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Abstract

Despite the non-convex optimization landscape, over-parametrized shallow networks are able to
achieve global convergence under gradient descent. The picture can be radically dierent for narrow
networks, which tend to get stuck in badly-generalizing local minima. Here we investigate the cross-over
between these two regimes in the high-dimensional setting, and in particular investigate the connection
between the so-called mean-eld/hydrodynamic regime and the seminal approach of Saad & Solla. Fo-
cusing on the case of Gaussian data, we study the interplay between the learning rate, the time scale, and
the number of hidden units in the high-dimensional dynamics of stochastic gradient descent (SGD). Our
work builds on a deterministic description of SGD in high-dimensions from statistical physics, which we
extend and for which we provide rigorous convergence rates.
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1 Introduction
Descent-based algorithms such as stochastic gradient descent (SGD) and its variants are the workhorse
of modern machine learning. They are simple to implement, ecient to run and most importantly: they
work well in practice. A detailed understanding of the performance of SGD is a major topic in machine
learning. Quite recently, signicant progress was achieved in the context of learning in shallow neural
networks. In a series of works, it was shown that the optimisation of wide two-layer neural networks can
be mapped to a convex problem in the space of probability distributions over the weights [1, 2, 3, 4]. This
remarkable result implies global convergence of two-layer networks towards perfect learning provided
that the number of hidden neurons is large, the learning rate is suciently small and enough data is at
disposition. This line of work is commonly referred to as the mean-eld or the hydrodynamic limit of
neural networks. Mathematically, these works showed that one could describe the entire dynamics using
a partial dierential equation (PDE) in 𝑑 dimensions.

In a dierent, and older, line of work one-pass SGD for two-layer neural networks with a nite number
𝑝 of hidden units, synthetic Gaussian input data and teacher-generated labels has been widely studied
starting with the seminal work of [5]. These works consider the limit of high-dimensional data and show,
in particular, that the stochastic process driven by gradient updates converge to a set of 𝑝2 deterministic
ordinary dierential equations (ODEs) as the input dimension 𝑑 → ∞ and the learning rate is proportional
to 1/𝑑 . The validity of these ODEs in this limit was proven by [6]. However, the picture drawn from the
analysis of these ODEs is slightly dierent from the mean-eld/hydrodynamic picture: in this case SGD
can get stuck for long time in minima associated to no specialization of the hidden units to the teacher
hidden units, and even when it converges to specializing minima, it fails to perfectly learn (i.e. to achieve
zero population risk). In fact, in this analysis, the interplay between the limit of the learning rate going to
zero and 𝑑 → ∞ appeared to be fundamental.

One should naturally wonder about the link between these two sets of works with, on the one hand a
𝑑-dimensional PDE (with large 𝑝), and on the other a 𝑝2-dimensional ODE (with large 𝑑). In this work we
aim to build a bridge between these two approaches for studying one-pass SGD.

Our starting point is the framework from [5], which we build upon and expand to a much broader
range of choices of learning rate, time scales, and hidden layer width. This allows us to provide a sharp
characterisation of the performance of SGD for two-layer neural networks in high-dimensions. We show
it depends on the precise way in which the limit is taken, and in particular on how the quantity of data, the
hidden layer width, and the learning rate scale as 𝑑 → ∞. For dierent choices of scaling, we can observe
scenarios such as perfect learning, imperfect learning with an unavoidable error, or even no learning at all.

As a consequence of our analysis, we provide a phase diagram (see Figure 1a) describing the possible
scenarios arising in the high-dimensional setting. Our main contributions are as follow:

C1 We rigorously show that the dynamics of SGD can be captured by a set of deterministic ODEs, consid-
erably extending the proof of [6] to accommodate for general time scalings dened by an arbitrary learning
rate, and a general range of hidden layer width. We provide much ner non-asymptotic guarantees which
are crucial for our subsequent analysis.

C2 From the analysis of the ODEs, we derive a phase diagram of SGD for two-layer neural networks in
the high-dimensional input layer limit 𝑑 → ∞. In particular, scaling both the learning rate 𝛾 and hidden
layer width 𝑝 with the input dimension 𝑑 as

𝛾 ∝ 𝑑−𝛿 , (1a)

𝑝 ∝ 𝑑𝜅 , (1b)
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(a) The phase diagram of SGD learning regimes for two-
layer neural networks in the high-dimensional input layer
limit 𝑑 → ∞. Eqs. (1) dene proper time scalings for each
of the regions. Perfect learning region: 𝜅 + 𝛿 > 0. Plateau
line: 𝜅 + 𝛿 = 0. Bad learning region: −1/2 < 𝜅 + 𝛿 < 0. No
ODEs region: 𝜅 + 𝛿 < −1/2.
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(b) A solution of the ODEs in all regions of Figure 1a, with
matching colors. Parameters 𝜅 = 0.301, 𝑝 = 8, 𝑘 = 4,
𝜌𝑟𝑠 = 𝛿𝑟𝑠 . Noise: Δ = 10−3. Activation function: 𝜎 (𝑥) =
erf(𝑥/√2) . Data distribution: P(𝒙) = N(𝒙 |0,1) . The time
scaling is not uniform through the phase diagram: 𝜗 = 𝜅 +𝛿
on green and blue regimes and 𝜗 = 2(𝜅 + 𝛿) on the orange
region. The green curve decays as a power law to zero ex-
cess error.

Figure 1: Phase diagram (left) and typical behavior of the ODE in each regions (right).

we identify four dierent learning regimes which are summarized in Figure 1a:

• Perfect learning (green region, 𝜅 > −𝛿): we show that perfect learning (zero population risk) can be
asymptotically achieved with 𝑛 ∼ 𝑑1+𝜅+𝛿 samples even for tasks with additive noise.

• Plateau (blue line𝜅 = −𝛿): learning reaches a plateau related to the noise strength. The point𝜅 = 𝛿 = 0
goes back to the classical work of [5].

• Bad learning (orange region −1/2 < 𝜅 + 𝛿 < 0): here the noise dominates the learning process.
• No ODEs (red region 𝜅 + 𝛿 < −1/2): the stochastic process associated to SGD is not guaranteed to

converge to a set of deterministic ODEs. This region is thus outside the scope of our analysis.

To better illustrate this phase diagram we present in Figure 1b a solution of the ODEs in all three
regimes.

Relation to previous work – Deterministic dynamical descriptions of one-pass stochastic gradient de-
scent in high-dimensions have a long tradition in the statistical physics community, starting with single-
and two-layer neural networks with few hidden units [7, 8, 9, 10, 11]. The seminal work by [5] overcame
previous limitations by constructing a set of deterministic ODEs for two-layer networks with any nite
number of hidden units, paving the way for a series of important contributions [12, 13, 14, 6]. This line of
work corresponds to the 𝜅 = 𝛿 = 0 case of Figure 1a. One of our goal is to generalize this picture beyond
xed hidden layer size and learning rate.

A more recent line of work investigating the dynamics of SGD is the so-called mean-eld limit [1, 15, 2,
3, 4], which connects the SGD dynamics of large-width two-layer neural networks to a diusion equation
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in the hidden layer weight density. In particular, [15] provide non-asymptotic convergence bounds for
suciently small learning rates, corresponding to the green region of Figure 1a (with 𝑝 → ∞). The mean-
eld approach computes the empirical distribution (in R𝑑 ) of the hidden layer weights, while we focus on
the macroscopic overlaps between the teacher and student weights.

Reproducibility A code is provided at https://github.com/rodsveiga/phdiag_sgd.

2 Setting

Consider a supervised learning regression task. The data set is composed of 𝑛 pairs (𝒙𝜈 , 𝑦𝜈 )𝜈∈[𝑛] ∈ R𝑑+1

identically and independently sampled from P(𝒙, 𝑦). The probability P(𝒙) is assumed to be known and
P(𝑦 |𝒙) is modelled by a two layer neural network called the teacher. Given a feature vector 𝒙𝜈 ∈ R𝑑 , the
respective label 𝑦𝜈 ∈ R is dened as the output of a network with 𝑘 hidden units, xed weights 𝑾∗ ∈ R𝑘×𝑑
and an activation function 𝜎 : R→ R:

𝑦𝜈 = 𝑓 (𝒙𝜈 ,𝑾∗) +
√
Δ𝜁 𝜈 , (2)

where

𝑓 (𝒙𝜈 ,𝑾∗) = 1
𝑘

𝑘∑︁
𝑟=1

𝜎

(
𝒘∗>
𝑟 𝒙𝜈

√
𝑑

)
=

1
𝑘

𝑘∑︁
𝑟=1

𝜎 (𝜆∗𝜈𝑟 ) , (3)

with 𝒘∗
𝑟 ≡ [𝑾∗]𝑟 ∈ R𝑑 as the 𝑟 -th row of the matrix 𝑾∗ and 𝜆∗𝜈𝑟 ≡ 𝒘∗>

𝑟 𝒙𝜈/√𝑑 ∈ R as the 𝑟 -th component of
the teacher local eld vector 𝝀∗𝜈 ∈ R𝑘 . The parameter Δ ≥ 0 controls the strength of additive label noise:
𝜁 𝜈 ∼ P(𝜁 𝜈 ) such that E𝜁∼P(𝜁 ) [𝜁 ] = 0 and E𝜁∼P(𝜁 ) [𝜁 2] = 1.

Given a new sample 𝒙 ∼ P(𝒙) outside the training data, the goal is to obtain an estimation 𝑓 (𝒙) for the
respective label 𝑦. The error is quantied by a loss function L(𝑦, 𝑓 (𝒙,𝚯)), where 𝚯 is an arbitrary set of
parameters to be learned from data.

In this manuscript we are interested in the problem of estimating 𝑾∗ with another two-layer neural
network with the same activation function, which we will refer to as the student. The student network
has 𝑝 hidden units and a matrix of weights 𝑾 ∈ R𝑝×𝑑 to be learned from the data. Given a feature vector
𝒙 ∼ P(𝒙) the student prediction for the respective label is given as

𝑓 (𝒙,𝑾 ) = 1
𝑝

𝑝∑︁
𝑗=1

𝜎

(
𝒘>

𝑗 𝒙√
𝑑

)
=

1
𝑝

𝑝∑︁
𝑗=1

𝜎 (𝜆𝜈𝑗 ) , (4)

where𝒘 𝑗 ≡ [𝑾 ] 𝑗 ∈ R𝑑 is the 𝑗-th row of the matrix 𝑾 and 𝜆 𝑗 ≡ 𝒘>
𝑗 𝒙/√𝑑 ∈ R is dened as 𝑗-th component

of the student local eld vector 𝝀 ∈ R𝑝 .

