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This paper presents an axiomatic framework for qualitative decision under uncertainty in a finite setting. The corresponding util ity is expressed by a sup-min expression, called Sugeno (or fuzzy) integral. Techni cally speaking, Sugeno integral is a median, which is indeed a qualitative counterpart to the averaging operation underlying expected utility. The axiomatic justifi cation of Sugeno integral-based utility is expressed in terms of preference between acts as in Savage decision theory. Pessimistic and optimistic qualita tive utilities, based on necessity and possibil ity measures, previously introduced by two of the authors, can be retrieved in this setting by adding appropriate axioms. 1

INTRODUCTION

The expected utility criterion was the fi rst to receive axiomatic justifi cations both in terms of probabilistic lotteries [von Neumann & Morgenstern 1941] for deci sion under risk and in terms of preference between acts for decision under uncertainty [Savage 1954]. These axiomatic frameworks have been questioned later, challenging some of the postulates leading to the ex pected utility criterion. Noticeably, [Allais 1953] and later [Ellsberg 1961] laid bare the existence of cases where a systematic violation of the expected utility criterion could be observed. Some of these violations were due to a cautious attitude of decision-makers in front of uncertainty. More recently [Gilboa 1987] and [Schmeidler 1989] have advocated and axioma tized lower and upper expectations expressed by Cho quet integrals attached to non-additive measures cor responding to families of probability measures, as a formal approach to utility that accounts for the Ells berg paradox (see also [Sarin & Wakker 1992]). Some of these generalized expected utility criteria are also generalizations of the Wald criterion for decision under ignorance. The latter suggests that a decision be eval uated by the value of its worst possible consequence. Choquet integrals, especially the lower expectations, are mild versions of the Wald criterion [Wald 1950].

In the framework of Artifi cial Intelligence, it has been pointed out that information about preference and uncertainty in decision problems cannot always be quantifi ed in a simple way, but only qualitative evalu ations can sometimes be attained. As a consequence, the topic of qualitative decision theory is a natural one to consider [Brafman & Tennenholtz 1997]: can we make decision on the basis of qualitative informa tion? In this kind of research the set of states of the world and the set of consequences of actions are of ten supposed to be finite, contrary to classical frame works where one of them is infi nite. Moreover, giving up the quantifi cation of utility and uncertainty also means that the notion of expectation based on averag ing is given up as well. It contrasts with non-expected utilities based on Choquet integrals where the idea of average value of a decision is preserved although it becomes imprecise. Fully giving up quantification of utility and belief leads to a purely symbolic approach where uncertainty is represented by a likelihood rela tion on events and preference by an ordering on con sequences of decisions.

In [START_REF] Dubois | [END_REF] two qualitative crite ria, an optimistic and a pessimistic one, whose def initions only require a linearly ordered scale for utility and uncertainty are proposed as well as axiomatic justifications for them in the style of von Neumann and Morgenstern and more recently, [START_REF] Dubois | Towards axiomatic foundations for decision under qualitative uncertainty[END_REF], in the style of Sav age. In these qualitative criteria, uncertainty and preferences are captured by possibility distributions ([Zadeh 1978], [START_REF] Dubois | [END_REF]), and more pre cisely in the framework of qualitative possibility theory ([Dubois & Prade 1998], [Dubois 1986]). As pointed out in [START_REF] Dubois | [END_REF], the pessimistic (resp. optimistic) criterion is formally equivalent to the de gree of necessity (resp. possibility) of a fuzzy event [START_REF] Dubois | [END_REF] which can be seen as a partic ular case of Sugeno integral with respect to a necessity (resp. possibility) measure. This framework is tailored for one-shot (non repeated) decisions, where the deci sion is evaluated by means of a particular state previ sion that belongs to the ones considered as plausible for the decision-maker.

