
the random variable j are:

E{jlm,q}:mq (3)

Var{jlm,q}:mq(l—q) (4)

The concentration probability distribution for the random and uniform intersection of the
sample increment of extent v with the slug of extent u is needed.

For u<v, the concentration probability density function is:
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The expected value of the concentration is:
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and the variance is:
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varfc} = 2| 2’”]72”
v+u 30 (7)

For u>v, the density, expected value and variance are:
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When the slug and sample increment have the same length, u=v, both density functions
yield the same values, that is:

p(c):% 0<c<g
=0 c=q, an
C
Elef= (12)
2
var{e} = a3)

The sample that is collected consists of n increments and if in the particular instance of the
sampling there were j hits on slugs of material, the sample concentration will be:

1
== ¢ (14)

where the ¢, are independent identically distributed random variables following density
p(c). To find the expected value of cs, expectations over the concentration distribution
and the number of hits by slugs must be determined. For fixed u and v, the concentration
distribution is fixed, so the expectations can be taken sequentially. One then has:
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(15)

and this is the true concentration (mass per unit length or time) of contaminant in the lot.

The conclusion is that the sampling is unbiased.

The determination of the variance of the sample concentration is a more difficult task. The

derivation of the result is provided in Appendix A. The result is, for u<v:
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This result is valid only when [>y+v.

The standard deviation relative to the expected sample concentration is then, for u<v,

v+uU

v+u

]2 mq(lq)}
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and for u>v:

R =

R e

where L=unl is the total length of the sampling period.

(16)

(17)

(19)

These results demonstrate that the sampling of a fixed lot of material becomes relatively
more precise as the slugs of material occur in higher numbers, the slugs become larger in
extent, and the number of increments taken increases. This is an entirely common sense

outcome of the analysis.
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As an example, take a total lot length L=1, m=20 slugs, n=100 sample increments, slug length
1=0.0001 and sample increment length v=0.0005. The contamination level is then mu _ 600
and the sampling collects nfv =5% of the flow. Then the relative uncertainty is:

O, 1 L 2uv —u?
= |— ———+1|-n
E{cs} \mm|\u+o 30°

1 1 2x0.0001x0.0005
= +1|-100
100x 20| | 0.0006 3x0.00052 (20)

=0.946

STUDY BY SIMULATION

The sampling process described above can of course be simulated and the simulation results
can be used to verify the mathematical development. It is always prudent in such matters
to check a simulation against an analytical analysis and vice versa. The simulation has the
advantage of revealing the distribution of the sample concentrations which the analytical
approach cannot define at the present level of analysis. The simulations presented here are
aimed at mycotoxin sampling issues rather than GMO contamination; the mycotoxin issue
presents an even more difficult sampling problem than the GMO problem.

Consider first a case in which there are 20 slugs of contamination in the process stream to be
sampled. The average level of contamination is taken to be 2 ppb, the average concentration
in the slug is varied as is the number of increments taken from the lot. The size of the slug
and increment sizes are varied as well. This represents a highly heterogeneous lot of grain.

It should be noted that in carrying out simulations such as these, it is very important to
employ a highly reliable random number generator. The random number generator in an
application such as Excel is notoriously poor.

Table 1 Simulation results for sampling with discrete slugs of contaminant (10 000 simulation)

Case 1 2 3 4 5 6 7 8
Slugs (1m) 20 20 20 20 20 20 20 20
Increments (1) 100 200 100 200 100 100 100 100
Slug size (u) 0.0001  0.0001  0.0001 0.0001 0.0005 0.0050 0.0030 0.001
Increment size (v) 0.0005  0.0005 0.0001  0.0001 0.0001 0.0001 0.0001 0.0001
Sample fraction [%] 5.0 10.0 1.0 2.0 1.0 1.0 1.0 1.0
Slug conc (ppb) 1000 1000 1000 1000 200 20 33 100
Average conc (ppb) 2 2 2 2 2 2 2 2

Av conc (simulation) 2.01 1.98 2.07 1.99 1.96 1.91 1.94 1.97
RSD theory 0940  0.645 1812 1271 0940 0222 0339  0.658

RSD simulation 0.939 0.657 1.770 1.283 0.936 0.223 0.335 0.662




Table 1 shows the simulation results for the conditions chosen and Figures 2 to 9 show the
histograms of concentrations and the cumulative distributions of concentrations. In each
case the average contaminant concentration is held at 2 ppb and with the exception of cases 1
and 2, the increment size is 0.0001 of the mass of the lot. Taking 100 such increments recovers
0.01 or 1% of the mass of the lot as primary increments. These primary increments can then
be divided down in an appropriate manner to arrive at an analysis sample.
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Figure 2 Histogram of sample concentrations and cumulative distribution from simulation, Case 1
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Figure 3 Histogram of sample concentrations and cumulative distribution from simulation, Case 2
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Figure 4 Histogram of sample concentrations and cumulative distribution from simulation, Case 3
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Figure 5 Histogram of sample concentrations and cumulative distribution from simulation, Case 4