One-pass gradient descent – Typically, one minimizes the empirical risk over the full data set. Instead,
learning with one-pass gradient descent minimizes directly the population risk:

R(𝑾 ,𝑾∗) ≡ E𝒙,𝑦∼P(𝒙,𝑦)
[
L

(
𝑓 (𝒙,𝑾∗), 𝑓 (𝒙,𝑾 )

)]
. (5)

Given a single sample (𝒙𝜈 , 𝑦𝜈 ) the weights are updated sequentially by the gradient descent rule:

𝒘𝜈+1
𝑗 = 𝒘𝜈

𝑗 − 𝛾∇𝒘 𝑗
L

(
𝑦𝜈 , 𝑓 (𝒙𝜈 ,𝑾 )

)
, (6)
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with 𝜈 ∈ [𝑛] and 𝑗 ∈ [𝑝]. The parameter 𝛾 > 0 is the learning rate. Despite being a simplication with
respect to batch learning, one-pass gradient descent is an amenable surrogate for the theoretical analysis
of non-convex optimization, since at each step the gradient is computed with a fresh data sample, which
is equivalent to performing SGD directly on the population risk.

In particular, in this manuscript we assume realizability 𝑝 ≥ 𝑘 , and focus our analysis on the square
loss L(𝑦,𝑦) = 1

2 (𝑦 − 𝑦)2, leading to

𝒘𝜈+1
𝑗 = 𝒘𝜈

𝑗 +
𝛾

𝑝
√
𝑑
𝜎 ′(𝜆𝜈𝑗 ) E𝜈 𝒙𝜈 , (7)

where

E𝜈 ≡ 1
𝑘

𝑘∑︁
𝑟=1

𝜎 (𝜆∗𝜈𝑟 ) − 1
𝑝

𝑝∑︁
𝑙=1

𝜎 (𝜆𝜈
𝑙
) +

√
Δ𝜁 𝜈 . (8)

with population risk given by

R(𝑾 ,𝑾∗) = 1
2 E𝒙,𝑦∼P(𝒙,𝑦)

[(
𝑓 (𝒙,𝑾 ) − 𝑓 (𝒙, 𝑾∗)

)2
]
. (9)

Therefore, from the above expression we can see that to monitor the population risk along the learn-
ing dynamics it is sucient to track the joint distribution of the local elds (𝝀,𝝀∗). For Gaussian data
P(𝒙) = N(𝒙 |0,1), one can replace the expectation E𝒙,𝑦∼P(𝒙,𝑦) [·] by E𝝀,𝝀∗∼N(𝝀,𝝀∗ |0,𝛀) [·] and fully describe
the dynamics through the following sucient statistics, known in the statistical physics literature asmacro-
scopic variables:

𝑸𝜈 ≡ E𝒙,𝑦∼P(𝒙,𝑦)
[
𝝀𝜈𝝀𝜈>]

=
1
𝑑
𝑾 𝜈>𝑾 𝜈 , (10a)

𝑴𝜈 ≡ E𝒙,𝑦∼P(𝒙,𝑦)
[
𝝀𝜈𝝀∗𝜈>]

=
1
𝑑
𝑾 𝜈>𝑾∗ , (10b)

𝑷 ≡ E𝒙,𝑦∼P(𝒙,𝑦)
[
𝝀∗𝜈𝝀∗𝜈>]

=
1
𝑑
𝑾∗>𝑾∗ . (10c)

with matrix elements, called order parameters in the statistical physics literature, denoted by 𝑞𝜈
𝑗𝑙
≡ [𝑸𝜈 ] 𝑗𝑙 ,

𝑚𝜈
𝑗𝑟

≡ [𝑴𝜈 ] 𝑗𝑟 and 𝜌𝑟𝑠 ≡ [𝑷 ]𝑟𝑠 . The macroscopic state of the system at the learning step 𝜈 is given by the
overlap matrix 𝛀

𝜈 ∈ R(𝑝+𝑘)×(𝑝+𝑘) :

𝛀
𝜈 =

[
𝑸𝜈 𝑴𝜈

𝑴𝜈> 𝑷

]
, (11)

and the population risk is completely determined by the macroscopic state:

R(𝛀) = 1
2 E𝝀,𝝀

∗∼N(𝝀,𝝀∗ |0,𝛀) E𝜁∼P(𝜁 )

[(
𝑓 (𝝀) − 𝑓 (𝝀∗)

)2
]
. (12)

The training dynamics (6) denes a discrete-time stochastic process for the evolution of the overlap matrix{
𝛀

𝜈 ∈ R(𝑝+𝑘)×(𝑝+𝑘) , 𝜈 ∈ [𝑛]
}
, (13)

with 𝑷 xed and 𝑸𝜈 and 𝑴𝜈 updated as:

𝑞𝜈+1
𝑗𝑙

− 𝑞𝜈
𝑗𝑙
=

𝛾

𝑝𝑑

(
E𝜈
𝑗 𝜆

𝜈
𝑙
+ E𝜈

𝑙
𝜆𝜈𝑗

)
︸              ︷︷              ︸

learning

+𝛾
2‖𝒙 ‖2

𝑝2𝑑2 E𝜈
𝑗 E

𝜈
𝑙︸︷︷︸

variance

, (14a)
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𝑚𝜈+1
𝑗𝑟 −𝑚𝜈

𝑗𝑟 =
𝛾

𝑝𝑑
E𝜈
𝑗 𝜆

∗𝜈
𝑟︸ ︷︷ ︸

learning

, (14b)

with 𝜈 ∈ [𝑛], 𝑗, 𝑙 ∈ [𝑝], 𝑟 ∈ [𝑘] and E𝜈
𝑗 ≡ 𝜎 ′(𝜆𝜈

𝑗
) E𝜈 . In what follows, we will make the concentration

assumption ‖𝒙 ‖2 = 𝑑 ; this will be justied in the proof of Theorem 3.1.
We emphasize in (14) the specic role played by each term in the right hand-side. The "learning"

terms are the fundamental ones, that actually drive the learning of the teacher by the student. We show in
Appendix C.3 that these "learning" terms are identical to those obtained in the gradient ow approximation
of SGD, whose performance is the topic of many works [1, 2, 3, 4]. Those are precisely the terms that
draw the population risk towards zero. However, in our setting there is an additional variance term (so
that this ow approximation is incomplete) that corresponds to the uctuations of L(𝒙,𝑾 ,𝑾∗) around its
expected value R(𝑾 ,𝑾∗). In particular, this is where the eects of the noise 𝜁 can be felt. These terms
were sometimes denoted as (𝐼2) and (𝐼4) in [16]. We shall see that the additional "variance" term is the one
responsible for the plateau in the critical (blue) region of Figure 1a, while its contribution vanishes in the
perfect learning (green) region.

Additionally, albeit our work particularizes to Gaussian input data, we believe our conclusion, and the
phase diagram discussed in Figure 1a, to hold beyond this restricted case. Indeed, while the Gaussian as-
sumption is crucial to reach a particular set of ODEs and their analytic expression, the approach can be
applied to more complex data distribution, as long as one can track the sucient statistics required to have
a closed set of equations. For instance, [17] obtained very similar equations for an arbitrary mixture of
Gaussians – that would obey the same scaling analysis as ours – while [18, 19, 20] proved that many com-
plex distributions behave as Gaussians in high-dimensional setting, including, e.g. realistic GAN-generated
data. We thus expect our conclusions to be robust in this respect.

3 Main results
Although 𝑡0 = 𝜈/𝑑 seems to be the most natural time scaling in the high-dimensional limit 𝑑 → ∞, if 𝛾
and 𝑝 are allowed to vary with 𝑑 the right-hand side (RHS) of Eqs. (14) can diverge and render the ODE
approximation obsolete. Instead, for a given time scaling 𝛿𝑡 , we can rewrite Eqs. (14) as

𝑞𝜈+1
𝑗𝑙

− 𝑞𝜈
𝑗𝑙

𝛿𝑡
=

𝛾

𝑝𝑑 𝛿𝑡

(
E𝜈
𝑗 𝜆

𝜈
𝑙
+ E𝜈

𝑙
𝜆𝜈𝑗

)
+ 𝛾2

𝑝2 𝑑 𝛿𝑡
E𝜈
𝑗 E

𝜈
𝑙
, (15a)

𝑚𝜈+1
𝑗𝑟

−𝑚𝜈
𝑗𝑟

𝛿𝑡
=

𝛾

𝑝𝑑 𝛿𝑡
E𝜈
𝑗 𝜆

∗𝜈
𝑟 . (15b)

In Theorem 3.1 we prove that as 𝑑 → ∞, 𝛀𝜈 converges to the solution of the ODE:

𝑑

𝑑𝑡
�̄�(𝑡) = 𝜓

(
�̄�(𝑡)) , (16)

where 𝜓 : R(𝑝+𝑘)×(𝑝+𝑘) → R(𝑝+𝑘)×(𝑝+𝑘) is the expected value of the RHS of Eqs. (15), provided that this
solution stays bounded. This enhances the result of [6] by providing convergence rates to the ODEs en-
compassing all scalings adopted hereafter:

Theorem 3.1 (Deterministic scaling limit of stochastic processes). Let 𝜏 ∈ R be the continuous time horizon
and 𝛿𝑡 = 𝛿𝑡 (𝑑) be a time scaling factor such that the following assumptions hold:
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1. the time scaling 𝛿𝑡 satises for some constant 𝑐 ,

𝛿𝑡 ≥ 𝑐 max
(
𝛾

𝑝𝑑
,
𝛾2

𝑝2𝑑

)
(17)

2. the activation function 𝜎 is 𝐿-Lipschitz,

3. the function𝜓 : R(𝑝+𝑘)×(𝑝+𝑘) → R(𝑝+𝑘)×(𝑝+𝑘) is 𝐿′-Lipschitz.