In this paper, enlarging the possibilistic frame work of [START_REF] Dubois | Towards axiomatic foundations for decision under qualitative uncertainty[END_REF], we exam ine the general case of qualitative evaluations of deci sion rules, when the uncertainty is modeled by a mono tonic set-function, and the criterion is expressed as a Sugeno integral. A Sugeno integral is the qualitative counterpart of a Choquet integral, but it only requires a totally ordered scale to be defined. While classical decision theory uses average to assess the value of deci sions under uncertainty, Sugeno integral is a median, which can be viewed as a qualitative counterpart of an expectation. Moreover, the analogy between Cho quet integrals and Sugeno integrals is patent due to a similar behavior in the presence of comonotonic acts, where Choquet integrals become additive while Sugeno integral decomposes by the minimum and the maxi mum. We give an axiomatic decision-theoretic justifi cation for such a criterion, in the case where there is a finite set of states of the world. Before presenting these results, let us recall the axiomatic justification pro posed by Savage [Savage 1954] for the expected utility decision criterion.

All the proofs of the theorems of this paper are included in the full version of this paper.

SAVAGE'S AXIOMATICS FOR EXPECTED UTILITY

Savage has proposed a framework for axiomatizing de cision rules under uncertainty where both the uncer tainty function and the utility function are derived from first principles bearing on acts. The proposed axioms can be operationally verified by checking how the decision-maker ranks his acts. This section recalls Savage's setting and his axioms for justifying expected utility and probability functions.

In Savage's approach a preference relation ::S be tween acts (or decisions) is assumed to be given by a decision-maker. Such a preference relation is ob servable from the decision-maker's behavior. Acts are defined as functions f from a state space S to a set X of consequences. Indeed the result of an act depends on the state of the world in which it is performed: the effect of braking a car depends on the state of the brake. Let us denote :F = X5 the set of potential acts. The set of actually feasible acts is generally only a subset of :F. The first assumption made by Savage is that the preference relation on :F is transitive and complete ( g ::S for f ::S g ) :

Sav 1 Ranking: (:F, ::S) is a complete preorder.

Two particular families of acts are crucial to re cover the preference information on consequences and the uncertainty information on the state space S: con stant acts and binary acts respectively. A constant act, denoted x for x E X is such that Vs E S, x(s) = x. Since ::S is a complete preorder on :F, the set of acts, it is also a complete preorder on the set of constant acts (which can be identified with X). Therefore, we can define the following complete preorder �P on X:

Definition 1 Preference on consequences induced by the ranking of constant acts: Vx, y E X, Vs E S if f( s ) = x, and g(s) = y, then x �P y-¢::? f ::S g .

In order to avoid the trivial case when there IS only one consequence or all consequences are equally preferred, Savage has enforced the following condition:

Sav 51 No n triviality: There exists x, x' E X such that x < p x', where < p is the strict part of the complete preordering on X.

The ranking of acts also induces a ranking of events, i.e., subsets of the state space: this is based on the use of binary acts. A binary act is an act f such that there is a set A � S and two consequences y < p x EX where f( s) = x if sEA, f( s) = y if sEA, where A is the complement of A. Such a binary act is denoted xAy. A partial ordering �L of events can be defined by restricting the complete preordering on acts to binary acts: Definition 2 Relative likelihood of events: Let A, B � S. Event A is not more likely than event B, denoted A �L B, if and only if Vx, y E X, y < p x, xAy ::S xBy.

Of course relation �L is only a partial preorder ing. In order to turn it into a complete preordering, Savage proposed the following axiom: Sav 4 Projection from acts over events: Let x, y, x', y' E X, x' < p x, y' < p y. For all A, B � S. xAx' ::S xBx' -¢::? yAy' ::S yBy'. This axiom ensures that for any choice of conse quences x' < p x, the restriction of the preordering on acts to binary acts xAx' defines a complete preorder-ing of events in a unique way. The notion of binary act is a particular case of a compound act: Definition 3 Compound act: VA t:;:; S, fAg is the act defined by: fAg (s) = f (s) for all sEA, and fAg(s) = g(s) for all sEA.

