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Abstract
Fuzzy sets naturally model elastic constraints. Fuzzy
constraints satisfaction problem (FCSP) enable the
introduction of different kinds of flexibility. Levels of
priority can be attached to constraints, and satisfaction
levels can be fuzzily thresholded.  Fuzzy constraints are
aggregated by min operation into a fuzzy set
membership function to be maximized (discrimin and
leximin refinements of the min ordering can be also
used in this maximization). This representation
framework, originally expressed in terms of membership
functions, is equivalently translated into a set of
prioritized crisp constraints, in this paper. We take
advantage of this representation for modelling
aggregations different from min, expressing either
reinforcement and compensation. This offers a logical
understanding of fuzzy constraints.  In relation to this
new representation scheme, computational aspects are
briefly exemplified and discussed.

1. Introduction

Fuzzy constraint satisfaction problems (FCSP) are an
extension of constraint satisfaction problems (CSP),
where elastic constraints can replace crisp ones [1]. In a
FCSP a constraint is satisfied to a degree (rather than
satisfied or not satisfied), and the acceptability of a
potential solution to an aggregated set of fuzzy
constraints becomes a gradual notion. Another way of
providing flexibility, is by attaching priority levels to
constraints, or by introducing fuzzy thresholds.
Constraints may be also conditioned. These different
ways of relaxing crisp CSPs have been proposed and
investigated by different authors [23][4][7][8]. FCSPs
are naturally encountered in different areas such as
structural design [18], or scheduling [16] for instance.

Solving a FCSP amounts to find an instantiation for
its variables that maximizes the satisfaction level of the
least satisfied constraint, since the constraints are
aggregated by the min operator. Due to the idempotence
of the min operation, most CSP computation
techniques easily extend to the fuzzy setting [16][8].
Since min-optimal solutions to a FCSP may be
numerous, two refinements of the ranking of solutions
have been proposed, namely the discrimin and leximin
orderings [9][10]. These refinements do not only take
into account the least satisfied constraint but also
compare the other satisfaction levels.

It is well known that a fuzzy set can be viewed as a
weighted collection of crisp sets corresponding to its !-
level cut. This has been extensively used in fuzzy

numbers computation and in fuzzy programming. When
a finite set of satisfaction degrees is used, which is often
sufficient in FCSPs, this provides a convenient, finite
representation of a fuzzy set as a nested collection of
crisp sets. One step further is to turn the !-level cuts
into weighted  logical proposition. Namely, in the
framework of possibilistic logic [13], it has been shown
that a fuzzy set over a set of interpretations can
faithfully represent a set of classical propositions,
weighted in terms of necessity degrees. This idea applies
both to fuzzy sets which represent uncertain pieces of
information (as in reasoning under uncertainty) and to
fuzzy sets encoding preference profiles (as in fuzzy
optimization). Following this view, this paper
systematically investigates the expression of FCSPs in
terms of collections of crisp constraints weighted in
terms of priority.

This logical interpretation of FCSPs has several
benefits. Apart from the fact it should contribute to a
better understanding of FCSP issues, it corresponds to
an expression mode (classical constraints + priority
levels) which is also natural for the user. The logical
setting also enable us to represent fuzzy constraints
aggregated by operations other than min. Thus logical
handling of constraints can be also useful for
communicating with the user and for providing him
with explanations about of the quality of the solution
found. This point will not be further discussed in this
paper. Lastly, the logical view may help to design
algorithms for solving FCSPs, especially when looking
for discrimin or leximin optimal solutions.

The rest of the paper is organized into three parts.
Section 2 gives the background on FCSPs. Section 3
provides the logical counterpart of the FCSP model, and
Section 4 briefly discusses computational issues.

2. Background on FCSPs

A FCSP is defined by a set of decision variables X  =
{X1, …, XN}, a set of domains D = {D1, …, DN} where
Di is the finite domain of X i, and a set of fuzzy
constraints C  = {C1, …, CK} where Ck is a fuzzy set
defined over the Cartesian product of the domains of the
variables related by Ck. Therefore, a membership value
is associated to each tuple of values of the variables
related by Ck. The membership degrees express
preferences among solutions by ranking the
instantiations which are more or less acceptable for the
satisfaction of the flexible constraint Ck.