Then, there exists a constant 𝐶 > 0 (depending on 𝑐, 𝐿, 𝐿′) such that for any 0 ≤ 𝜈 ≤ b𝜏/𝛿𝑡c, the following
inequality holds:

E

𝛀

𝜈 − �̄� (𝜈𝛿𝑡)

∞ ≤ 𝑒𝐶𝜏 log(𝑝)

√
𝛿𝑡 . (18)

Our proof is based on techniques introduced in [21] (namely, their Lemma 2) which studies a dierent
problem with related proof techniques. The proof involves decomposing 𝛀

𝜈+1 as

𝛀
𝜈+1 = 𝛀

𝜈 + 𝛿𝑡𝜓 (𝛀𝜈 ) + (
𝛀

𝜈+1 − 𝛀
𝜈 − 𝛿𝑡𝜓 (𝛀𝜈 )) , (19)

where the two rst terms can be considered as a deterministic discrete process, and the last term is a
martingale increment. The main challenge lies in showing that the martingale contribution stays bounded
throughout the considered time period.

Although the method is similar to [6], there are a number of dierences between the two approaches.
First, our proof xes a number of holes in [6], in particular bounding 𝑞𝜈

𝑗 𝑗
by a suciently slowly diverg-

ing function of 𝜈 . Additionally, the techniques used in this paper yield a dependency in 𝑝 that is nearly
negligible, while the previous methods imply bounds that are much too coarse for our needs.

The function𝜓 can be computed explicitly for various choices of 𝜎 , which allows to check Assumption
3 directly. We provide in Appendix C the necessary computations for 𝜎 (𝑥) = erf(𝑥/√2); those for the
ReLU unit can be found in [22]. It can be checked that in the ReLU case, the function 𝜓 is not Lipschitz
around the matrices 𝛀 satisfying

Ω 𝑗𝑙 =
√︁
Ω 𝑗 𝑗Ω𝑙𝑙

for some 𝑗 ≠ 𝑙 . However, in every case we have a weaker square-root-Lipschitz property: there exists
𝐶 ∈ R such that

‖𝜓 (𝛀) −𝜓 (𝛀′)‖ ≤ 𝐶
√𝛀 −

√
𝛀

′


for any 𝛀,𝛀′. Since the square root function is Lipschitz whenever the eigenvalues of 𝛀 are bounded away
from zero (see e.g. [23]), Assumption 3 is implied by the condition

𝛀
𝜈 � 𝜖𝐼𝑝+𝑘 ;

however, this assumption is much stronger, and becomes unrealistic in the specialization phase (as well as
when 𝑝 � 𝑑).

Theorem 3.1 allows us to safely navigate through Figure 1a by keeping track of convergence rates of
the discrete process to a set ODEs. The interplay between learning rate and hidden layer width denes the
time scaling 𝛿𝑡 and the trade-o between the linear contribution on E𝑗 and the quadratic one, playing a
central role on whether the network achieves perfect learning or not. Specically, consider the following
learning rate and hidden layer width scaling with 𝑑 :

𝛾 =
𝛾0

𝑑𝛿
, (20a)
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𝑝 = 𝑝0𝑑
𝜅 , (20b)

where 𝛾0 ∈ R+ and 𝑝0 ∈ N are constants. The exponent 𝛿 ∈ R can be either greater or smaller than zero,
while 𝜅 ∈ R+. Replacing these scalings on Eqs. (14), we nd:

𝑞𝜈+1
𝑗𝑙

− 𝑞𝜈
𝑗𝑙
=

1
𝑑1+𝜅+𝛿

(
E𝜈
𝑗 𝜆

𝜈
𝑙
+ E𝜈

𝑙
𝜆𝜈𝑗

)
︸              ︷︷              ︸

learning

+ 1
𝑑1+2(𝜅+𝛿) E

𝜈
𝑗 E

𝜈
𝑙︸︷︷︸

noise

, (21a)

𝑚𝜈+1
𝑗𝑟 −𝑚𝜈

𝑗𝑟 =
1

𝑑1+𝜅+𝛿 E𝜈
𝑗 𝜆

∗𝜈
𝑟︸ ︷︷ ︸

learning

, (21b)

where we have chosen 𝛾0 = 𝑝0 without loss of generality.
Since the distribution of the label noise P(𝜁 ) is such that E𝜁∼P(𝜁 ) [𝜁 ] = 0, the linear contribution in E𝑗

is noiseless in the high-dimensional limit 𝑑 → ∞, and therefore we will refer to it as the learning term. The
noise enters in the equations through the variance computed on the quadratic contribution E𝑗 E𝑙 , which
we will refer to as the noise term; intuitively, it is a high-dimensional variance correction which hinders
learning. In order to satisfy (17), we shall take

𝛿𝑡 = max
(

1
𝑑1+𝜅+𝛿 ,

1
𝑑1+2(𝜅+𝛿)

)
. (22)

When 𝜅 + 𝛿 ≠ 0, this implies that either the learning term or the noise term scale like a negative power
of 𝑑 , and is negligible with respect to the other term. It is then easy to check that at a nite time horizon
𝜏 , the resulting ODEs behave as if the negligible term was not present. We refer to Theorem B.1 in the
appendix for a quantitative proof of this phenomenon. Let us now describe the dierent regimes depicted
in Figure 1a.

Blue line (plateau) – When 𝛾 and 𝑝 are scaled such that 𝜅 = −𝛿 , Eqs. (21) converge to

𝑑𝑞 𝑗𝑙

𝑑𝑡0
= E𝝀,𝝀∗∼N(𝝀,𝝀∗ |0,𝛀)

[
E𝑗 𝜆𝑙 + E𝑙 𝜆 𝑗

] + E𝝀,𝝀∗∼N(𝝀,𝝀∗ |0,𝛀) E𝜁∼P(𝜁 )
[
E𝑗 E𝑙

]
, (23a)

𝑑𝑚 𝑗𝑟

𝑑𝑡0
= E𝝀,𝝀∗∼N(𝝀,𝝀∗ |0,𝛀)

[
E𝑗 𝜆

∗
𝑟

]
, (23b)

with 𝛿𝑡0 ≡ 1/𝑑 . This regime is an extension of [5] for which 𝜅 = 𝛿 = 0. The convergence rate to the ODEs
scales with 𝑑−1/2 log(𝑑), and the phenomenology we observe for 𝜅 = 𝛿 = 0 is consistent with previous
works studying the setting 𝜅 = 𝛿 = 0; namely the existence of an asymptotic plateau proportional to the
noise level. For instance, the asymptotic population risk R∞ is known to be proportional to 𝛾Δ [6] when
𝜅 = 𝛿 = 0 and the dynamics is driven by a rescaled version of Eqs. (23). Since the noise term does not vanish
under this scaling, perfect learning to zero population risk is not possible. There is always an asymptotic
plateau related to the noise level Δ, and the learning rate 𝛾 .

Green region (perfect learning) – If 𝜅 > −𝛿 we can dene the time scaling 𝛿𝑡𝜅+𝛿 ≡ 1/𝑑1+𝜅+𝛿 . By
Theorem 3.1, Eqs. (21) converge to the following deterministic set of ODEs:

𝑑𝑞 𝑗𝑙

𝑑𝑡𝜅+𝛿
= E𝝀,𝝀∗∼N(𝝀,𝝀∗ |0,𝛀)

[
E𝑗 𝜆𝑙 + E𝑙 𝜆 𝑗

] + O

(
E𝝀,𝝀∗∼N(𝝀,𝝀∗ |0,𝛀) E𝜁∼P(𝜁 )

[
E𝑗 E𝑙

]
𝑑𝜅+𝛿

)
, (24a)
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𝑑𝑚 𝑗𝑟

𝑑𝑡𝜅+𝛿
= E𝝀,𝝀∗∼N(𝝀,𝝀∗ |0,𝛀)

[
E𝑗 𝜆

∗
𝑟

]
, (24b)

at a rate proportional to 𝑑−(1+𝜅+𝛿)/2 log(𝑑), where we have highlighted that the noise term vanishes with
𝑑−(𝜅+𝛿) . Hence, as long as 𝜅 > −𝛿 the noise does not play any role on the dynamics. This setting could be
understood by taking an eect learning rate 𝛾e ∝ 𝑑−𝜅−𝛿 on R∞ ∝ 𝛾Δ, which leads to zero population risk,
i.e. perfect learning, in the high dimensional limit 𝑑 → ∞. We validate this claim by a nite size analysis
in the next section.

As discussed, the time scaling determines the number of data samples required to complete one learning
step on the continuous scale. The bigger𝜅+𝛿 , the more attenuated the noise term, thus the closer to perfect
learning. The trade-o is that the bigger𝜅+𝛿 , the larger the number of samples needed is, since𝑛 = 𝜏𝑑1+𝜅+𝛿 .
Given a realizable learning task, one would thus rather choose the parameters to attain the perfect learning
region, but being as close as possible to the plateau line for not increasing too much the needed number
of samples. We remark that [15] provides an alternative deterministic approximation in this regime, with
non-asymptotic bounds, whenever 𝑝 � 1; this is the so-called mean-eld approximation, with known
convergence guarantees [2].

Orange region (bad learning) – We now step in the unusual situation where the learning rate grows
faster with 𝑑 than the hidden layer width: 𝜅 < −𝛿 . In this case, by (22) the noise term dominates over the
dynamics. Dening the time scaling 𝛿𝑡2(𝜅+𝛿) ≡ 1/𝑑1+2(𝜅+𝛿) , we have

𝑑𝑞 𝑗𝑙

𝑑𝑡2(𝜅+𝛿)
= E𝝀,𝝀∗∼N(𝝀,𝝀∗ |0,𝛀) E𝜁∼P(𝜁 )

[
E𝑗 E𝑙

] + O

(
E𝝀,𝝀∗∼N(𝝀,𝝀∗ |0,𝛀)

[
E𝑗 𝜆𝑙 + E𝑙 𝜆 𝑗

]
𝑑−(𝜅+𝛿)

)
, (25a)

𝑑𝑚 𝑗𝑟

𝑑𝑡2(𝜅+𝛿)
= O

(
E𝝀,𝝀∗∼N(𝝀,𝝀∗ |0,𝛀)

[
E𝑗 𝜆

∗
𝑟

]
𝑑−(𝜅+𝛿)

)
. (25b)

According to Theorem 3.1 the convergence rate of Eqs. (21) to Eqs. (25) scales with 𝑑−(1/2+𝜅+𝛿) log(𝑑).
Therefore the existence of the noisy ODEs above is circumscribed to the region

− 1/2 < 𝜅 + 𝛿 < 0 , (26)

and presents a convergence trade-o absent in the other regimes: the faster one of the contributions of
Eqs. (21) goes to zero, the worse is the convergence rate. In the present case, the more the learning term
is attenuated, i.e. the more negative is 𝜅 + 𝛿 , the worse the dynamics is described by Eqs. (25). Although
the weights are updated, the correlation between the teacher and the student weights parametrized by the
overlap matrix 𝑴 remains xed on its initial value 𝑴0, which is a xed point of the dynamics under this
scaling. Unsurprisingly, this leads to poor generalization capacity.