A binary act is thus a compound constant act. Savage has introduced a cancellation property, that makes the following assumption: if two acts give the same results on a subset of states, their relative preference does not depend on what these results are. This is called the sure thing principle and is modeled as follows:

Sav 2 Sure thing principle: Let f, g, h, h' E :F, let At:;:; S. fAh :S gAh::::} fAh' :S gAh'.

If three acts f , h and g are such that fAh :S gAh then g is said to be conditionally preferred to act f on event (a set of states) A, denoted (f :S g)A • Clearly, due to the sure thing principle, conditional preference is well-defined, namely the property (f :S g) A does not depend on the choice of act h. Moreover it is a com plete preordering of acts. There is a type of events such that conditioning on them blurs all preferences: null events. An event A is said to be null if and only if fAh :S gAh for any f , h and g. It can be proved that null events are impossible in the sense that A ,... .., L 0 if and only if A is null.

The restriction of conditional preference to con stant acts must coincide with the preference order ing on consequences (except for null events). This is achieved by the following axiom:

Sav 3 Conditioning over constant acts: Let x, y E X, At:;:; S, A not null. Let x, y be the constant acts: x (s) = x and y(s) = y, Vs E S. Then, (x :S Y ) A <=> X 'SoP y.

Under the above 5 conditions the likelihood rela tion on events induced by the preference relation on acts is a comparative probability relation, namely it obeys the following characteristic properties: A1 'SoL is complete and transitive, A2 0 <L S (non-triviality), A3 VA, 0 'SoL A (consistency), P if An (B U C) = 0 then B 'SoL C if and only ifAUB 'SoL AUG (additivity).

The setting proposed by Savage presupposes that the set of states is infi nite. This assumption is neces sary for the introduction of the following axiom: Sav 6 2 Quantitative probability: Let f, g E :F, such that f-< g, let x E X. There exists U B; a parti tion of S such that Vi, xB;f-< g and f-< xB;g. Sav 1 to Sav 6 can be represented by a utility function u from the set of acts to the reals. For any act f, u(f) is the expected utility of the consequences of f in the sense of a probability distribution on S.

Savage proved that a preference relation satisfying

DECISION-MAKING WITH SU GENO INTEGRALS

Consider again the set :F of acts f, mappings from S to X. Clearly if we take Savage framework for granted, there is a common evaluation scale for events (i.e. bi nary acts) and constant acts (just take the set of acts quotiented by the indifference relation). So it is possi ble to evaluate uncertainty and preference by means of a totally ordered scale (L, 'So) (fi nite, as we will assume in this paper that S and X are finite). The mapping from the set of consequences to L is a utility func tion p : X -t L. It is supposed that the top h and the bottom OL of L are in p(X) = {p(x), x E X}. If not, just add an ideal consequence x * and a totally bad consequence x * to X. Uncertainty is supposed to be captured by means of a set function 0' : S -+ L which is a monotonic measure (called fuzzy measure by [Sugeno 1977]), that is such that: 0

'(0) = OL, O'(S) = h, A � B ::::} O'(A) 'So O'(B)
. This kind of set-function is very general and represents the mini mal requirement for the representation of partial be lief. Especially the last condition is called monotonic ity, and is verified by probability measures and most other well-known representations of partial belief (in cluding belief and plausibility functions, necessity and possibility measures ... ). Then the utility of an act f can be defi ned as a Sugeno integral [Sugeno 1977], a qual itative counterpart of expected sum, where the sum is replaced by a sup (a max in the fi nite case) and the product by a min.

Definition 4 Monotonic utility of an act !Sug

us(f) = fdO' =max min(..\, dF.x)) L
.AE L where F.x = { s E S, p(f ( s)) 2:: ..\} and 0' is a monotonic measure. This Sugeno integral is called monotonic qualita tive utility, and us can also be written only by varying the consequence x in X, as follows:

Proposition 1 us(f) = max.,ex min(p(x), O'(F.,)) where F., = {s E S, p(f(s)) 2:: P p(x)}.