N /"_...r'"“
0a
025 r""
o0&

£ £
e 02 =
2 3 i
0 o1
e g 04
= o1 = /’
02
008
o LA o
0 1 z 3 4 5 o 1 2 3 4 5
Concentration/(Mean Concentration) Concentration/(Mean Concentration)

Figure 6 Histogram of sample concentrations and cumulative distribution from simulation, Case 5
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Figure 7 Histogram of sample concentrations and cumulative distribution from simulation, Case 6

When there are 100 increments taken, the extent of each sampling stratum is 0.01 of the lot
mass. When the slug size is 0.005, the extent of a slug is half the extent of the stratum and the
lot is moving towards homogeneity although the slugs are randomly placed in the lot. As
the slug size decreases the concentration within the slug is increased to maintain the average
concentration of the contaminant at 2 ppb.
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Figure 8 Histogram of sample concentrations and cumulative distribution from simulation, Case 7
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Figure 9 Histogram of sample concentrations and cumulative distribution from simulation, Case 8

In Table 1, the slug size is the value of u and the increment size is the value of v, expressed as
a fraction of the lot. The sample fraction is 7 xv expressed as a percentage of the lot mass. Av
conc (simulation) is the average concentration from simulation and is found by averaging the
simulation outcomes over the 10 000 simulations. RSD theory is the value from Equation 16
or 17 as appropriate. RSD simulation is the RSD found by simulation and can be compared
to RSD theory. There is clearly a good agreement between the simulations and the theoretical
expressions, cross-validating the theory and simulations.

The results show that n(u+v) must be large enough, relative to L for a given value of m, to
bring the variance of sampling down to a reasonable value. If u is small, then one must take
either larger increments or more of them.

DESIGN EXAMPLE

Consider the loading of a shipment at a rate of 2000 tph. The grain is sampled by a cross-
stream cutter having an aperture of 19 mm and moving at 0.5 m/s. The increment mass is:

_ Tw
mp = 365 (21)



where m, is the increment mass in kg, T is the mass flow in tph, w is the aperture in metres
and s is the cutter speed in m/s. The result is:

~2000x0.019

m, =
" 36%05
=211 22)

Assume that an increment is taken every 40 seconds and that a sampling unit, L, corresponds
to 2000 tonnes of grain. There are then 90 increments taken during the sampling. The fraction
of the sampling unit taken as primary increments is:

_ iy
f= L
90x21.1

2.0x10°
= 0.00095 (23)

where L, the extent of the sampling unit is taken as 2000 tonnes. This sampling protocol is
the one defined by the Canadian Grain Commission for wheat sampling (Canadian Grain
Commission, 2009).

Next, assume the average level of contamination is ¢ =10 ppb and the average contamination

level in a slug is ¢, =1600 ppb. Let the slug occupy a volume of ten litres and weigh 8 kg.
Then the number of slugs must be:

!
Col (24)
SO:
_ 10x2x10°
1600x 8
-1563 25

The increment extent, v and the slug extent, u are then determined as 21.1/2x10¢ and
8/2 x106 kg respectively.

The RSD from theory is:
2
RSD = \/1{[ L ][2“7’_” +1]n}
nm|\u+v 302 (26)

which evaluates to 0.767.

The results of simulation of this scenario are provided in Figure 10. The RSD from simulation
is 0.768. The 95% confidence interval, determined from the simulation results, for the result
of sampling 2000 tonnes of the shipment is 0.0 to 27.1 ppm, while the true result is 10 ppm.
There are about 13% of false negative samples.
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Figure 10 Histogram of sample concentrations and cumulative distribution from simulation, design study
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Figure 11 Random slugs for one realisation of the design example

In this example, the slugs of contaminated grain are relatively small and form a volume
fraction of 0.625% of the lot. The probability that two slugs overlap is therefore very small.
Figure 11 shows a set of 1563 random slugs of contamination in a 2000 tonne shipment. The
contaminant must be mixed into much larger volumes of grain before there is a reasonable
probability of overlap. Figure 12 shows a portion of a realisation of the concentration of
contaminant as a function of time for slugs where the mixing has lead to 22 tonnes being
contaminated. In this case there has been an overlap of lots of contamination according to
the model. However, the grain is still heterogeneous.
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Figure 12 Concentration as a function of time for 22 tonne slugs (portion of data set)

Depending on the size of the shipment, more than one sample may be collected and analysed.
For a 10 000 tonne shipment, five subsamples would be collected and analysed separately.
The RSD, excluding any analytical variance component would then reduce by a factor of
1/v5=0.447. In the above case, this would bring the RSD to 0.343 (using the theoretical
result). The 95% confidence interval must be found by appropriate simulation, but will be
significantly reduced.