Red region (no ODEs) – If 𝜅 + 𝛿 < −1/2, the stochastic process driven by the weight dynamics does not
converge to deterministic ODEs under the assumptions of Theorem 3.1. We are then not able to state any
claim about this regime.

Initialization and convergence – There are two additional features worth commenting on the high-
dimensional dynamics and its connection to the mean-eld/hydrodynamic approach, regarding initializa-
tion and the specialization transition.
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In the ODE approach we discuss here, we always observe a rst plateau where the teacher-student
overlaps are all the same. This means all the hidden layer neurons learned the same linear separator. At
this point, the two-layer network is essentially linear. This is called a unspecialized network in [16, 5]. In
fact, this is a perfectly normal phenomenon, as with few samples even the Bayes-optimal solution would
be unspecialized [24]. Only by running the dynamics long enough the student hidden neurons start to
specialize, each of them learning a dierent sub-function so that the two-layer network can learn the non-
trivial teacher.

Let us make two comments on this phenomenon: (i) while the "linear" learning in the unspecialized
regime may remind the reader of the linear learning in the lazy regime [25, 26] of neural nets, the two
phenomena are completely dierent. In lazy training, the learning is linear because weights change very
little, so that the eective network is a linear approximation of the initial one. Here, instead, the weights
are changing considerably, but each hidden neuron learns essentially the same function. (ii) If the ODEs
are initialized with weights uncorrelated with the teacher, then the unspecialized regime is a xed point of
the ODEs: the student thus never specializes, at any time. Strikingly, such condition arises as well in the
analysis of mean-eld equations (see e.g. Theorem 2 in [27] that discusses the need to have spread initial
conditions with a non-zero overlap with the teacher) to guarantee global convergence.

This raises the question about the precise dependence of the learning on the initialization condition in
the high-dimensional regime, where a random start gets a vanishing (1/

√
𝑑) overlap. This is a challenging

problem that only recently has been studied (though in a simpler setting) in [28, 29, 30] who showed it
yields an additional log(𝑑) time-dependence. Generalizing these results for high-dimensional two-layer
nets is an open question which we leave for future work.

4 Discussion, special cases, and simulations
To illustrate the phase diagram of Figure 1a, we present now several special cases for which we can perform
simulations or numerically solve the set of ODEs. Henceforth, we take 𝜎 (𝑥) = erf(𝑥/√2), for which the
expectations of the ODEs and of the population risk, Eq. (12), can be calculated analytically [5]. The explicit
expressions are presented in Appendix C. Teacher weights are such that 𝜌𝑟𝑠 = 𝛿𝑟𝑠 . The initial student
weights are chosen such that the dimension 𝑑 can be varied without changing the initial conditions 𝑸0,
𝑴0, 𝑷 and consequently the initial population risk R0. A detailed discussion can be found in Appendix D.

4.1 Saad & Solla scaling 𝜅 = 𝛿 = 0
We start by recalling the well-known setting characterized by the point 𝜅 = 𝛿 = 0. The convergence of the
stochastic process for xed learning rate and hidden layer width to Eqs. (23) was rst obtained heuristically
by [5]. In Figure 2 we recall this classical result by plotting the population risk dynamics for dierent noise
levels. Dots represent simulations, while solid lines are obtained by integration of the ODEs, Eq. (23).

Learning is characterized by two phases after the initial decay. The rst is the unspecialized plateau
where all the teacher-student overlaps are approximately the same: 𝑚 𝑗𝑟 ≈ 𝑚. Waiting long enough, the
dynamics reaches the specialization phase, where the student neurons start to specialize, i.e., their overlaps
with one of the teacher neurons increase and consequently the population risk decreases. This specializa-
tion is discussed extensively in [5]. If Δ = 0, the population risk goes asymptotically to zero. Instead, if
Δ ≠ 0, the specialization phase presents a second plateau related to the noise Δ.

The asymptotic population risk R∞ related to the second plateau is proportional to 𝛾Δ [6] in the high-
dimensional limit 𝑑 → ∞ with 𝑝 nite. As mentioned in the previous section, the expectation over E𝑗 E𝑙
in Eq. (23a) prevents one from obtaining zero population risk for a noisy teacher.
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Figure 2: Population risk dynamics for 𝜅 = 𝛿 = 0 (Saad & Solla scaling) : 𝑝0 = 8, 𝑘 = 4, 𝜌𝑟𝑠 = 𝛿𝑟𝑠 . Activation:
𝜎 (𝑥) = erf(𝑥/√2). Data distribution: P(𝒙) = N(𝒙 |0,1). Dots represent simulations (𝑑 = 1000), while solid lines are
obtained by integration of the ODEs given by Eqs. (23).
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(a) Population risk dynamics for 𝜅 = 0 and 𝛿 = 1/2. Fixed
noise Δ = 10−3 and varying 𝑑 . Dots represent simulations,
while the solid line is obtained by integration of the ODEs
given by Eqs. (24). The data are compatible with the claim
that as 𝑑 → ∞ the curve converges to zero population risk.

102 103

3
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10−5

10−4

R
∞

Δ = 10−4

Δ = 10−3
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(b) Asymptotic population risk R∞ from simulations (dots)
as a function of 𝑑 for dierent noise levels under the scaling
𝜅 = 0 and 𝛿 = 1/2. The tted straight lines have slopes
−0.458, −0.494, −0.497, for Δ = 10−4, 10−3, 10−2, respec-
tively.

Figure 3: Network parameters: 𝑝0 = 8, 𝑘 = 4, 𝜌𝑟𝑠 = 𝛿𝑟𝑠 . Activation function: 𝜎 (𝑥) = erf(𝑥/√2). Data distribution:
P(𝒙) = N(𝒙 |0,1) .

4.2 Perfect learning for 𝜅 = 0
In this section we study the line 𝜅 = 0 with 𝛿 > 0 of Figure 1a, for which Eqs. (24) with 𝜅 = 0 hold. We
show that perfect learning can be asymptotically achieved in the realizable setting for any nite hidden
layer width 𝑝 = 𝑝0. Keeping 𝛿 and Δ xed, we have done simulations increasing the input layer dimension
𝑑 . In Figure 3a we set 𝛿 = 1/2, Δ = 10−3 and vary the input layer dimension. The bigger 𝑑 is, the closer we
are to the ODE-derived noiseless result.

Gathering the asymptotic population risk from simulations for varying 𝑑 and Δ we perform a nite-
size analysis to study the dependence of R∞ with 𝑑 . This shows that the noise term goes to zero under
this setting. In Figure 3b we plot R∞ versus 𝑑 from simulations (dots) for dierent noise levels. We t
lines under the log-log scale showing that R∞ ∝ 𝑑−𝛿 , as expected. Figure 4 draws the same conclusion for
𝛿 = 1/4.

As already stated, the interplay between the exponents directly aects the time scale. We end this
subsection by graphically illustrating this fact through simulations. Setting the noise to Δ = 10−3 we

12



100 101 102 103 104

C = a
35/4

10−5

10−4

10−3

10−2

R

3 = 30
3 = 100
3 = 300
3 = 1000
ode

(a) Population risk dynamics for 𝜅 = 0 and 𝛿 = 1/4. Fixed
noise Δ = 10−3 and varying 𝑑 . Dots represent simulations,
while the solid line is obtained by integration of the ODEs
given by Eqs. (24). The data are compatible with the claim
that as 𝑑 → ∞ the curve converges to zero population risk.
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(b) Asymptotic population risk R∞ from simulations (dots)
as a function of 𝑑 for dierent noise levels under the scal-
ing 𝜅 = 0 and 𝛿 = 1/4.The tted straight lines have slopes
−0.201, −0.295, −0.201, for Δ = 10−4, 10−3, 10−2, respec-
tively.

Figure 4: Network parameters: 𝑝0 = 8, 𝑘 = 4, 𝜌𝑟𝑠 = 𝛿𝑟𝑠 . Activation function: 𝜎 (𝑥) = erf(𝑥/√2). Data distribution:
P(𝒙) = N(𝒙 |0,1) .
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(a) Simulations (𝑑 = 1000) for 𝜅 = 0 comparing dierent
choices of the exponent 𝛿 . The nal plateau is proportional
to learning rate: R∞ ∝ 𝛾Δ.
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(b) Population risk dynamics for 𝜅 = 0 and 𝛿 = −3/8. Dots
represent simulations, while the solid line is obtained by in-
tegration of the ODEs given by Eqs. (25).

Figure 5: Network parameters 𝑝0 = 8, 𝑘 = 4, 𝜌𝑟𝑠 = 𝛿𝑟𝑠 . Noise level Δ = 10−3. Activation: 𝜎 (𝑥) = erf(𝑥/√2). Data
distribution: P(𝒙) = N(𝒙 |0,1) .

compare the cases 𝛿 = 0, 1/4, 3/8, 1/2 in Figure 5a. All simulations are rendered on the scale 𝛿𝑡0 = 1/𝑑 to
illustrate the trade-o between asymptotic performance and training time.