Let us analyze the properties of qualitative mono tonic utility. First, let us compute the monotonic util ities of some basic acts: for constant acts, it is obvious that us(x) = p(x). For compound acts of the form xAy, the following property holds:

Proposition 2 If J-L(x) 2 J-L(y), then us(xAy) max(J-L(Y), min( J-L (x), a-(A))).
It follows obviously that: us(x* Ax * ) = a-(A). Moreover us(xAy) is the median of {J-L(Y), J-L(x), o-(A)} if J-L(x) 2 J-L(y), and the median of {J-L(y), J-L(x), o-(A)} otherwise. In order to explain the intuition behind this expression consider the case when someone goes to a meeting by car and has to choose a route. As sume an act xAy comes down to choosing a route such that one gets to the meeting with a huge delay if a traffic jam occurs and with a small delay other wise. So, x means "arriving to the meeting with lit tle delay", y means "arriving to the meeting with a huge delay", and A means "no traffic jam". Clearly, adopting us(xAy) as the utility of the act means the following: if the decision maker is confi dent enough that there is no traffic jam (o-(A) is high enough) then he does as if he trusts the delay will be small (us(xAy) = J-L(x)); if he has some doubt he might get into a traffic jam then the utility of the act reflects this doubt (us(xAy) = o-(A)); if he totally lacks confidence that the road will be free, then he feels as if there will be a traffic jam (us(xAy) = J-L(Y)). More generally the qualitative monotonic utility can be interpreted as a median, which is satisfactory, since it emphasizes the analogy with expected utility which is an average. Then, let us check which of the axioms proposed in the preceding section are satisfi ed by the monotonic qualitativ� utility function: 1. Sav 1 is satisfied, as us is an application from :F to a totally ordered scale L. 2. Monotonic qualitative utility does not satisfy the sure-thing principle Sav 2. It is easy to show that there exist f, g, h and h' such that fAh -< gAh, and fAh' >-gAh', which is in contradiction with Sav 2. To see that the monotonic qualitative utility sat isfies WS 3, let us introduce a new ordering between acts, that is similar to Pareto dominance in multi criteria decision-making:

Definition .5 Pointwise preference: f :SP g ¢:> V s E S, f(s) :SP g(s).
Pointwise preference is an extension of the total pre order :SP on X to a partial preorder :SP on X 8 . Let X = {x0 <p ... <p Xn} be the set of possible conse quences, let f be an act, and let Fn � ... � F1 � Fa = S be the subsets of S such that F; = { s E S, f( s) ?. x;}. In the terminology of fuzzy sets, pointwise preference corresponds to fuzzy set inclusion. The monotonicity of the qualitative utility is expressed by the following lemma:

Lemma 1 f ?_p g => us(f) ?. us(g).

This result is already known: it says that Sugeno integral is monotonic with respect to fuzzy set inclu sion. Regarding WS 3, if x :SP y, then VA � S, V h, xAh :SP yAh. By Lemma 1, we get us(xAh) :S us(yAh), soWS 3 is satisfied. Our qualitative utility also satisfi es a weaker property than Sav 4: At this point it is important to notice that condi tioning on events no longer defines a complete preorder on actions, as us does not respect Sav 2 and Sav 3. This is of course due to the fact that a-is not neces sarily additive.

4.

Monotonic qualitative utility satisfies two properties that expected utility does not respect. First, given two acts f and g, define the act f 1\ g (resp. f V g) which in each state s gives the worst (resp. best ) of the results f(s) and g(s), following the ordering on X (induced by the ordering of constant acts). In terms of fuzzy sets this is the fuzzy union and intersec tion of fuzzy sets viewed as acts. Due to the pointwise preference lemma, us(f 1\ g) :S min( us(f), us(g)), and us(f V g) 2: max(us(f), us(g)).

As a consequence of Prop. 3, we prove a weak form of decomposability of the monotonic utility:

Lemma 2 Let f be an act and y be a constant act of value y. Then us(f 1\ y) = us(f) or J-t(y).

