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Abstract

This paper proposes (wo refinements of the
orderings induced by possibility and necessity
measures in finite settings. The first one is a
strict partial ordering that possesses all
properties of a comparative Ec_umw__:_z
(cancellation, autoduality, nmvnnwm:@_ It is
closely related to nonmonotonic reasoning and
naturally comes up as a model of subjective
uncertainty in a Savage-like framework mm._.
decision, where indifference between acts is
not transitive, and the preference ordering is
recovered from two weak orderings, on states
and consequences respectively. The second
possibilistic likelihood relation is Uzmﬁ.__ on a
lexicographic refinement of the maximum
operation, In some sense these relations on
events recover the additivity property of
probabilities, without using numbers,

1 Introduction

In fuzzy set theory, and in possibility theory, it
Is very common to compute the maximum or the
minimum of a function over a set, and then to
compare sets on such a basis. This method of
ordering for multiattribute items is coarse and
has been criticized on such grounds. For
instance, in fuzzy optimization after Bellman and
Zadeh [1], not all optimal solutions to a maximin
problem are interesting because some of them
fail to be Pareto-efficient. In order to cope with
this situation while keeping the aggregation by
the minimum, refinement of the minimum-based
(and maximum-based) orderings have been
introduced (Fargier et al.[14]; Dubois et al.,
[71), that preserve mm_,mﬁo-nmmﬂgow., Namely
letting V and W be vectors of evaluations with
components v; and Wi the following _.mH.m:om_m“
that refine the _.‘_.E,Qo ordering can be considered:
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— discrimin relation between vectors V and W,
defined as follows: o
- Wgige Viff _
amﬂ_m@ne_. W) cq.w > _Esu.mwﬁf__, Wy V]

where 2 (V, W) is the set {j, wj # vj} of
discriminating components.The relation >Jjyc is
a partial ordering;

—the so-called leximin ordering between vectors,
defined as follows:

W >y V iff
3k, wjp = vy for i < k and Wk] > V(K]

where wrj1Swpg<... Sw and v = v[2
S... S Yt WSV ifF niliber W o) Vi)
V > W holds, which means Erz = v[j] for all
L. It corresponds to a lexicographic or ering of
increasingly rearranged vectors. The relation
2] Is a complete preordering that refines the
discrimin relation. The leximin ordering is well-
known in the decision-theoretic literature [21]. It
has been found as the limit of other types of
multiple criteria rankings based on triangular
norms and ordered weighted averages (Dubois et
al. [6]). Similarly, n:m:me min E_E max {resp.
reversing the ordering of the w[i]'s) yields the
discrimax (resp. leximax) oannsmm. ) )
This paper exploits these kinds of relations,
origonally introduced in multicriteria o«.h._.Em.EoP
within possibility theory itself, for achieving a
finer-grained representation of qualitative
uncertainty. It enables possibility and necessity
orderings of events to be refined on the basis of
the only knowledge of the underlying possibility
distribution, and without necessarily resorting to
the use of numbers. These orderings are purely
ordinal, yet being as much discriminant as
comparative probability orderings (Fishburn

[15]) with which they share many properties.
These extended possibility’ orderings naturally
arise from considerations in qualitative decision
theory and in problems of inconsistency
management in rank-ordered knowledge bases,

2 Qualitative Possibility Theory

Let S be a finite set of elements called "states",
States encode possible situations, states of
affairs, etc. Let (25, 2| ) be a confidence relation
onevents A, B, C... We assume that

i) 21 is a complete preordering: 2 is transitive
and for any A, B, A 2 BorB 2 A; this is also
called a weak order [22].

ii) 21 is non-trivial (S 2 @, but not @ 21 8),
iii) 2| is faithful to deductive inference: A'C B
=A< B (inclusion-monotony)

A £t B means that an agent 's confidence in
event B is at least as high as in A and the above
property states that if A implies B, the agent
cannot trust B less than A. As usual, let us
define the indifference ~_ and the strict ordering
>1, induced from 21 by:

.PJ(F.WWQ,__.VMF.W PDQWMP}
A>L Biff A2 'B and not (B >; A).

The most common choice for 2p Qs a
comparative probability [15]:

me::mc_, I: 2; is a comparative probability
i

i) 2 is complete and transitive

)8 > @ (non-triviality),

iii) VA, A > @ (consistency)
V)IFAN(B'UC) =@ then:

B2 CoAUB2 AULC (additivity)

Any probability measure induces a comparative
probability ordering, but not conversely (see
[15]). Among the simplest types of other
comparative uncertainty relations are those
induced by possibility and necessity measures

[5]:

Definition 2: > is a possibility ordering iff

i) 27 is complete and transitive

i) S>q @,

i) VA A2q 0

)V A, B 2nC=AUB25AUC

B 25 C reads B is at least as possible (=
plausible) as C.