In the following, we consider fuzzy sets defined by a
finite linearly ordered valuation set. For instance, the



following sets {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8,
0.9, 1}, or {0, 0.2 0.5 0.8 1} can be used as a
qualitative valuation set. If only the ordering between
grades is meaningful, fuzzy set intersection, union and
complementation can be only defined by min, max and
the order-reversing operation of the valuation set. The
valuation set is denoted L  = {!0 = 0, !1, …, !L = 1},
with L + 1 elements, where 0 and 1 denote the bottom
and top elements respectively; the order-reversing is still
denoted by 1 - (·). Finite scales go well with finite
domains; however a finite scale still provides a
reasonable approximation for continuous domains, when
dealing with finite sets of constraints.

A solution to a FCSP is denoted by x and is a vector
of values in D1 x … x DN. The level of satisfaction of
the constraints by x is denoted by sat(x) and is defined,
as proposed by Bellman and Zadeh [1]:

sat(x) = mink µCk
(x),

where µCk
(x) is short for µCk

(x"V(Ck)) where x"V(Ck) is the
restriction of x to the values of the variables of the
constraint Ck. The satisfaction degree of a solution is
therefore the satisfaction of the least satisfied constraint.
An optimal solution, so called "min optimal", is x*
such that sat(x*) = maxx mink µCk

(x).

The satisfaction level of a min optimal solution of a
FCSP P is said to be the consistency degree of P and is
denoted by Cons(P). It is important to remark that the
aggregation of the satisfaction levels of the constraints
by min presupposes that the degrees of satisfaction of
the different constraints commensurate.

2.1. Representation enhancements

In this framework prioritized constraints can be also
modelled. Solutions that satisfy all constraints are
preferred if any. In case of a completely inconsistent
problem P (Cons (P) = 0), less prioritary constraints
have to be dropped, and the chosen solution satisfies
only constraints with higher priorities.

We use a finite linearly ordered scale for assessing
priorities, where a priority equal to 1 means that the
constraint is imperative, while a priority equal to 0
means that it is completely allowed to violate the
constraint, and intermediate levels estimate to what
extent the constraint is imperative. A pair (C, #) where
C is a crisp constraint and # a priority level can be
represented by a fuzzy constraint C’ [8] such that:

µC’ (x) = 1 if x satisfies C
= 1 - # if x violates C.

Thus, constraint C is considered as satisfied at least
to degree 1 - # whatever the considered solution, whether
it satisfies C or not. This way of modelling priority
presupposes a connection between levels of constraint
satisfaction and levels of constraint priority, which is
established by the order-reversing operation 1 - (·). From
a possibility theory point of view, # is a necessity
degree and 1 - # a possibility degree [15].

A priority # can also be attached  to a fuzzy
constraint C; it is modelled by the fuzzy set C’

µC ’ (x) = max (1 - #, µC(x)). (1)

In practice, it may be useful to add a safeguard
constraint C* (with priority 1) in case some solutions
among the ones which violates C are really
unacceptable, thus changing (1) into

µC ’ (x) = min (µC*(x), max(1 - #, µC(x))). (2)

Another type of relaxation of a fuzzy constraint is
based on the use of a threshold [10]. The idea is that a
constraint C will be regarded, after relaxation, as fully
satisfied by x if its level of satisfaction by x  reaches at
least a threshold $. It express a discouting. It amounts
to replace C by the fuzzy set C’ defined by:

µC ’ (x) = $ % µC(x), (3)

where a % b is Gödel implication (a % b = 1 if a & b, a
% b = b if a > b). Note that if $ is not reached by x ,
the actual level which is reached is kept, µC ’ (x) =
µC(x).

Obviously, it is possible to have a fuzzy constraint
C with priority # and threshold $, together with a
safeguard constraint C*. It is represented by (see Fig. 1)

µC ’ (x) = min (µC*(x), max (1 - #, $ % µC(x))). (4)

Interestingly enough, the min-aggregation of prioritized
and thresholded constraints is also encountered in the
expression of extended division operation in fuzzy
relational databases [14].

saf eguard
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0
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Figure 1. Thresholded prioritized constraint
with safeguard

Conditional constraints can also be modelled in this
framework. Such a constraint applies only if another
one is satisfied. Let Ci / Ck denote the constraint Ci

conditioned by a constraint Ck. This should be
interpreted as follows. Ci is imperative if Ck is satisfied
and Ci can be discarded otherwise. Formally, we have:

µ Ci / Ck (x) = max (µCi
(x), 1 - µCk

(x)). (5)

When Ck is crisp, it expresses that Ci has priority 1 (in
the sense of (2)) when Ck is satisfied, and 0 otherwise.
Indeed if Ck is not satisfied, µCi /Ck

(x) = 0, which means
that constraint Ci is ignored. In general, when Ck is
a fuzzy constraint, µCk

(x) can be considered as the
priority level of Ci, which thus depends on the
considered instantiation x.