This property indicates that the effect of decreas ing the utilities of the best consequences of an act by putting an upper bound to them does not affect the utility of the act until a point where the decision maker starts neglecting the uncertainty pervading this act, and considers that the utility of the act directly re flects this upper bound.

Suppose that you are proposed a lottery, whose prize is a trip to the seaside. As you like the seaside, you are interested in this game. Now, you learn that the prize is changed into a (less preferred) mountain trip (m). If f= seaWO (if you win (W), you go to the sea, else you get nothing (0)), then the modified game is g = fl\m = mWO. If you are a Sugeno-like DM, either g "' f (you think that winning is not plausible, so, changing the prize does no harm), or g "' m (you think that winning is plausible, so that you identify f and g with the prizes). Instead, if you are an expected utility maximizer, both g -< f and g -< m hold : you do not focus on plausible states, but you make an av erage between the possible consequences, acting as if the decision problem is faced repeatedly.

It leads to the introduction of a property which is respected by qualitative monotonic utility and not generally by expected utility:

RCD Restricted conjunctive-dominance: Let f and g be any two acts and y be a constant act of value y: g >-f and y >-f:::? g 1\ y >-f. Proposition 4 us satisfies RCD.

RCD means that limiting the expectations of an act g better than another act f by a constant value that is better than the utility of act f still yields an act better than f. RCD allows a partial decomposability of the qualitative monotonic utility with respect to the con junction of acts in the case where one of the acts is constant: us(fl\g) = min(us(f), us(g)) if g is a con stant act, as a consequence of Lemma 2.

To see that expected utility violates

There is a dual property that holds for the dis junction of two acts, one of which is a constant act:

RDD Restricted max-dominance: Let f and g be any two acts and y be a constant act of value y: f > g and f >-y :::? f >-g V y.

RDD states that if an act f is preferred to an act g and also to the constant act y then, even if the worst consequences of g are improved to the value y, f is still preferred to g. Obviously, expected utility does not satisfy RDD. In order to prove that us satisfi es RDD, we first prove a lemma, dual of Lemma 2 Lemma 3 Let f be an act and y be a constant act of value y. Then, us(fVy) = us(f) or J-t(y).

By direct application of Lemma 3, the following proposition holds:

Proposition 5 us satisfies RDD.
A more general decomposability property of the Sugeno utility can also be pointed out: the max decomposability for comonotonic acts. Two acts f and g are said to be comonotonic if and only if Vs, s' E S, f(s) > p f(s') :::? g(s) 2:Pg(s'). This property was in troduced by [de Campos, Lamata, & Moral 1991]. In words, two acts are comonotonic if none of them gives a strictly better result in state s' than in state s, when the other gives a strictly worse result. Note that a sim ilar result is obtained with Choquet integrals which are not additive in general, but become additive for comonotonic functions. A constant act is, of course, comonotonic with any other act. Then the following property holds if :::: :; is represented by a Sugeno utility:

Proposition 6 If f and g are comonotonic, then they verify: us(fVg) = max(us(f), us(g)), and us(fl\g) = min(us(f), us(g)).

AXIOMATIZATION OF TH E

MONOTONIC QUA LITATIVE

UTILITY FUNCTION

The point of this paragraph is to show that if a pref erence relation :::: :; over acts satisfies the axioms Sav 1, WS 3, Sav 5, RCD and RDD then it can be rep resented by a monotonic qualitative utility function.

The following lemma will be necessary for the proof:

Lemma 4 If f 2:P g then f !::: : g, under Sav 1, WS 3, Sav 5.

The following theorem can now be proved:

Theorem 1 Axiomatization of the monotonic quali tative utility us(f) = maxxEX min(J-t(x), u(Fx)): Let ::S be a preference relation over acts satisfying Sav 1, WS 3, Sav 5, RCD, RDD. Then, there ex ists a finite qualitative scale (L, :::; ), a utility function p, : X -+ L, a Sugeno set function cr : 2 5 -+ L, such that f ::S f' {::} us (f) ::; us (f' ).