4.3 Bad learning for 𝜅 = 0
We now quickly discuss the uncommon case of 𝛾 growing with 𝑑 within the orange region. In Figure 5b we
compare simulations varying 𝑑 with the solution of the ODEs given by Eqs. (25). Both lead to poor results
compared to the green and blue regions. Moreover, this regime presents strong nite-size eects, making
it harder to observe the asymptotic ODEs at small sizes. However, the trend as 𝑑 increases is very clear
from the simulations. As discussed in Section 3, the more the learning term is attenuated on the ODEs, the
worse they describe the dynamics.
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Figure 6: Simulations across dierent regions of Figure 1a. Networks parameters 𝑑 = 100, 𝑝 = 𝑑𝜅 , 𝛾 = 𝑑−𝛿 , 𝑘 = 4,
𝜌𝑟𝑠 = 𝛿𝑟𝑠 . Noise: Δ = 10−3. Activation function: 𝜎 (𝑥) = erf(𝑥/√2). Data distribution: P(𝒙) = N(𝒙 |0,1). Time scaling:
𝜗 = 𝜅 + 𝛿 for green and blue and 𝜗 = 2(𝜅 + 𝛿) for orange. The colors match Figure 1a.

4.4 Large hidden layer: 𝜅 > 0
Finishing our voyage through Figure 1a with examples, we briey discuss the case where both input and
hidden layer widths are large. Although Theorem 3.1 provides non-asymptotic guarantees for 𝜅 > 0, the
number of coupled ODEs grows quadratically with 𝑝 , making the task of solving them rather challenging.
Thus, we present simulations that illustrate the regions of Figure 1a. Fixing 𝑑 = 100 we show in Figure 6
learning curves for dierent values of 𝜅 and 𝛿 . The colors are chosen to match their respective regions in
the phase diagram.

Due to the relatively small sizes used in Figure 6, the green dots seem to decrease towards perfect
learning, even when 𝛿 < 0, provided that 𝜅 is large enough, as is predicted by the phase diagram in Figure
1a. Moreover, since 𝑑 is not large enough, when the parameters are within the orange region the nite-
size eects actually dominates, similarly to Figure 5b. The learning contribution still plays a role and the
asymptotic population risk is similar to the case 𝜅 = 𝛿 = 0. Within the red region, which is out of scope of
our theory, the simulation gets stuck on a plateau with larger population risk.

5 Conclusion
Building up on classical statistical physics approaches and extending them to a broad range of learning rate,
time scales, and hidden layer width, we rendered a sharp characterisation of the performance of SGD for
two-layer neural networks in high-dimensions. Our phase diagram describes the possible learning scenar-
ios, characterizing learning regimes which had not been addressed by previous classical works using ODEs.
Crucially, our key conclusions do not rely on an explicit solution, as our theory allows the characterization
of the learning dynamics without solving the system of ODEs. The introduction of scaling factors is non-
trivial and has deep implications. Our generalized description enlightens the trade-o between learning
rate and hidden layer width, which has also been crucial in the mean-eld theories.
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Appendix

A Deterministic scaling limit of stochastic processes
In order to show the deterministic scaling of online SGD under a proper chosen time scale, we will make
use of a convergence result by [21, 31], which is adapted below in Theorem A.1.

Theorem A.1 (Deterministic scaling limit of stochastic processes). Consider a 𝑑-dimension discrete time
stochastic process sequence, {𝛀𝜈 ; 𝜈 = 0, 1, 2, ..., [𝑆𝜏]}𝑆=1,2,... for some 𝜏 > 0. The increment 𝛀𝜈+1 − 𝛀

𝜈 is
assumed to be decomposable into three parts,

𝛀
𝜈+1 − 𝛀

𝜈 =
1
𝑆
𝜓 (𝛀𝜈 ) + 𝚲

𝜈 + 𝚪
𝜈 , (A.1)

such that

Assumption A.1.1. The process �̃�

𝜈 ≡ ∑𝜈
𝜈′=0 𝚲

𝜈′ is a martingale and E‖𝚲𝜈 ‖2 ≤ 𝐶 (𝜏)2/𝑆1+𝜖1 for some
𝜖1 > 0.

Assumption A.1.2. E‖𝚪𝜈 ‖ ≤ 𝐶 (𝜏)/𝑆1+𝜖2 for some 𝜖2 > 0.

Assumption A.1.3. The function𝜓 (𝛀) is Lipschitz, i.e, ‖𝜓 (𝛀) −𝜓 (�̃�)‖ ≤ 𝐶 ‖𝛀 − �̃�‖ for any 𝛀 and �̃�.

Let 𝛀(𝑡), with 0 ≤ 𝑡 ≤ 𝜏 , be a continuous stochastic process such that 𝛀(𝑡) = 𝛀
𝜈 with 𝜈 = [𝑆𝑡]. Dene

the deterministic ODE
𝑑

𝑑𝑡
�̄�(𝑡) = 𝜓 (�̄�(𝑡)) , (A.2)

with �̄�(0) = �̄�0.
Then, if assumptions A.1.1 to A.1.3 hold and assuming E‖𝛀0 − �̄�0‖ < 𝐶/𝑆𝜖3 for some 𝜖3 > 0 then we have

for any nite 𝑆 :
E
𝛀𝜈 − �̄�

(𝜈
𝑆

) ≤ 𝐶 (𝜏)𝑒𝑐𝜏𝑆−min{ 1
2𝜖1,𝜖2,𝜖3 } , (A.3)

where �̄�(·) is the solution of Eq.(A.2).

Proof. The reader interested in the proof is referred to the supplementary materials of [21, 31]. �

Although the theorem wasn’t originally proven in the 𝑝 → ∞ setting, a glance at its proof shows that
it still holds upon replacing 𝐶 (𝜏) by 𝐶 (𝑝, 𝜏) in Assumption A.1.1 and A.1.2, as well as Equation (A.3). We
choose ‖·‖ to be the 𝐿∞ norm, since it suits better the 𝑝 → ∞ scaling. The 𝑆 in Theorem A.1 corresponds
to 1/𝛿𝑡 , where 𝛿𝑡 is dened in Theorem 3.1.

Following [21], we dene for 𝑗, 𝑙 ∈ [𝑝]

Ψ𝑗𝑙 (𝛀; 𝒙) = 𝛾

𝑝𝑑 𝛿𝑡

(
E𝜈
𝑗 𝜆

𝜈
𝑙
+ E𝜈

𝑙
𝜆𝜈𝑗

)
+ 𝛾2

𝑝2 𝑑 𝛿𝑡
E𝜈
𝑗 E

𝜈
𝑙
,

and
𝜓 𝑗𝑙 (𝛀) = E𝒙∼N(𝒙 |0,1)

[
Ψ𝑗𝑙 (𝛀; 𝒙)] .
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The functions Ψ,𝜓 are similarly dened on [𝑝] × [𝑝 + 1, 𝑝 + 𝑘]. With that, we write

𝛀
𝜈+1 − 𝛀

𝜈 =
1
𝑆
𝜓 (𝛀) + 1

𝑆
(Ψ(𝛀𝜈 ; 𝒙) −𝜓 (𝛀𝜈 ))︸                        ︷︷                        ︸

𝚲
𝜈

+𝚪𝜈 ,

where for 𝑗, 𝑙 ∈ [𝑝]
Γ𝜈
𝑗𝑙
=

𝛾2

𝑝2𝑑2
(‖𝒙 ‖2

2 − 𝑑
)
E𝜈
𝑗 E

𝜈
𝑙
.

The main obstacle to bounding 𝚲
𝜈 and 𝚪

𝜈 is the fact that the 𝑞 𝑗 𝑗 can a priori diverge to innity. Our
rst task is therefore to show that this does not happen; as a proxy we show a subgaussian-like moment
bound:

E
[(𝑞𝜈𝑗 𝑗 )𝑡 ] ≤

(
𝐶 (𝜏) + 𝑐𝑡

𝑆

)𝑡
.

Equipped with the above bound, controlling E‖𝚲𝜈 ‖2 and E‖𝚪𝜈 ‖ becomes fairly easy. All proof details
are in the below sections.

A.1 Preliminaries: bounding the 𝑞 𝑗 𝑗

Since 𝜎 is 𝐿-Lipschitz, we have by the Cauchy-Schwarz inequality

(E𝜈 )2 ≤ 3𝐿2

𝑘

𝑘∑︁
𝑟=1

(𝜆∗𝑟 )2 + 3𝐿2

𝑝

𝑝∑︁
𝑗=1

(𝜆 𝑗 )2 + 3Δ𝜁 2 ≡ Φ𝜈 (A.4)

Dene

𝑠𝜈 = EΦ𝜈 =
3𝐿2

𝑘

𝑘∑︁
𝑟=1

𝜌𝑟𝑟 + 3𝐿2

𝑝

𝑝∑︁
𝑗=1

𝑞𝜈𝑗 𝑗 + 3Δ

Assumption 1 in Theorem 3.1 implies that

|𝑞𝜈+1
𝑗 𝑗 − 𝑞𝜈𝑗 𝑗 | ≤

1
𝑆

(
𝑐1 (𝜆𝜈𝑗 )2 + 𝑐2 (E𝜈 )2

)
where 𝑐1, 𝑐2 are absolute constants. Summing those inequalities yield

|𝑠𝜈+1 − 𝑠𝜈 | ≤ 𝑐3
𝑆
Φ𝜈 ,

and nally
E𝜈 [𝑠𝜈+1] ≤ 𝑠𝜈

(
1 + 𝑐3

𝑆

)
≤ 𝑠𝜈𝑒𝑐3/𝑆 .

As a result, we have for any 0 ≤ 𝜈 ≤ 𝑆𝜏
E[𝑠𝜈 ] ≤ 𝑐4𝑒

𝑐3𝜏 . (A.5)

For simplicity, let 𝑞𝜈 denote any of the 𝑞𝜈
𝑗 𝑗

. We have, for all 𝑡 ≥ 0,

(𝑞𝜈+1)𝑡 − (𝑞𝜈 )𝑡 = 𝑡 (𝑞𝜈 )𝑡−1 (𝑞𝜈+1 − 𝑞𝜈 ) +𝑂
(
𝑡2

𝑆2

)
,
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where the remainder term has bounded expectation. Again, we write��(𝑞𝜈+1)𝑡 − (𝑞𝜈 )𝑡
�� ≤ 𝑡 (𝑞𝜈 )𝑡−1 1

𝑆
(𝑐1 (E𝜈 )2 + 𝑐2 (𝜆𝜈𝑖 )2) + 𝑐5𝑡

2

𝑆2 .