2.2 Refinements of min ordering



To solve a FCSP, we search for an instantiation that
maximizes the satisfaction level of the least satisfied
constraint. This approach does not compare the
satisfaction levels of the other constraints, and therefore,
min optimal solutions cannot be discriminated.

There exist two main refinements for the min
ordering: the discrimin, and the leximin orderings
[9][10]. With the discrimin ordering we look for the
lowest satisfied constraint among the constraints that are
not equally satisfied. Namely, let '(x, y) be the subset
of constraints that are not equally satisfied by x  and y ,
i.e., the Ck’s such that µCk

(x) ( µCk
(y). Formally the

discrimin is a partial ordering defined by:

x>discy )  minCk*  '(x, y) 
 µCk

(x) > minCk*  '(x, y) 
 µCk

(y)

Consider x the fuzzy set of constraints satisfied by
x which associates to each constraint Ck its satisfaction
level µCk

(x). The !-cut of x is the set of constraints
that are satisfied at least at level ! , and is denoted by
( x)! = {Ck * C | µCk

(x) + !}. The discrimin ordering
can be interpreted in terms of inclusion of !-cuts. It
consists in comparing the !-cuts of x and of y, from
the lowest level to the greatest one, until reaching a
level ! such that ( x)! ( ( y)!. At this level if a strict
inclusion ( x)! , ( y)! holds, then x  >disc y .
Otherwise, the solutions are incomparable.

The leximin ordering (e.g., [9]) is a refinement of
min and discrimin orders. Consider the sx as an
increasingly arranged vector of the satisfaction degrees in
x, sx = (s[i], …, s[k]), i.e., is such that s[i] & s[i+1] where

s[i] = µC[i]
(x) (where the constraints have been

renumbered). Then, the leximin ordering is defined by:

x >leximin y )  -i  . j < i sx[j]
 = sy[j]

 and sx[i]
 > sy[i]

.

This corresponds to a lexicographic comparison of the
vectors sx and sy [9].

A solution x  is preferred to a solution y , in a
leximin order, if there is a threshold !  such that for all
/ < !, the number of constraints satisfied by x  at level
at least / is equal to the number of constraints satisfied
by y, and x satisfies more constraints than y at level !.

3. Logical representation of FCSPs

3.1 Logical expression of fuzzy constraints

We are now going to turn the definitions of the
preceding section into logical terms, by replacing the
fuzzy sets by sets of prioritized crisp constraints. Using
the scale L = {!0 = 0, !1, …, !L = 1}, let Cj = (C)!j+1
denote the !-cut of a constraint C at level !j+1 for j = 0
to L - 1. The priority attached to Cj is 1 - ! j. C0, the
support of C , is the crisp constraint with the highest
level of priority, say 1 = 1 - !0; CL-1, the core of C , is
the crisp constraint with the lowest level of strictly
positive priority, 1 - !L-1. Figure 2 shows an example
of a fuzzy constraint and its representation in terms of
crisp constraints with attached priorities. We can write:

µC ’ (x) = minj max (!j, µCj
(x)), (6)

where µCj
(x) = 1 if x  * Cj, and 0 otherwise. In other

words, the fuzzy constraint C is translated into the set of
pairs (Cj, 1 - ! j) which can be viewed as a set of
possibilistic logic formulas [13], where we use the same
notation (Cj) for a proposition and its set of models.

If a priority level # is attached to the fuzzy constraint
C the corresponding fuzzy constraint C’ is defined by:

µC ’ (x) = max(1 - #, minj max(!j, µCj
(x)))

= minj max(1 - min(#, 1 - !j), µCj
(x)).

Let j# such that 1 - # = ! j#, and remind that
µCj

(x) + µCi+1
(x) and that ! j < ! j+1. Then the previous

equation can be rewritten as:

µC ’ (x) = minj = j#, L-1 max (!j, µCj
(x)). (7)

Therefore, attaching the priority # to C , means that,
in terms of prioritized constraints Ci, we should consider
only the constraints Cj with priorities lower or equal to
#, i.e., such that 1 - !j & #, or equivalently j + j#. This
can be observed on the example of Figure 2, for # = 0.6
(j# = 2), where the constraints eliminated by this
relaxation (C0 and C1), are in a doted area.