VARIOGRAMS OF CONCENTRATION

In general, there is no analytical expression for the variogram of concentration. However,
when the slug size is small and the number of slugs is not too large (um<<1), there will be
almost no overlap of the slugs and the slugs form a Boolean random set. In such a case, it is
known that the variogram rises from zero to a sill of:

()= F(1-5) @
where:

f =T1—e "M (28)

over the distance u, the extent of the slug. fis the fraction of the grain that is contaminated.

Therefore, unless the mixing of the contaminant into the grain is nearly complete or the
sampling and analysis of the grain is extremely frequent, one does not expect to observe a
variogram of the contaminant concentration.

Even when the contamination is spread out over a significant fraction of the lot under
consideration, if the contamination is adventitious, the variogram of concentration is not
expected to be well-defined as a consequence of the random nature of the placement of the
contaminated material.

CONCLUSIONS

The mathematical analysis of the sampling problem is exact for uniform distributions of
contaminants in the ‘slug’ of contaminated material and for non-overlapping slugs. More
complex sampling problems can be simulated within reasonable time. The design problem
simulation with 10 000 replications of the sampling required about 20 minutes of computer
time on a late model laptop.

The practical circumstances of sampling as in the design problem indicate that the sampling
problem is difficult and that the RSDs due to lack of mixing (distributional heterogeneity)
for current practical protocols are relatively large. In many cases the primary increments
will not be taken as frequently as in the design example, giving the sampling result a very
high variance.

The sampling variance that will be encountered in cases in which the number of slugs is
low and the average local concentration is higher than say 2000 ppb will generally lead to
unsatisfactory uncertainties in sampling. In such a case, the sampling of the grain flow must
be very frequent, leading to a substantial fraction of the primary flow being recovered as a
flow of primary increments. Consequently, multistage sampling systems must be used to
bring the sample volume down to a manageable mass.

Blending within the handling system by means of which the slugs of contaminated material
are mixed throughout uncontaminated material has a very beneficial effect on the sampling
requirements. However, there is little if any information on the extent of mixing in grain
shipments contaminated by mycotoxins. This problem requires some urgent attention to
establish the characteristics of mycotoxin contamination in vessels on loading or unloading.



The problem remains as one for which the bulk food commodity regulators seek a good
solution. The results from this analysis extend the ability to assess sampling and contamination
scenarios in a robust manner.

The results herein may also assist in dealing with environmental problems of site contamination.
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APPENDIX A- THE VARIANCE OF THE SAMPLE CONCENTRATION
Equation 14 of the text provides the expression for the concentration of the analyte in a

sample composed of 1 increments from the flow of material. The objective is to evaluate the
variance of cs. One has:

(A1-1)

1 ]
var{cs} :nzvar{kz_‘{ck}

where the ¢, are independent identically distributed random variables with the expected
value given by Equation 6 and variance given by Equation 7 or 10 of the text as the case may
be. By definition one may write:

var {cg | =E{[Cs —E{Csﬂz} (A12)

and introduce the conditional variable cslj. This is the sample concentration given j slugs
hits. Then:

varfes )= E{[es ~E(es 1)+ Eles 1)~ Efes) ]|
E{[Cs _E(Cs 'j)J2+2[Cs _E(Cs 'j)J[E(Cs 'J')_E{Cs}}r[E(Cs 'j)_E{Cs}JZ} (A1-3)

The expectation of the middle term may be shown to be zero by explicitly multiplying out
A2
the terms and taking expectations. The first term E{[CS ~E(cs1/)] } is an expectation taken

over both the concentration distribution and the distribution of the number of hits. These
expectations can be taken sequentially by writing:

E{[cs 7E(cs |j)]2}:Ej {EC ([cs Ij*E(cs |]')T)} (A1-4)
The inner expectation is:

Ec([cs'f*E(Cs 'i)]zj:niz]‘Var{C} (A1-5)

as the conditional variables all involve a sum of j identical variance terms. Taking the
expectation over the number of hits, one has:

Bl (es )] { vl

1 .
= ;E{]}Var{c}‘ (A1-6)



The last term E{‘:E(CS [ j)—E{cS}]Z} involves expectations only over the number of hits and
since:

1 .
Efesf=—E{c}E[/] (A17)
and:
E{cs |/} :iE{C} (A1:8)

then:

T var{j} (A1:9)

The final result is:

E
var{cs}:—zE{j}var{c}Jr 5 Var{j} (A1-10)

For u<wv:
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For u>v:
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