By Assumption 3, the 𝑞𝜈
𝑖𝑖

are bounded from below by a constant, hence

E𝜈 [(𝑞𝜈+1)𝑡 ] ≤ (𝑞𝜈 )𝑡
(
1 + 𝑐6𝑡

𝑆

)
+𝑂

(
𝑐5𝑡

2

𝑆2

)
This implies that for any 𝑡 ≥ 0 and 0 ≤ 𝜈 ≤ 𝑆𝜏 ,

E[(𝑞𝜈 )𝑡 ] ≤
(
𝑐7 + 𝑐5𝑡

2

𝑆

)
𝑒𝑐6𝜏 ≤

(
𝐶 (𝜏) + 𝑐5𝑡

𝑆

)𝑡
(A.6)

A.2 Assumption A.1.1
We have for all 𝑖, 𝑗 ∈ [𝑝 + 𝑘],(

Ω𝜈+1
𝑖 𝑗 − E𝜈 [Ω𝜈+1

𝑖 𝑗 ]
)2

≤ 2
(
(Ω𝜈+1

𝑖 𝑗 − Ω𝜈
𝑖 𝑗 )2 + (Ω𝜈

𝑖 𝑗 − E𝜈 [Ω𝜈+1
𝑖 𝑗 ])2

)
.

As a consequence,
E‖𝚲𝜈 ‖2 ≤ 4 max

𝑖, 𝑗
(Ω𝜈+1

𝑖 𝑗 − Ω𝜈
𝑖 𝑗 )2 .

Now, by denition,

(𝑞𝜈+1
𝑖 𝑗 − 𝑞𝜈𝑖 𝑗 )2 ≤ 𝐿

𝑆2
(
𝑐1 (E𝜈 )2 + 𝑐2 | E𝜈 | ( |𝜆𝑖 | + |𝜆 𝑗 |)

)2 ≤ 𝐿

𝑆2

(
𝑐3 (E𝜈 )4 + 𝑐4 (max

ℓ
𝜆𝜈ℓ )4

)
,

The term in (E𝜈 )4 is bounded by the same techniques as the last section. For the second term,

E𝜈

[
(max

ℓ
𝜆ℓ )4

]
≤ 𝑐5 log(𝑝)2

(
max
ℓ

𝑞𝜈ℓℓ

)4
,

and we can write for any 𝑡 ≥ 0

max
ℓ

(𝑞𝜈ℓℓ )4 ≤
(∑︁

ℓ

(𝑞𝜈ℓℓ )𝑡
)4/𝑡

.

By Jensen’s inequality, for 𝑡 ≥ 4

E

[(
max
ℓ

𝑞𝜈ℓℓ

)4
]
≤

(∑︁
ℓ

E[(𝑞𝜈ℓℓ )𝑡
)4/𝑡

≤ 𝑝4/𝑡
(
𝐶 (𝜏) + 𝑐6𝑡

𝑆

)4
,

using (A.6). Choosing 𝑡 = 4 log(𝑝) � 𝑆 shows that

E

[
max
𝑖, 𝑗

(𝑞𝜈+1
𝑖 𝑗 − 𝑞𝜈𝑖 𝑗 )2

]
≤ 𝐶 (𝜏) log(𝑝)2

𝑆2

A similar bound holds for the𝑚𝑖 𝑗 , and hence

E‖𝚲𝜈 ‖2 ≤ 𝑐5 log(𝑝)2

𝑆2 ,

which implies Assumption A.1.1 with 𝜖1 = 1 and 𝐶 (𝑝, 𝜏) = 𝐶 ′(𝜏) log(𝑝).
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A.3 Assumption A.1.2
Since 𝜎 is Lipschitz, for any 𝑖, 𝑗 ∈ [𝑝]

E𝜈
𝑖 E

𝜈
𝑗 ≤ 𝐿2 (E𝜈 )2 .

Hence,

E[‖𝚪𝜈 ‖∞] ≤ 𝐿2𝛾2

𝑑2𝑝2 E
[ (‖𝒙 ‖2

2 − 𝑑
)
Φ𝜈

]
≤ 𝐿2𝛾2

𝑑2𝑝2

(
1

2
√
𝑑
E

[ (‖𝒙 ‖2
2 − 𝑑

)2
]
+
√
𝑑

2 E
[(E𝜈 )4] ) .

The rst expectation is the variance of a 𝜒2
𝑑

random variable, which is equal to 2𝑑 , and the second expec-
tation is bounded by the same methods as the above sections. The term in brackets is therefore bounded
by 𝑐1

√
𝑑 , and

E[‖𝚪𝜈 ‖∞] ≤ 𝑐2
𝛾2

𝑑3/2𝑝2

Finally, since for any 𝑦 > 0 we have 𝑦2 ≤ max(𝑦,𝑦2)3/2, letting 𝑦 = 𝛾/𝑝 we nd

E[‖𝚪𝜈 ‖∞] ≤ 𝑐2 max
(
𝛾

𝑝𝑑
,
𝛾2

𝑝2𝑑

)3/2
≤ 𝑐3 (𝛿𝑡)3/2,

hence Assumption A.1.2 is true with 𝜖2 = 1/2.

A.4
√
-Lipschitz property

Let 𝛀,𝛀′ ∈ R(𝑝+𝑘)×(𝑝+𝑘) , we can write the (𝑖, 𝑗) coecient of𝜓 (𝛀) as 𝑓𝑖 𝑗 (
√
𝛀), where

𝑓 : R(𝑝+𝑘)×(𝑝+𝑘) → R
𝐴 ↦→ E𝑥∼N(0,𝐼𝑝+𝑘 ) [𝑔𝑖 𝑗 (𝐴𝑥)]

The same arguments as above show that the function 𝑓 is Lipschitz, and hence for some constant 𝐿′′ we
have

‖𝜓 (𝛀) −𝜓 (𝛀′)‖ ≤ 𝐿′′‖
√
𝛀 −

√
𝛀

′‖ .

B A lemma on ODE perturbation
In this section, we prove a proposition that bounds the dierence between an ODE solution and a perturbed
version, for a bounded time 𝑡 .

Theorem B.1. Let 𝑓 , 𝑔 : R𝑛 → R𝑛 be two 𝐿-Lipschitz functions, and consider the following dierential
equations in R𝑛 :

𝑑𝒙

𝑑𝑡
= 𝑓 (𝒙) + 𝜖𝑔(𝒙),

𝑑𝒚

𝑑𝑡
= 𝑓 (𝒚),
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where 𝜖 > 0, and with the initial condition 𝒙 (0) = 𝒚(0) . Then, if 𝜏 > 0 is xed, we have

‖𝒙 (𝑡) −𝒚(𝑡)‖2 ≤ 𝑐𝜖𝑒𝐿𝜏

for any 0 ≤ 𝑡 ≤ 𝜏 , with 𝑐 a constant independent from 𝜖, 𝜏 .

Before proving this proposition, we begin with a small lemma:

Lemma B.2. Let 𝑎, 𝑏 > 0, and 𝑧 : R+ → R+ a function satisfying

𝑑𝑧

𝑑𝑡
= 𝑎𝑧 + 𝑏√𝑧

with 𝑧 (0) = 0. Then, for some constant 𝑐 > 0, we have

𝑧 (𝑡) ≤ 𝑐
𝑏2𝑒𝑎𝑡

𝑎2 for all 𝑡 ≥ 0

Proof. Upon considering the function 𝑎2𝑧 (𝑡/𝑎)/𝑏2 instead, we can assume that 𝑎 = 𝑏 = 1. Then, we have

𝑑𝑧

𝑑𝑡
≤ max(𝑧, 1) + max(√𝑧, 1),

and the RHS is an increasing function. Hence, if 𝑧 is a solution of

𝑑𝑧

𝑑𝑡
= max(𝑧, 1) + max(

√
𝑧, 1),

with 𝑧 (0) = 0, then 𝑧 (𝑡) ≤ 𝑧 (𝑡) for all 𝑡 ≥ 0. Since the RHS of the above equation is Lipschitz everywhere,
we can apply the Picard–Lindelöf theorem, and check that the unique solution to this equation is

𝑧 (𝑡) =
{

2𝑡 if 𝑡 ≤ 1
2

(𝑐1𝑒
𝑡 − 𝑐2)2 otherwise

,

where 𝑐1 and 𝑐2 are ad hoc constants. The lemma then follows from adjusting the constant 𝑐 as needed. �

We are now in a position to show Theorem B.1:

Proof. Assume for simplicity that 𝒙 (0) = 𝒚(0) = 0. We begin by bounding 𝒙 (𝑡); we have

𝑑 ‖𝒙 ‖2

𝑑𝑡
= 2𝒙>𝑑𝒙

𝑑𝑡
≤ 2‖𝒙 ‖ ‖ 𝑓 (𝒙) + 𝜖𝑔(𝒙)‖ .

By the Lipschitz condition,

‖ 𝑓 (𝒙) + 𝜖𝑔(𝒙)‖ ≤ ‖ 𝑓 (0) + 𝜖𝑔(0)‖ + 𝐿

2 ‖𝒙 ‖ ,

so that
𝑑 ‖𝒙 ‖2

𝑑𝑡
≤ 𝐿‖𝒙 ‖2 + 2‖ 𝑓 (0) + 𝜖𝑔(0)‖ ‖𝒙 ‖ .
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Applying Lemma B.2 and taking square roots on each side,

‖𝒙 (𝑡)‖ ≤ 𝑐
‖ 𝑓 (0) + 𝜖𝑔(0)‖

𝐿
𝑒𝐿𝑡/2 ≤ 𝑐

‖ 𝑓 (0) + 𝜖𝑔(0)‖
𝐿

𝑒𝐿𝜏/2 , (B.1)

for any 0 ≤ 𝑡 ≤ 𝜏 . Now, similarly,

𝑑 ‖𝒙 −𝒚‖2

𝑑𝑡
≤ 2‖𝒙 −𝒚‖

𝑑 (𝒙 −𝒚)
𝑑𝑡


≤ 2‖𝒙 −𝒚‖ ‖ 𝑓 (𝒙) − 𝑓 (𝒚) + 𝜖𝑔(𝒙)‖
≤ 𝐿‖𝒙 −𝒚‖2 + 2𝜖 ‖𝑔(𝒙)‖ ‖𝒙 −𝒚‖
≤ 𝐿‖𝒙 −𝒚‖2 + 𝜖

(
‖𝑔(0)‖ + 𝑐 ‖ 𝑓 (0) + 𝜖𝑔(0)‖𝑒𝐿𝜏/2

)
‖𝒙 −𝒚‖ ,

having used (B.1) on the last line. This is again the setting of Lemma B.2, which gives

‖𝒙 −𝒚‖ ≤ 𝑐1𝜖𝑒
𝐿𝜏/2 𝑒

𝐿𝑡/2

𝐿
≤ 𝑐2𝜖𝑒

𝐿𝜏 .