1 - !0 = 1.0

!1 = 0.2

!2 = 0.4

!3 = 0.6

!4 = 0.8

!5 = 1.0

C4

C1

C2

C3

!0 = 0.0

1 - !2 = 0.6

1 - !3 = 0.4
1 - !4 = 0.2

#  = 0.6

$ = 0.8

C

1 - !1 = 0.8

C2

C0

!1 = 0.2

!2 = 0.4

!3 = 0.6

!4 = 0.8

!5 = 1.0

!0 = 0.0

$ % (C, #) 

1 - !3 = 0.4

1 - !2 = 0.6

C3

$ = 0.8
# = 0.6

Figure 2. Fuzzy constraint as a set of
constraints with priority

In case of a threshold $, the fuzzy constraint C is
relaxed into the fuzzy constraint C’ = $ % C by:

µC ’ (x) = $ % minj max (!j, µCj
(x)),

which can be rewritten as:

µC ’ (x) = minj = 0, j$-1 max (!j, µCj
(x)), (8)



where j$ is such that ! j$ = $. This means that we
should retain only the crisp constraints Ci, with

priorities higher than 1 - $. For $ = 0.8 (j$ = 4) in
Figure 2, the discarded constraint (C4) is in the other
doted area. Thus, applying threshold $ to the formula C
amounts to replacing C by the set of prioritized logical
formulas (Cj, !j) for j = 0 to j$ -1.

Introducing a safeguard constraint C* is simply
adding C* with a priority 1, i.e., the logical formula
(C*, 1).

Conditioning a fuzzy constraint Ci by a crisp
constraint Ck is modelled by a fuzzy set, as defined by
equation (5), which can be written in terms of a set of
prioritized constraints:

µ Ci /Ck (x) = minj max (µCij
(x), 1 - µCk

(x), !j). (9)

This corresponds to the possibilistic logic formulas (Cij,
min (1 - !j, µCk

(x))), which means that Cij has priority
1 - ! j only for instantiations satisfying Ck. Thus, the
operation is achieved by conditioning each constraint Cij

by Ck. Thus, conditioning Ci by Ck amounts to replace
Ci by the set of prioritized logic formulas (¬Ck 0 Cij, 1
- ! j); see [13]. When Ck is itself a fuzzy constraint,
which is equivalent to the set of prioritized formulas
(Ckl, 1 - !kl), we obtain a set of formulas of the form:

(Cij, min (1 - !ij, minl max (!kl, µCkl
 (x)))).

This can be shown to be equivalent to the set of
formulas: (¬Ckl 0 Cij, min(1 - !ij, !kl)).

We have shown the equivalence between a fuzzy
constraint, which may be prioritized, thresholded or
conditioned, with a knowledge base made of
possibilistic logic formulas. In particular, #- and $-
relaxation’s amount to discard the highest(s) or the
lowest(s) priority constraints respectively.

3.2 Symbolic aggregation of fuzzy constraints

The aggregation of two fuzzy constraints C1 and C2
defined by µC(x) = min (µC1

(x), µC2
(x)), can be easily

interpreted in the prioritized constraints framework.
Applying (6) to µC1

(x) and µC2
(x), the min aggregation

can be written as follows:

µC(x) = minj = 0, L-1 max (!j, min (µC1j
(x), µC2j

(x))).

This expresses that the min aggregation corresponds to
the union of the two sets of possibilistic logic formulas
(C1j, 1-!j) and (C2j, 1-!j). This is a particular case of
the syntactic fusion of possibilistic pieces of
information [3].

The min aggregation of prioritized constraints can
model hierarchically organized sets of constraints, that
have the form: C1 should be satisfied (its priority is 1),
and among the solutions of C1 (if any) the ones
satisfying C2 are preferred (the priority of C2 is 1 - !2),
and among those satisfying C1 and C2, those satisfying
C3 are preferred (the priority of C3 is 1 - !3 with

1 - !2 > 1 - !3), where C1, C2 and C3 are crisp
constraints. It should be understood that satisfying C2 if
C1 is not satisfied, is of no interest. Therefore if all the
three constraints are satisfied then the satisfaction level
is 1; if only C1 and C2 are satisfied then the satisfaction
level is !3; if C1 is satisfied but not C2 (whatever C3)
then the satisfaction level is !2; otherwise the
satisfaction level is 0. This can be easily expressed by
the three prioritized crisp constraints (C1, 1), (¬C1 0 C2,
1 - !2) and (¬C1 0 ¬C2 0 C3, 1 - !3).