The proof then goes in four steps:

Step 1. The utility scale is the set of acts quotiented by the indifference relation, and u(f) denotes the equiv alence class of f. Construct p, on X, by restricting j which is complete (S av 1) to constant acts.

Step 2. Suppose now that j also satisfies WS 3 and Sav 5. Extend u to the set of binary acts x * Ax*. Let cr(A) = u(x * Ax*), notice that cr(S) = p,(x * ) (1), cr(0) = p,(x*), (2), and from Lemma 4, as A � B => x * Ax* ::;P x * Bx*, we have cr(A) ::; cr(B) (3). So, cr is a monotonic measure.

Step 3. If furthermore j satisfi es RCD, we ex tend u to the acts of the form xAx*, and show that u(xAx*) = min(p,(x), cr(A)).

Step 4. First, we prove that for any two binary acts xAx* and yBy*, where B � A, RDD implies u((xAx*) V (yBx*)) = max(u(xAx*), u(yBx*)). Then we prove that 'V f, u(f) = maxxEX min(p,(x), cr(Fx)), noticing that any act f is the maximum (pointwise) of the XiFx;X*. 0

Remark: Axioms RDD and RCD can be re placed by an axiom of max-min decomposability for comonotonic acts, which is a counterpart of the addi tive decomposability for comonotonic acts, satisfied by the Choquet integral:

CoD If f and g are comonotonic, then fVg >-f => fVg "' g, and f/\g -< f => f/\g "' g.

It is easy to prove that CoD implies RCD and RDD, because a constant act y is comonotonic with any act. To prove the converse, just follow the proof of Theorem 1. [de Campos, Lamata, & Moral 1991] and [START_REF] Ralescu | [END_REF] prove representation theo rems for Sugeno integrals on the basis of comonotonic ity and Lemma 2 taken as an axiom. be seen as a refi nement of the Wald criterion, which proposes that the utility of an act be that of its worst possible consequence. Thus, QU* is "pessimistic" or "cautious", even if the pessimism is moderated by tak ing relative possibilities of states into account. QU* (f) is high only if f gives good consequences in every rather plausible state. On the other side, QU * is a mild ver sion of the max criterion which is "optimistic", or "ad venturous" since an act is supposed to be "good", as soon as there exists a plausible state in which it gives a good result.

Possibility and necessity measures are special kinds of Sugeno measures, and it has already been shown that the expressions QU * (f) and QU* (f) can be obtained from the expression of u 5 (f) by replacing cr, either by a possibility measure or a necessity measure [Dubois & Prade, p. 134, 1980[START_REF] Dubois | [END_REF]]. where n is the order reversing function of L.

Note that the interpretation of us (xAy) max(p,(y), min(cr(A), p,(x))) (y <P x), now depends on the meaning of cr: i) if cr(A) = II(A), then if the decision-maker (DM) has no reason to believe that A will not occur (II( A) is high enough), then he will act as if A occurs (us(xAy) = p,(x)). It is only when he strongly thinks that A is im possible (II(A) is low enough) that he evaluates xAy for the worst. This is the optimistic decision-maker. ii) If cr(A) = N(A), it is only when the DM has strong reasons to believe in A, that he acts as if it occurs (us(xAy) = p,(x)). If he does not, N(A) = 0 and he considers that the worst outcomes y will occur. This is the pessimistic decision-maker. DD disjunctive dominance: V f, g, h, f >-g and f >h :::} f >-g v h.

Let us point out that DD is an axiom expressing that the decision maker focuses on the "best" plausible states. It is easier to see, if instead of DD we take the following equivalent axiom: Optimism V f, g, VA� S, fAg -< f =? f :S gAf.

Proposition 8 DD and Optimism are equivalent.