Definition 3: >, is a necessity ordering iff

i) 2 is complete and transitive

i) S>y @,

iii) VA, S 2y A

m<va20U>3wwz>DO

B 2y C reads B is at least as necessary (=
certain) as C,

Necessity orderings are also epistemic
entrenchments in the sense of Girdenfors [17]
(see Dubois and Prade [12]), and possibility
orderings have been introduced by Lewis [20],
then rediscovered by Dubois [5]. Possibility and
necessity orderings are dual in the sense that for
a given possibility ordering 2pq, the relation
defined by A 2y B iff B 27 A is a necessity
ordering, and converscly. A pair (2, 2y) such
that A 2\ B iff B 217 A is called a pair of dual
uncertainty relations (while comparative
probability in the sense of Definition 1 is
autodual). B 2y C is intuitively understood as
"B is at least as certain as C", in the sense that
arguments supporting B are at least as
compelling as the arguments supporting C. The
dual ordering B 217 C means that B is at least ag
plausible as C where plausibility refers to
consistency with an agent's knowledge: B is
plausible when it does not contradict the agent's
beliefs, Any necessity ordering on a finite set
can be represented by a necessity function on a
linearly ordered scale (L, >)

Proposition 1 [5]: There is a finite totally
ordered set L and a set-function N: 25— L such
that: B 2y C <= N(B) = N(C), where N(F)e L
and N(F N G) = min(N(F), N(G)) ¥ F and G,

L is isomorphic to the quotient set 25 / ~N When
~N is the indifference part of 2N- 0 € L denote
the bottom element of L (equivalence class of @)
and 1 € L denotes the top element of L
(equivalence class of S), and 1 > 0.

The same kind of property holds for possibility
orderings with respect to possibility functions:

Proposition 2 [5]: There is a finite totally
ordered set L and a set-function][: 25— L such
that: B 217 C & [1(B) > [1(C) where [IBye L
and [1(B U C) = max([](B), II(C)) ¥ B and C,

-A pair of dual necessity and possibility orderings

is simple since that they both can be derived
from a complete preordering on states only. This
complete preordering, denoted 2, can be
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encoded as a possibility distribution m, which is
amapping S — L. Namely [[(A) = MilXge 4 T(5)
and N(A) = n([I(A)) = ming, » n(r(s)) where
is the order reversing function L — L. In terms
of possibility measures (Zadeh [26]; Dubois and
Prade[11]), [1(A) = n(N(A)) = (1 - N(A) if L =
[0,1]).

3 - Discrimax likelihood

Two events A and B cannot be discriminated
using a dual pair (N, IT) as soon as [J(A) =
[1(B) and N(A) = N(B), which occurs quite
often, namely, as soon as Maxge 4 n(5) =
maxX..g M(s) < | or MdXee A T(S) = Maxg,  (s)
< L. [I(A) = [1(B) may be due to a high value of
II(B n A). However in the spirit of the
discrimin relation, this wei ght should not affect
the comparison between A and B, since it is
common to both. The same reasoning applies to
[I(BN A). Only BAAand B A A should
matter in telling A from B. Let us introduce the
relation >rpp on 28, different from although
closely related to the original necessity and
T&EE:Q orderings modelled by N and its dual

Definition 4: .
A>pp Biff [I(Bn A)>TI(B n A),
A2 Biff not (B >y A).

The relation >[IL is a refinement of both
possibility and necessity orderings:

Proposition 3:
*N(A)>N(B)= A > B;
*II(A) >TI(B) = A > B.

Proof: Let us prove that: B 2L A = N(B) = N(A).
First notice that: B > A < N (AUB)2N(A U B)
contraposing Def 4. Thus
min(N(A U B), N(A U B)) > —d
min(N(A U B),N(A U B)).
Noticing that:
N(A)=N((Au B)yn (A UB))
=min(N(A U B), N(A UB)).
NB)=N({(A UB) ~ (A UB))
=min(N(A U B), N(A U B)),
we get N(B) = N(A).
Let us prove that: B 2y, A = [I(B) 2 [T{A). Notice that
Benp A= (AN B)2[I(A A B). Thus max([T(A A
B). II(A N B)) = max([I(A ~ B), [I(A ~ B)). Noticing
that:
TI(A) = TIA ~ By u (A~ BY)
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= max(IT(A v B), [T(A ~ BY),
[IB) =TT A A By w (A By
=max([T& ~ B), [T(A n BY),
we et [T(B) 2 TT(A). ™