�

C Expectations over the local elds
In this appendix we present the explicit expressions from the expectations of the local elds used to com-
pute the population risk and the ODE terms.

C.1 Population risk
We write the population risk (12) as

R(𝛀) = E𝝀,𝝀∗∼N(𝝀,𝝀∗ |0,𝛀) E𝜁∼P(𝜁 )

[(
𝑓 (𝝀) − 𝑓 (𝝀∗)

)2
]

= Rt (𝑷 ) + Rs (𝑸) + Rst (𝑷 ,𝑸,𝑴) ,
(C.1)

with

Rt ≡ E𝝀∗∼N(𝝀∗ |0,𝑷 )
[
𝑓 (𝝀∗)2] = 1

𝑘2

𝑘∑︁
𝑟,𝑠=1
E𝝀∗∼N(𝝀∗ |0,𝑷 )

[
𝜎 (𝜆∗𝑟 )𝜎 (𝜆∗𝑠 )

]
(C.2a)

Rs ≡ E𝝀∼N(𝝀 |0,𝑸)
[
𝑓 (𝝀)2

]
=

1
𝑝2

𝑘∑︁
𝑗,𝑙=1
E𝝀∼N(𝝀 |0,𝑸)

[
𝜎 (𝜆 𝑗 )𝜎 (𝜆𝑙 )

]
, (C.2b)

Rst ≡ E𝝀,𝝀∗∼N(𝝀,𝝀∗ |0,𝛀)
[
𝑓 (𝝀) 𝑓 (𝝀∗)

]
= − 2

𝑝𝑘

𝑝∑︁
𝑗=1

𝑘∑︁
𝑟=1
E𝝀,𝝀∗∼N(𝝀,𝝀∗ |0,𝛀)

[
𝜎 (𝜆 𝑗 )𝜎 (𝜆∗𝑟 )

]
(C.2c)

Dene the vector 𝝀𝛼𝛽 ≡ (
𝜆𝛼 , 𝜆𝛽

)> ∈ R2, where the upper indices on the components indicate they may
refer to student or teacher local elds. Consider the covariance matrix on the subspace spanned by 𝝀𝛼𝛽 :

𝛀
𝛼𝛽 ≡ E𝝀,𝝀∗∼N(𝝀,𝝀∗ |0,𝛀)

[
𝝀𝛼𝛽

(
𝝀𝛼𝛽

)>]
∈ R2×2 . (C.3)
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For 𝜎 (𝑥) = erf(𝑥/√2) the expectations in Eqs. (C.2) are in general given by [5]

E𝝀,𝝀∗∼N(𝝀,𝝀∗ |0,𝛀)
[
𝜎 (𝜆𝛼 )𝜎 (𝜆𝛽 )

]
=

1
𝜋

arcsin
©«

Ω
𝛼𝛽

12√︂(
1 + Ω

𝛼𝛽

11

) (
1 + Ω

𝛼𝛽

22

) ª®®®®¬
. (C.4)

where Ω
𝛼𝛽

𝑗𝑙
≡ (𝛀𝛼𝛽 ) 𝑗𝑙 is an element of the covariance matrix given by Eq. (C.3).

Explicitly, the population risk contributions are

Rt (𝑷 ) = 1
𝑘2

𝑘∑︁
𝑟,𝑠=1

1
𝜋

arcsin
(

𝜌𝑟𝑠√︁
(1 + 𝜌𝑟𝑟 ) (1 + 𝜌𝑠𝑠 )

)
, (C.5a)

Rs (𝑸) = 1
𝑝2

𝑘∑︁
𝑗,𝑙=1

1
𝜋

arcsin
©«

𝑞 𝑗𝑙√︃(
1 + 𝑞 𝑗 𝑗

) (1 + 𝑞𝑙𝑙 )
ª®®¬ , (C.5b)

Rst (𝑷 ,𝑸,𝑴) = − 2
𝑝𝑘

𝑝∑︁
𝑗=1

𝑘∑︁
𝑟=1

1
𝜋

arcsin
©«

𝑚 𝑗𝑟√︃(
1 + 𝑞 𝑗 𝑗

) (1 + 𝜌𝑟𝑟 )
ª®®¬ . (C.5c)

C.2 ODE contributions
From the update equations, we rst consider the expectations linear in E𝑗 :

E𝝀,𝝀∗∼N(𝝀,𝝀∗ |0,𝛀) E𝜁∼P(𝜁 )
[
E𝑗 𝜆𝑙

]
=

1
𝑘

𝑘∑︁
𝑟 ′=1
E𝝀,𝝀∗∼N(𝝀,𝝀∗ |0,𝛀)

[
𝜎 ′(𝜆 𝑗 )𝜆𝑙𝜎 (𝜆∗𝑟 ′)

]
− 1
𝑝

𝑝∑︁
𝑙 ′=1
E𝝀,𝝀∗∼N(𝝀,𝝀∗ |0,𝛀)

[
𝜎 ′(𝜆 𝑗 )𝜆𝑙𝜎 (𝜆𝑙 ′)

]
,

(C.6a)

E𝝀,𝝀∗∼N(𝝀,𝝀∗ |0,𝛀) E𝜁∼P(𝜁 )
[
E𝑗 𝜆

∗
𝑟

]
=

1
𝑘

𝑘∑︁
𝑟 ′=1
E𝝀,𝝀∗∼N(𝝀,𝝀∗ |0,𝛀)

[
𝜎 ′(𝜆 𝑗 )𝜆∗𝑟𝜎 (𝜆∗𝑟 ′)

]
− 1
𝑝

𝑝∑︁
𝑙 ′=1
E𝝀,𝝀∗∼N(𝝀,𝝀∗ |0,𝛀)

[
𝜎 ′(𝜆 𝑗 )𝜆∗𝑟𝜎 (𝜆𝑙 ′)

]
.

(C.6b)

Dene the vector 𝝀𝛼𝛽𝛾 ≡ (
𝜆𝛼 , 𝜆𝛽 , 𝜆𝛾

)> ∈ R3, where the upper indices on the components indicate they
may refer to student or teacher local elds. Consider the covariance matrix on the subspace spanned by
𝝀𝛼𝛽𝛾 :

𝛀
𝛼𝛽𝛾 ≡ E𝝀,𝝀∗∼N(𝝀,𝝀∗ |0,𝛀)

[
𝝀𝛼𝛽𝛾

(
𝝀𝛼𝛽𝛾

)>]
∈ R3×3 . (C.7)

For 𝜎 (𝑥) = erf(𝑥/√2) the expectations in Eqs. (C.6) are given by [5]

E𝝀,𝝀∗∼N(𝝀,𝝀∗ |0,𝛀)
[
𝜎 ′(𝜆𝛼 )𝜆𝛽𝜎 (𝜆𝛾 )

]
=

2
𝜋

Ω
𝛼𝛽𝛾

23

(
1 + Ω

𝛼𝛽𝛾

11

)
− Ω

𝛼𝛽𝛾

12 Ω
𝛼𝛽𝛾

13(
1 + Ω

𝛼𝛽𝛾

11

) √︂(
1 + Ω

𝛼𝛽𝛾

11

) (
1 + Ω

𝛼𝛽𝛾

33

)
−

(
Ω
𝛼𝛽𝛾

13

)2
, (C.8)
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where Ω
𝛼𝛽𝛾

𝑗𝑙
≡ (𝛀𝛼𝛽𝛾 ) 𝑗𝑙 is an element of the covariance matrix given by Eq. (C.7). As examples, we write

explicitly:

𝛀
𝑗𝑙𝑟 ′ =


𝑞 𝑗 𝑗 𝑞 𝑗𝑙 𝑚 𝑗𝑟 ′

𝑞 𝑗𝑙 𝑞𝑙𝑙 𝑚𝑙𝑟 ′

𝑚 𝑗𝑟 ′ 𝑚𝑙𝑟 ′ 𝜌𝑟 ′𝑟 ′

 , 𝛀
𝑗𝑟𝑟 ′ =


𝑞 𝑗 𝑗 𝑚 𝑗𝑟 𝑚 𝑗𝑟 ′

𝑚 𝑗𝑟 𝜌𝑟𝑟 𝜌𝑟𝑟 ′
𝑚 𝑗𝑟 ′ 𝜌𝑟𝑟 ′ 𝜌𝑟 ′𝑟 ′

 . (C.9)

The quadratic contribution in E𝑗 is given by

E𝝀,𝝀∗∼N(𝝀,𝝀∗ |0,𝛀) E𝜁∼P(𝜁 )
[
E𝑗 E𝑙

]
=

1
𝑘2

𝑘∑︁
𝑟,𝑟 ′=1

E𝝀,𝝀∗∼N(𝝀,𝝀∗ |0,𝛀)
[
𝜎 ′(𝜆 𝑗 )𝜎 ′(𝜆𝑙 )𝜎 (𝜆∗𝑟 )𝜎 (𝜆∗𝑟 ′)

]
+ 1
𝑝2

𝑝∑︁
𝑗 ′,𝑙 ′=1

E𝝀,𝝀∗∼N(𝝀,𝝀∗ |0,𝛀)
[
𝜎 ′(𝜆 𝑗 )𝜎 ′(𝜆𝑙 )𝜎 (𝜆 𝑗 ′)𝜎 (𝜆𝑙 ′)

]
− 2
𝑝𝑘

𝑝∑︁
𝑙 ′=1

𝑘∑︁
𝑟=1
E𝝀,𝝀∗∼N(𝝀,𝝀∗ |0,𝛀)

[
𝜎 ′(𝜆 𝑗 )𝜎 ′(𝜆𝑙 )𝜎 (𝜆∗𝑟 )𝜎 (𝜆𝑙 ′)

]
+ ΔE𝝀,𝝀∗∼N(𝝀,𝝀∗ |0,𝛀)

[
𝜎 ′(𝜆 𝑗 )𝜎 ′(𝜆𝑙 )