Aggregation operations other than min can be also
accommodated. Indeed reinforcement and compensation
operators, such as the product and the average
respectively, can also be interpreted in terms of
operations on prioritized constraints. Let (A, !) and (B,
/) be two crisp constraints with priorities ! and / and 
an increasing aggregation operator. The aggregation  
(A, !)  (B, /) is the fuzzy constraint defined by

µ(A, !)  (B, /)(x) = µ(A, !) (x)  µ  (B, /) (x), (10)

which can be easily interpreted in terms of prioritized
constraints.

(A, !)

1 - /

1 - !

(B, /)

x

1  (1 - /)

1  (1 - ! )

(1 - !)  (1 - /)

x

(A  B)

Figure 3. Aggregation (A , !)  (B , / )

As it can be checked  in Figure 3, the aggregation
(A, !)  (B, /) is equivalent to the (min) conjunction
of the prioritized constraints (A, 1 - (1  (1 - !))), (B, 1
- (1  (1 - /))), (A 1 B, 1 - (1 - !)  (1 - /)). This
symbolic combination of prioritized constraints, (A, !)
and (B, /), comes from the method for fusing pieces of
uncertain evidence recently proposed in [3]. Note that
the combination amounts to adding the constraint
A 1 B to a level of priority higher than the ones of A
and B. Indeed, provided that  is an increasing
operation, we have , 1- ((1 - !)  (1 - /)) greater  or
equal  to 1 - (1  (1 - !)) and 1 - (1  (1 - /)).

This can be generalized to fuzzy constraints A  and B.
Using equation (6), we rewrite the fuzzy constraints    
A 2 3 i (Ai, 1 - !i) and B 2 3k (Bk, 1 - /k), where  the
highest priorities are 1 - !0 and 1 - /0 respectively. Then
the repeated use of (10) shows that A   B is equivalent
to the conjunction of the following sets of prioritized
constraints: {(Ai 1 Bk, 1 - (! i  /k))  for all (i, k)},



{(Ai, 1 - (1  !i)) for all i} and  {(Bk, 1 - (1  /k))  for
all k}. It should be emphasize that the translation of
aggregation  into a possibilistic prepositional logic
base is done at the expense of introduction of new levels
in the scale. Indeed  is not closed on L generally.

Consider an example with three constraints A , B and
C where A  and B are fuzzy constraints and (C, #) is a
weighted crisp constraint. Constraint A  is supposed to
be thresholded. Moreover (C, #) and B are supposed to
be aggregated by a compensatory operation, here the
arithmetic mean (s  t = (s + t)/2). This can be formally
written as the problem P: ($ % A) 3 ((C, #)  B)
where 3 stands for the min aggregation. In the example
we use the satisfaction scale {!0, !1, !2, !3, !4, !5} =
{0, 0.2, 0.4, 0.6, 0.8, 1} for A  and B and we take $ =
0.8, # = 0.6. The problem P is translated into P’ which
is presented  in a stratified way in the next table.
Remenber Aj = A!j+1

 , e.g., A1 = A!2
, i.e., the 0.4-cut.

Priority. Constraints
1.0 A0
0.8 A1 B0 1 C
0.7 B1 1 C
0.6 A2 B2 1 C
0.5 B0 B3 1 C
0.4 A3 B1 B4 1 C
0.3 B2 C
0.2 B3
0.1 B4

More generally, let P = {C1, …, CK} be a set of
fuzzy constraints (with priorities, thresholds, and
specified aggregations). Thus it translates into a (larger)
set of crisp constraints P' = {C'1, … C'M} with new
computed priorities. However as it can be seen in the
above example, P’ may include redundancies which can
be easily detected from the symbolic writing. In our
example {A3, B1, B4 1 C} is simplified into {A3, B4 1
C} (B1 4 B4). Indeed (C’, 5’) is redundant  w. r. t. (C,
5) iff C’4 C and 5’ & 5 , and we have the !-cut
property (C)! 4 (C)!’ and !’ + ! . Thus problem P’ in
the above example reduces to the table below which
exhibits the problem relaxation space [17].

Satisfaction Priority Problem relaxation
0.2 1 {A0}
0.3 0.8 {A1,B0}
0.4 0.7 {A1,B1} {A1,C}
0.5 0.6 {A2,B2} {A2,C}
0.6 0.5 {A2,B3} {A2,B0, C}
0.7 0.4 {A3,B4} {A1,B1, C}
0.8 0.3 {A3,B2, C }
0.9 0.2 {A3,B3, C }
1 0.1 {A3,B4, C }

It can be checked that the discrimin ordering between
solutions of P (maximization of the aggregated fuzzy
sets Ci) is equivalent to the discrimin ordering between
solutions of the translated problem P’, in terms of
weighted crisp constraints. The same holds for the
leximin. When P’ is such that all its crisp constraints
have different priorities, then the discrimin and the

leximin orderings became the same. In this situation a
discrimin optimal solution is also a leximin optimal.