N.B. It may happen that both N(A) = N(B) and
[1(A) = T1(B) hold and that A > B. Note that
21 and >q; coincide when re icting to
mutually exclusive events A and B since then
[TA A~ B) = 0. More generally 2 and Nmr
coincide whenever [J(A B) < HE.LTT» M B)
[T(A n B)) which is to say when the property
[[lAnB)= min([T(A), TI{B)) does not hold, a
possibilistic counterpart to independence (e.g.
Nuhmias[23]; Dubois et al.[10]), More precisely

Proposition 4: The equivalence [(A) = [1I(B)
< A 2q7p B holds if and only if

A A B) < [I(A ~ B).

Proof:

The two orderings differ only when JT(A) = [I(B} while
[Ttan By>TI(A A B). This case is when [T(A n B) =
[lA~ B). m

The partial ordering >TyL On events is a special
case of the so-called "discrimax" relation
between vectors:

Definition 5: V 2500 W & MAXic &) (v W)
Vi 2 MaXie 9y vy Wi where D(V,W) = (i, Vi #
Wil is the set of hon-equal components of the
vectors V and W.

The discrimax relation is a refinement of both
Pareto partial ordering between vectors
(V 2parere W ff Vi, v; > wi) and the maximum
ordering (max; v; = max; w;) that gets rid of
non-discriminating components.

Now if 1 denotes the possibility distribution
associated to [] (i.e., such that [Ta) =
MaXee o 7(s)), and let a be the vector (&g i
4y) such that, denoting $ = {51485, --vn 8}

]

a4 =7(s;) if s, A
4;=0 otherwise o -
then A >mBea >Discrimax D-

Notice that the relation A g2 B iff :n:rﬂu A
>nL B nor B >y A hold on 25 is not transitive
since: _ ~
[TI(A ~ B) = [T(A ~ B) and [1(B N C) =TIB
M C) do not imply [T(A 1 C) = [I(A~C).

This is because max(ms, T3) = max(my, ﬁ@u and
max(my, ng) = max(n;, ©;) do not imply

Max(my, my) = max(my, s} denoting T = 1(s;),
A = (52,53, 85), B ="[s;, 5, 56}, C = {83, 84,
7} (even if 7t takes on two values, 0 and |
only).

Interestingly, the refined possibility and
necessity relation satisfy not only monotony, but
also the additivity condition (iv) of comparative
probabilities, and the relation 2[]L turns out (o
be self dual:

Proposition 5: A = B = A <L B

Moreover if A is a proper subset of B then A <
%_{ B always hold for positive possibility

1stributions.

Proof: FAC BthenA ~ B = @. Hence [(A 1 B) >
[A 1 B) = 0. Moreover if A is a proper subset 'of B
then ANB =@ andifrjs positive [I(A ~ B) > [T(A A
Bj=0.m

Proposition 6
*ANBUQC) =0 =
Bz CeAUB 2L AuQ) (additivity).

*A2m Be By A (self duality)

Proof:
*AUB2LAULC

= IAUB) A~ AN O 2MAUC) N E A B)
SIOBNANT2II(CAAA B).
m_zmn.»iJAwC@nG. BAANT=BACandC
NANB=CnB.

Thus: A UB 2 AUC o BTy 201 (A B)
=Bz C

‘A2 Bo

(AN Bw(AA m:w::»Dm:C;Dms

S (AN B)zy (AnB) (addilivity) e

(An B)u(An Bzl (A B)U(ANB)
(additivity again)

=1 IWN:H.M», ]

So, the relation 27 possesses all properties of a
comparative probability, but for the transitivity
of indifference. Ip the following, the
possibilistic relation 21 will be called
discrimax likelihood and A 2rp B reads "A is at
least as likely as B", 5o as o emphasize the self-
duality. However, because of the lack of
transitivity of the indifference relation, we
cannot generally represent such relations by

means of probability measures,! nor can we
assume properties that are usually derived from
comparative probabilities. For instance, the
following property of comparative probabilities
is NOT satisfied in general by discrimax
likelihood:

;>3qu§&030"&.
:Hc_._>:‘:rwunaﬁlz_..0
SAUB - CuD

Oo_-::u...mxmﬂv_m"
S={ab,cd, e, f, g h}
A=(ab,c)B= (e f, g)
C={(bgh} D= {c,d, e}
(@) = nf) = m(c) = n(g) = |

ignn@ui&nﬂauo. i
II(A N C) = TI({a, ¢}) = 1 and ICr Ry =
D:W:Gn_".}iﬂﬁﬁ.