]
(C.10)

The solution of the noise-dependent term can be constructed with the covariance matrix (C.3) and is
given by [6]

E𝝀,𝝀∗∼N(𝝀,𝝀∗ |0,𝛀)
[
𝜎 ′(𝜆𝛼 )𝜎 ′(𝜆𝛽 )

]
=

2
𝜋

1√︂
1 + Ω

𝛼𝛽

11 + Ω
𝛼𝛽

22 + Ω
𝛼𝛽

11 Ω
𝛼𝛽

22 −
(
Ω
𝛼𝛽

12

)2
(C.11)

Similarly, one can dene the vector 𝝀𝛼𝛽𝛾𝛿 ≡ (
𝜆𝛼 , 𝜆𝛽 , 𝜆𝛾 , 𝜆𝛿

)> ∈ R4 and write the covariance matrix on
the subspace spanned by 𝝀𝛼𝛽𝛾𝛿 :

𝛀
𝛼𝛽𝛾𝛿 ≡ E𝝀,𝝀∗∼N(𝝀,𝝀∗ |0,𝛀)

[
𝝀𝛼𝛽𝛾𝛿

(
𝝀𝛼𝛽𝛾𝛿

)>]
∈ R4×4 . (C.12)

For 𝜎 (𝑥) = erf(𝑥/√2) the expectations in Eqs. (C.10) are given by [5]

E𝝀,𝝀∗∼N(𝝀,𝝀∗ |0,𝛀)
[
𝜎 ′(𝜆𝛼 )𝜎 ′(𝜆𝛽 )𝜎 (𝜆𝛾 )𝜎 (𝜆𝛿 )

]
=

4
𝜋2

1√︃
Ω̄
𝛼𝛽𝛾𝛿

0

arcsin
©«

Ω̄
𝛼𝛽𝛾𝛿

1√︃
Ω̄
𝛼𝛽𝛾𝛿

2 Ω̄
𝛼𝛽𝛾𝛿

3

ª®®¬ , (C.13)

with
Ω̄
𝛼𝛽𝛾𝛿

0 ≡
(
1 + Ω

𝛼𝛽𝛾𝛿

11

) (
1 + Ω

𝛼𝛽𝛾𝛿

22

)
−

(
Ω
𝛼𝛽𝛾𝛿

12

)2
, (C.14a)

Ω̄
𝛼𝛽𝛾𝛿

1 ≡Ω̄𝛼𝛽𝛾𝛿

0 Ω
𝛼𝛽𝛾𝛿

34 − Ω
𝛼𝛽𝛾𝛿

23 Ω
𝛼𝛽𝛾𝛿

24

(
1 + Ω

𝛼𝛽𝛾𝛿

11

)
− Ω

𝛼𝛽𝛾𝛿

13 Ω
𝛼𝛽𝛾𝛿

14

(
1 + Ω

𝛼𝛽𝛾𝛿

22

)
+ Ω

𝛼𝛽𝛾𝛿

12 Ω
𝛼𝛽𝛾𝛿

13 Ω
𝛼𝛽𝛾𝛿

24 + Ω
𝛼𝛽𝛾𝛿

12 Ω
𝛼𝛽𝛾𝛿

14 Ω
𝛼𝛽𝛾𝛿

23 ,
(C.14b)

Ω̄
𝛼𝛽𝛾𝛿

2 ≡Ω̄𝛼𝛽𝛾𝛿

0

(
1 + Ω

𝛼𝛽𝛾𝛿

44

)
−

(
Ω
𝛼𝛽𝛾𝛿

24

)2 (
1 + Ω

𝛼𝛽𝛾𝛿

11

)
−

(
Ω
𝛼𝛽𝛾𝛿

13

)2 (
1 + Ω

𝛼𝛽𝛾𝛿

22

)
+ 2Ω𝛼𝛽𝛾𝛿

12 Ω
𝛼𝛽𝛾𝛿

13 Ω
𝛼𝛽𝛾𝛿

23 , .
(C.14c)

Ω̄
𝛼𝛽𝛾𝛿

3 ≡Ω̄𝛼𝛽𝛾𝛿

0

(
1 + Ω

𝛼𝛽𝛾𝛿

44

)
−

(
Ω
𝛼𝛽𝛾𝛿

24

)2 (
1 + Ω

𝛼𝛽𝛾𝛿

11

)
−

(
Ω
𝛼𝛽𝛾𝛿

14

)2 (
1 + Ω

𝛼𝛽𝛾𝛿

22

)
+ 2Ω𝛼𝛽𝛾𝛿

12 Ω
𝛼𝛽𝛾𝛿

14 Ω
𝛼𝛽𝛾𝛿

24 .
(C.14d)
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C.3 From gradient ow to local elds
Consider the gradient ow approximation

𝑑𝒘 𝑗

𝑑𝑡
= −∇𝒘 𝑗

R(𝑾 ,𝑾∗)

= − 1
𝑝
√
𝑑
E𝒙∼N(𝒙 |0,1)

[
𝒙𝜎 ′(𝜆 𝑗 ) E

]
.

Now, since for any 𝒙>𝒚, we have

𝑑 (𝒙>𝒚)
𝑑𝑡

= 𝒙>𝑑𝒚
𝑑𝑡

+𝒚>𝑑𝒙
𝑑𝑡

,

we nd
𝑑𝑞 𝑗𝑙

𝑑𝑡
= − 1

𝑝𝑑
E𝒙∼N(𝒙 |0,1)

[ (
𝜎 ′(𝜆 𝑗 )𝜆𝑙 + 𝜎 ′(𝜆𝑙 )𝜆 𝑗

)
E
]
.

Recalling the denition E𝑗 = 𝜎 ′(𝜆 𝑗 ) E, the terms present inside the expectation are exactly those in the
learning term of Eq.(14).

D Initial conditions and symmetric teacher

In this work we have constructed teacher matrices 𝑾∗ ∈ R𝑘×𝑑 in order to have

𝜌𝑟𝑠 =
𝒘∗>
𝑟 𝒘∗

𝑠

𝑑
= 𝛿𝑟𝑠 , (D.1)

where 𝒘∗
𝑟 ≡ [𝑾∗]𝑟 ∈ R𝑑 is the 𝑟 -th row of the matrix 𝑾∗. We have started by sampling 𝑘 vectors of

dimension 𝑑 uniformly on a ball of radius
√
𝑑 . Then we constructed an orthonormal basis using singular

value decomposition.
The initial student weights 𝑾 0 ∈ R𝑝×𝑑 were taken as

𝑾 0 = 𝑨𝑾∗ , (D.2)

with each row of 𝑨 ∈ R𝑝×𝑘 sampled uniformly on a ball of radius one. We acknowledge choosing initial
student weights as linear combinations of the teacher can be articial and shrinks the rst plateau, but our
focus on this work was the specialization phase. Nevertheless, this choice and Eq. (D.1) are particularly
suitable to theoretical analysis. Once 𝑘 and 𝑝 are xed, the dimension 𝑑 can be varied without changing
𝑸0, 𝑴0 and 𝑷 , thereby removing any inuence of dierent initial conditions for dierent 𝑑 and providing
the reader better visualization on the learning curves. To clarify this point, consider the 𝑗-th row 𝒘0

𝑗 ≡
[𝑾 0] 𝑗 ∈ R𝑑 of 𝑾 0:

𝒘0
𝑗 =

𝑘∑︁
𝑟=1

𝑎 𝑗𝑟𝒘
∗
𝑟 , (D.3)

with 𝑎 𝑗𝑟 ≡ [𝑨] 𝑗𝑟 . Using Eq. (D.1) one can write

𝑞0
𝑗𝑙
=
𝒘0>

𝑗 𝒘0
𝑙

𝑑
=

𝑘∑︁
𝑟,𝑟 ′=1

𝑎 𝑗𝑟𝑎 𝑗𝑟 ′
𝒘∗>
𝑟 𝒘∗

𝑟 ′

𝑑︸  ︷︷  ︸
=𝛿𝑟𝑟 ′

=
𝑘∑︁
𝑟=1

𝑎 𝑗𝑟𝑎𝑙𝑟 . (D.4)
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Similarly,

𝑚0
𝑗𝑟 =

𝒘0>
𝑗 𝒘∗

𝑟

𝑑
= 𝑎 𝑗𝑟 . (D.5)

Thus once 𝑨 is xed, the input dimension 𝑑 can be varied without aecting the initial conditions. We chose
to sample 𝒂 𝑗 ≡ [𝑨] 𝑗 ∈ R𝑘 on a ball of radius one both to introduce some randomness on the initialization
and to keep the initial parameters bounded by one.

We stress that we use these initial conditions to make the data comparable for varying dimension 𝑑 in
the numerical illustrations. Our conclusions do not depend on this particular choice of initial conditions.
If one simply takes random initialization𝒘 𝑗 ∼ N(𝒘 𝑗 |0,1) for each 𝑗 , the full picture we have presented in
this manuscript remains unchanged. In Figure 7 we present an example of curves within the blue region
(see Section 3 for the characterization of this regime) with unconstrained Gaussian initialization. Dots
represent simulations, while solid lines are obtained by integration of the ODEs given by Eqs. (23), with
initial conditions adjusted to match simulations.

Although varying the initial population risk with 𝑑 slightly changes the exact position where the spe-
cialization transition starts, the particular initial conditions adopted in this work do not aect whether the
specialization transition takes place or not, comparing to unconstrained Gaussian initialization.

100 101 102 103 104

C = a
3

10−4

10−3

10−2

10−1

R

3 = 30
3 = 100
3 = 300
3 = 1000

Figure 7: Population risk dynamics for 𝜅 = 𝛿 = 0 (Saad & Solla scaling) : 𝑝0 = 8, 𝑘 = 4, 𝜌𝑟𝑠 = 𝛿𝑟𝑠 . Initialization:
𝒘 𝑗 ∼ N(𝒘 𝑗 |0,1) for 𝑗 = 1, ..., 𝑝0. Activation function: 𝜎 (𝑥) = erf(𝑥/√2). Data distribution: P(𝒙) = N(𝒙 |0,1).
Dots represent simulations, while solid lines are obtained by integration of the ODEs given by Eqs. (23), with initial
conditions adjusted to match simulations. Observe the dierence on the initialization for dierent 𝑑 .
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