4. Computational issues

It is well known that CSP problems are NP-
complete [21]. The main tools for solving CSPs are
basically backtracking-based search algorithms and
constraint propagation techniques [21]. Finding a min-
optimal solution is NP-hard, and can be done using a
branch and bound-based algorithm [17][19]. The min
produces a good upper bound estimation of the global
satisfaction level which enables an efficient pruning of
useless branches.

The use of the min operator allows for a direct
generalization of the constraint propagation algorithms
used in the classical CSP framework (for example the
AC3 by Mackworth [21]. The levels of satisfaction are
propagated by extensions of existing algorithms (see for
example [8][16]). This is essentially due to the
idempotence of min operator. Min-optimal solutions for
FCSP can be obtained by solving a logarithmic number
of CSP’s [6].

Finding a discrimin or leximin optimal solution for a
FCSP is much more complex than finding a min-
optimal solution. Dubois and Fortemps [11] discuss
how to compute discrimin-optimal and leximin-optimal
solutions for special classes of FCSPs and present
algorithms for some specific problems such as, for
instance, shortest path problems with flexible
constraints, and flexible assignment problems. The
underlying idea is to find a min-optimal solution and
then by saturating the least satisfied constraint(s) then to
generate a new sub-problem, whose min-optimal
solutions are better (in the sense of discrimin or
leximin) than the first solution found. This process is
repeated until no more sub-problems can be generated
and a leximin or discrimin optimal solution is reached.
However, for a general FCSP the generation of the sub-
problems involves a NP-complete step.

It is also possible to encode a leximin FCSP as an
additive CSP, turning leximin into an ordered  weighted
average aggregation as shown in [10] but, unfortunately,
it becomes a harder optimization problem.

The strong connection between FCSPs, prioritized
CSPs and logical inference in possibilistic knowledge
bases, suggest that we can translate, as explained in this
paper, a FCSP P into a stratified knowledge base K and
then find the set of discrimin optimal solutions using a
procedure proposed by Brewka [5]; see also [2] for a
presentation in a possibilistic logic framework. Let K0
be the subset of K containing the formulas of higher
priority, K1 be the subset of K containing the formulas
of second priority, say at level 1 - !1, and so on. Let

K 0
6  be a maximal consistent subset of K0. Then let

K 1
6  be the maximal consistent subset of formulas

formed by adding to K 0
6  as many formulas from K1 as

possible. Continue down to the lowest level of priority.
A consistent subset so obtained, KL-1

6, is called a
preferred sub-base by Brewka, and all its solutions are
discrimin optimal, and conversely. Problem relaxation



(see Section 3) provides us with a partial ordering for
organizing the consistency checks. Brewka's procedure
can also be used to check if a min-optimal solution
(eventually founded by a standard method) is a discrimin-
optimal solution.

Besides, one of the authors [22] has suggested the use
of non-enumerative optimization algorithms for
obtaining leximin optimal solutions or near-optimal
solutions. The use of hill-climbing based algorithms on
a min-FCSP faces the difficulty that the solutions are
distributed through only at most L satisfaction levels,
which can lead to many plateau’s for the function to be
optimized. In leximin-FCSPs, since the number of
leximin-levels is much higher than L, the corresponding
plateau’s will be in a much lower number. See [20] for
the use of such algorithms in the CSP framework.

5. Concluding remarks

We have shown in this paper the strong connection
between FCSPs and CSPs with priorities and therefore
with stratified knowledge bases (in the sense of
possibilistic logic). All the relaxations (prioritized,
thresholded constraints, and conditional constraints, etc)
on FCSPs have a clear counterpart in CSPs with
priorities and thus in stratified knowledge bases. The
same occurs for the refinements of min-optimization,
namely discrimin and leximin optimal solutions can be
redefined in this logical framework. Computational
issues are in a preliminary phase, and the research in
this area will deal, particulary, with the computation of
discrimin or leximin optimal solutions, or the complete
set of all these solutions.

Lastly, it would be of interest to consider FCSP
problems where explicit track is kept of the sources
which assign the constraints, and to introduce priorities
between the sources, taking advantage of the
possibilistic logic counterpart of this problem which
has been already studied [12].
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