[I(B' ~ D) II((E, g]) = 1 and I[I(D n B) =
[({c, d}) = LB~ D

E?CEDOD D)=II({af})=1
vD:nC93>35u::a_?:uo.

Thus : AUB>g CuD. |

However, the following very strong, non
probabilistic property holds for the discrimax
likelihood ;

Proposition 7: For A, B, C disjoint,
AUC>m B m:nmCﬁv_.F>MEunOvﬁF>
UB

Proof: Obvious due to the disjointness assumption, The
property holds for Possibility ordering, which then
coincides with the discrimax likelihood. o

Hence althou gh similar, the discrimax likelihood
noticeably differs from a comparative
probability.

Any qualitative possibility distribution Zx can be
viewed as a well-ordered partition? {Ey,...,E,}
of § such that:

W>r'iff

weEj, w'e Ejand i<j (for 0<i,j<n).
W2rQ' iff

weE;, w'e Ejand isj (for 0<i,j<n).

e S

1 This representation i already not always possible
with standard comparative probability on finite sets
(Fishburn, 1986).

2 e Q=Epu...UEq. For i there holds EinEj=@, and

Yk, By,



By convention Eg gathers the worlds which are
totally possible (i.e., Ywe Eg, n(w)=1).
Qualitative possibility distributions allow us to
represent a possibility distribution in terms of
classes of equally possible worlds. Well-ordered
partitions are used by Spohn[25]. In terms of

well-ordered partitions, discrimax likelihood can

be described as follows: A >py, B iff there is an
Ey such that AN BNE # @andBn ANE; =
Gmsa_m>3m3mmu @andBNANE=0
for all i < k. In particular if 7 is uniform (total
ignorance), A >y B if and only if B is a proper
subset of A, Hence the discrimax likelihood
coincides with the inclusion relation. At the
opposite, if w is linear, that is for a certain
ranking of 8, Ty > 7y > ... > 7y, for any A#B,
either A >yp, B or B >py A. Then the discrimax
likelihood can be represented by a very special
kind of probability functions, called big-stepped
probabilities (Dubois et al.[9]) such that V A ¢
S,3se A, P({s}) > P(A\ {s}) so that P(A) >
P(B) if and only if max; ¢ o P(s) 2 max, . g
P(s) : the magnitude of P(s) can never be
attained by summing the probabilities of states
that are individually less probable than s.
Moreover P(sy) > P(sy) >... > P(s;_1) > P(sp)
for states sy,..., s, of nonzero probability.
Clearly a lot of probability measures are ruled
out by these conditions.

More generally the relation A > B can be
generated from the restriction of the possibilistic
relation to disjoint events (this is a partial
ordering) completed by the additivity property
for non disjoint events.

4. Leximax likelihood

Similarly, one can further refine the possibility
relations between events A and B by considering
a lexicographic ranking of reordered elements in
A and B:

Definition 5: V >0 W &

3k, wij = <E for 1<k and wpy] > vik)

where 1] 2w[2] 2... 2 W[) and v[j]2 V2]
2... 2 V[m] -

Now if a'is again the vector (ay, ..., ay) such
that, denoting S = {5}, 59, ..., 53 }:

a =T7(s) if s; € A

a; = 0 otherwise, L.,

then A >[rex B & @ >1g4imax D
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This relation will be called "possibilistic
lexicographic likelihood" ("leximax" likelihood
for short). It is a complete preordering of events.

Proposition 8: The leximax likelihood relation
refines the discrimax likelihood one.

Proof: obvious,

In fact, the leximax likelihood relation coincides
with the discrimax one for linear possibility
distributions., In terms of well-ordered
partitions, leximax likelihood can be described
as follows: A >pype, B iff there is an Ei such
that 1A NE, | v&m M Egl  while [A NEjl= [B
M Eil for all i < k. The leximax relation for a
uniform possibility distribution coincides with
the comparative probability relation that is
induced by a uniform probability. This is not
surprizing in view of the following results:

Proposition 9: The leximax likelihood relation
is a comparative probability.