Let us see what it means for an agent to obey Op timism on the following very simple example: Sup pose that f is the act that makes you earn a gain G whatever the state of the world, and g makes you loose a loss L, whatever the state of the world. If you obey Optimism, then for any given A, fis strictly preferred to fAg means that you think that A is rather plausible (if not, you would be indifferent). You do not prefer f to gAf means that you think that either A is not plau sible, or it is and your preferences given A are blurred by the fact that the consequences on A which is also plausible are very good. In other terms, for making up your mind, you focus on the best consequences among those of the plausible states. This is optimism.

Proposition 9 QU* satisfies DD.

It is sufficient to prove that if :S satisfies Sav 1, WS 3, Sav 5, RCD and DD, then the preorder in duced on events is a comparative possibility, in order to prove that rr is a possibility measure, and that :S can be represented by a qualitative possibilistic optimistic utility function QU*.

Proposition 10 Let :S be a preorder over X 5 sat isfying Sav 1, WS 3, Sav 5, RCD and DD, and let �L be the corresponding induced order over events: VA,B � S,A �L B {::} lAO :S 1BO.

�L is a comparative possibility relation.

It is easy to show that if :S satisfies Sav 1, WS 3, Sav 5, then �L satisfies Al, A2 and A3. Then, we have to prove that �L satisfies the characteristic axiom of comparative possibility relations: II: VA, B, C, B �L C :::} A U B �L A U C in order to prove that it is a comparative possibility relation. The proof is trivial, noticing that if :S satisfies the axioms, then fVg ,... .. . max� (f, g) . Just use bets on events A, B, C to prove the result. Now, the following theorem is easy to prove: Theorem 2 Let :S be a preorder over X 5 satisfying Sav 1, WS 3, Sav 5, RCD and DD. There exists L a finite totally ordered scale, p, : X -+ L a util ity function and 1r : S -+ L a possibility distribution, such that :S is represented by QU*: f -+ QU * (f) = maxsES min( rr ( s), p,(f( s))).

The axiomatic justification of the pessimistic util ity QU. can be obtained in a dual way: first, we recover the pessimistic qualitative utility by reinforcing RCD instead of RDD.

CD Conjunctive dominance: V f, g, h, g >-f and h >-f=? g 1\ h >-f.

In the same way as we did for the qualitative op timistic utility, we can prove the following theorem:

Theorem 3 Let :S be a preorder over X 5 satisfy ing Sav 1, WS 3, Sav 5, RDD and CD. There exists L a finite totally ordered scale, p, : X -+ L a utility function and 1r : S -+ L a possibility dis tribution, such that :S is represented by QU.: f -+ QU.(f) = minsEs max(n (rr(s)), p,(f(s))), n being the order-reversing function of L Notice that CD can also be represented by a "pes simism" or "cautiousness" axiom dual to the Opti-. . m1sm axwm: Pessimism: V f, g, VA � S, fAg >-f:::} f t gAf.

The same example, obeying Pessimism means that if you strictly prefer fAg to g (you think that A is plausible), then you should not prefer gAf to g (the bad consequence L blurs your preferences given A).

CONCLUD ING REMA RKS

The qualitative decision theory outlined here signifi cantly differs from the usual one, based on expected utility. It only presupposes a finite setting and a linear qualitative scale, while expected utility resorts to numerical uncertainty and utility functions, and infinite state space or set of consequences. More over it is non-compensatory since it rejects the no tion of averaging between the value of uncertain out comes. Our approach is also very general since the set functions representing the decision-maker's uncer tainty need only be monotone. The Sugeno integral representing utility is the qualitative counterpart of Choquet integral, as axiomatized in [Schmeidler 1989, Sarin & Wakker 1992]. Medians substitute to mean values or bounds thereof. If the attitude of the DM in front of uncertainty is taken into account we recover possibilistic utilities, thus getting a milder, more real istic version of Wald criterion. While our results sug gest natural decision criteria in the presence of qual itative information and highlight the underlying as-sumptions, the axiomatic setting based on acts also gives a tool for observing if a decision-maker's way of representing uncertainty follows the rules of possi bility theory. Interestingly similar results have been independently recently obtained in the setting of mul ticriteria aggregation by [Marichal 1997]. One strong assumption has been made in this paper (and also in classical utility theory), which is that certainty levels and priority levels be commensurate. An at tempt to relax this assumption has been made in [Dubois, Fargier, & Prade 1997]. These authors point out that working without the commensurability as sumption leads them to the theory of uncertainty underlying preferential entailment in non-monotonic reasoning. Unfortunately, the corresponding decision methods also prove to be either indecisive or very risky.