Proof: The leximax relation is a complete preordering.
S >fpex @ and A 2., @ obviously hold. The
additivity property stems from the following remark: if
W >V then turn the n-sized vectors W and V into V' and
W' by augmenting the number of components from n 1o
n+ m where v = v; (resp.w’; = w;) fori= L,n, and v =
wh =k fori=1n+m Clearly W' > V' Indeed if j is
such that W(jl = V(i) fori=jand w(j] > <E. then .__.,mz
k; are greater than wij] or smaller than v(j] in the wide
sense, a simple shift of index j to j' = j may only occur
and W' > V' results. If Wil > k= V[jl , then W' >
<_c.__ forj'=j . i.c:_ = Wi > V] = kjand W' >V
results again, Conversely going from W' and V' to W and
V by removing components of equal value will not alter
the leximax ordering. The additivity axiom is a special
case of such a stability property, ®

The leximax likelihood relation can be generated
from the well-ordered partition (Eg,....Ep} of §
as follows

(0) {s}>rpex @

(i) if s, s' € Ej, then (s} ~pppex {8}

(i)ifse E,and A < Eiy1V...UEp

then .”m;.Vd.—lnx A.

(iii) apply additivity: B > .. C< AUB
>Miex AUC

Proposition 10: Any leximax likelihood
relation can be represented by a probability
measure.

Proof: Consider the well-ordered partition _mc.,..hu_ of
8. :Let mu = _mu_ and 1} = IEjI(f; +] + 1L fori<p
decreasing to 0, Let K be the sum of the fi's. Define a
probability distribution p such that pis) = (/K- IE;]) if s
€ Ej. Then B 2[yp oy C & P(B) 2 P(C) [

The family of probability measures in the proof
include big-stepped probabilities. Indeed the
discrimax likelihood and the leximax one
coincide for linear possibility distributions. In
fact the discrimax likelihood relations marginally
intersect comparative probabilities (and leximax
likelihoods), while leximax likelihoods form a
subclass of comparative probabilities.

5. Applications

5.1 Decision theory

If S is a set of states, an act is viewed as a
mapping f: $ — X, where X is another finite set
that represents consequences of acts, It is
assumed that X has at least three elements x and
¥. In each state s, act f produces a result f(s) e
X. In this approach, due to Savage, the set of
possible acts is represented by the set XS of
mappings from states to consequences,

Let XS be equipped with a strict preference
relation > and let = denote the associated non
strict relation. A set of axioms, that slightly
differs from the one of Savage, is as follows3
(Dubois et al.[8, 9]):

* 8 (XS, >) is a transitive, irreflexive,
partially ordered set.

Let A = S be an event, f and g two acts, and
denote by fAg the act such that

fAg(s)=f(s)ifse A
=g(s)ifse A,

*Sy: (XS, =) satisfies the sure-thing principle:
fAh = gAh if and only if fAh' = gAh’

The sure-thing principle enables two notions to
be simply defined, namely conditional
preference and null events. Act f is said to
weakly preferred to g, conditioned on A if and
only if Vh, fAh = gAh. This is denoted by (f
= g)a. Anevent A is said to be null if and only
if Vf, Vg, (f = g), holds.

Ui (f=gaand(f=g)z=f>g

3 Axioms of the form S; are originally from Savage,
Axioms of the form S are variants of Savage axioms.
Other ones are new.

Among acts in XS are constant acts such that: 3
xe X, Vse S, f(s) = x. It is denoted fx. It
seems reasonable to identify the set of constant
acts {fx, x € X} and X. The preference on X
can be induced from (X8, =) as follows. Given
(XS, =), the preference relation 2p on X is of
w:o form Vx, y € X, x 2p y if and only if fx >
¥.
*S3:V Ac S, A not null, (fx > fy), if and
only if x Zp m
Projecting X5 on 28 yields a likelihood relation,
that is, a binary relation > among events
defined by A >y B iff xAy > xBy for some x
>p Y.
* 84V, vy, x,y € Xt x >py, X' >py,
xAy 2= xBy < x'Ay' = x'By".
* §'s:3x, y, z three constant acts such that fx >
fy > fz,
Property S4 enables events A and B to be
consistently compared by fixing x >py
arbitrarily when selecting binary events xAy and
xBy. The last axiom enables the partial ordering
on acts to be reconstructed from a likelihood
relation on events and a preference relation on
consequences.
*L:f> g [f >pg] > [g >pf] where >p is
the projection of > on X (due to S3) and > is
the projection of > on events (due to S4).
It can be proved that if a discrimax ordering is
chosen for a likelihood relation, then the partial
ordering on acts does satisfy S'1, $2, S3, u,
S4, 8'5 and the lifting axiom L. Starting with a
regular possibilistic ordering 2[7] on events,
lifting it to acts using (L) and reprojecting the
relation on acts back to events, yields the
discrimax relation refining 2r1.Moreover:
for A, B, C disjoint, AU C > Band BUC>
AimplyC> AUB L
A> Aand AcBimply B > B.
These properties are satisfied by the discrimax
likelihood relation (Dubois et al.[8,9]) and are
characteristic of non-monotonic reasoning in the
sense of Kraus, Lehman and Magidor (Friedman
and Halpern [16]).

5.2 Nonmonotonic reasoning

Consider nonmonotonic inferences of the form
A P B which means that if all is known by an
agent is that event A obtains, then the agent will
reason as if B obtained as well. In other words,
in the context where the agent knows A only, he
accepts B. Basic properties of nonmonotonic
inference have been advocated by Kraus,
Lehmann and Magidor[18];
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Right weakening:
ANMBand B¢ Cimply A~ C
AND:AMBandAbC imply AMB N C
OR:Ar CandB b Cimply AUBKC
Cautious monotony (CM): AMBand AW C
imply AnB M C

Cut: ABand ANB Cimply At C.

The above rules of inference embody the notion
of plausible inference in the presence of
incomplete information, Namely, they describe
the properties of deduction under the assumption
that the state of the world is as normal as can be.
Given a subjective likelihood ordering >,
define now Ak B UHfANB> ANnB.AMB
intuitively means that B is more likely than its
negation when A is true. Possibility theory is
closely related to preferential inference in
nonmonotonic reasoning, as defined by Kraus,
Lehmann and Magidor [18]. Assume no nul
events. Then, an inference relation b is
preferential if and only if there exists a set of
possibility orderings mnu\manr that if A = @
AMBIffVone &, ANB>1ANB

(Dubois and Prade [13]),
Note that only disjoint events are compared, so
that again the discrimax likelihood (that then
coincides with the possibilistic one) yields a
nonmonotonic inference that obeys the above
properties.

5.3 Inconsistency management

Consider layered inconsistent knowledge bases
of the form K=Lu...uUL,, such that formulas
ik in L; have the same level of priority or
certainty and are more reliable than jlin Lj
where j>i. Formulas of L, are the most
important beliefs and those in L, are the least
important ones. There exist two criteria for
defining such preferred subbases of K: set-
inclusion (Brewka, [4]) or cardinality (Benferhat
et al.[2]).

Definition 7;: A consistent subbase
M=M1u...UMj is an inclusion-preferred
subbase of K iff there does not exist a consistent
subbase N = N1uU...UNy, of K such that: 3i <
n, where Mj < Nj and for j >i, Nj= M;.

Definition 8: A consistént “subbase
M=M|u...UMj is called a lex-preferred
subbase of K iff there does not exist a consistent
subbase N =N1u...UNp such that: 3i < n,
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where INjl > [M;l and forj>i, INjl = [Mjl where
Ml is the cardinality of M. i

Define a complete preordering on K that
accounts for the layers, namely ¢ij > ¢k| iffi <
k. Then it is easy to check that

Proposition 11 M=M|uU...uMp is an
inclusion-preferred subbase (resp, lex-
preferred) of K iff M is a maximal element of
{NI N consistent, N « K} for the discrimax
(resp. leximax) relation induced by >..

6. Conclusion

This paper has proposed two natural extensions
of possibility and necessity orderings that exploit
the ordinal information contained in a possibility
distribution. These relations are self-dual and
come close to comparative probability structures,
The discrimax likelihood relation, being not
complete is a new kind of uncertainty relation,
that naturally arises in decision theory under
uncertainty. The problem of axiomatically
characterising these uncertainty relations remain
open. However they belong to a more general
family of what can be called partial additive
belief structures on events, that are characterized
by the following axioms:

AQ. 2 s reflexive and transitive

ADLAZQ (andnot @2 A =@ if there are no
null events)

A2. A C B implies B = A, and

A3.If A, B, C are disjoint subsets ther :
AUBz2ZAUC & B2C

A large class of such relations can be defined by
means of unknown numerical weights p =
(P1.---» Py) assigned to elements of 3, and a set
of constraints on the pi's defining a domain A of
feasible-tuples. Then define (Lang [19]):

B 2 Aiff 3e gp(s) 2 Te Ap(s) ¥ pEA.

By suitably restricting A, the discrimax relation
ant the leximax relation can be recovered
(Benferhat et al. [3]).
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