This paper is only a fi rst step in the direction of a full-fledged qualitative decision theory in the Sav age style. The next step should be a proper han dling of conditional acts, which is nontrivial in the absence of the Sure thing principle. Some ideas about how to address this question can be borrowed from [Lehmann 1996].

2

  This condition is necessary in order to obtain a quantitative representation of the comparative probability ordering.

Proposition 3 [

 3 Dubois & Prade, p. 134, 1980] If X has n+l elements {x0 = x*, ... , Xn = x*} with J-L(xo) :S J-L(x!) :S J-L(Xn-1) :S J-L(x n) , then us(f) is the median of the 2n + 1 numbers {o-(F.,), x EX, x =F x * } U J-L(X).

  Let B, C, D, E be disjoint nonempty subsets of S. Let a-be a Sugeno measure such that a-( BU D) <a-( CU D) and a-( B U E) > a-( C U E). Nothing prevents to fi nd such a Sugeno measure, since neither C U D � B U D nor B U E � C U E. The failure of Sav 2 should not be surprising since Sugeno measures encompasses very different types of set functions, some of them vio lating a weak form of the additivity property, namely if (AU B) n C = 0, A >L B => AU B ?.L B U C.For instance, there are belief functions[Shafer 1976] which violate this property (e.g., with two focal ele ments E, F such that m(E) = a < 1 -a = m(F); E � A, F � B U C with F n• B j 0, F n C j 0 and AnB =0) .

3.

  The qualitative utility does not satisfy Sav 3 nor Sav 4 proper, due to the failure of the surething prin ciple. Due to the form of us ( xAz) and us (yAz), it is easy to find x, y, z, A, such that us(xAz) = us(yAz) and x >p y, which contradicts Sav 3. A similar coun terexample may be found that contradicts Sav 4.However our qualitative utility satisfies a property weaker than Sav 3: WS 3 Weak compatibility with constant acts: Let x andy be constant acts (x= x, y= y), VB� S and V h, x :SP y => xBh :::S y Bh.

Sav 4 '

 4 Let x >P x',y >p y'; A,B � S: xAx'-< xBx' => yAy' :::S yBy'. If furthermore x 2P y > y' ?. x' then yAy' -< yBy' => xAx'-< xBx'.

  RCD, it is enough to find real values a, b, a', b', c and a number a in the unit interval such that: a• a+ b • (1a) > a'• a+ b' • (1a), c > a'• a+ b' • (1a), and min( a, c)• a+ min(b, c)-(1 -a) < a1 • a+ b'• (1-a). The reader can check that a = 1000, b = 2, a' = 3, b' = 100, c = 10, and a = 0.93 yields such a counterexample.

  criteria for decision making, QU * (f) = maxsES min(1r(s), p,(f(s))) and QU* (f) = minsE S max(n( 1r(s)), p,(f( s))) , where 1r is a possibility distribution were proposed and axiom atized in terms of preference over possibilistic lotter ies by[START_REF] Dubois | [END_REF], Dubois et al.1998], and by[START_REF] Dubois | Towards axiomatic foundations for decision under qualitative uncertainty[END_REF] in terms of pref erence over acts. These two criteria are qualitative counterparts of expected utility. The second one can

Proposition 7

 7 If cr is a possibility measure II, then us(f) = QU * (f) = maxmin(1r(s),p,(f(s))). s ES If cr is a necessity measure N, then us(f) = QU* (f) = minmax(n( 1r (s)), p, (f(s))) sES

  remember that possibility measures are max decomposable, that is 'VA, B, II(A U B) max(II(A), II( B)). Therefore, we just strengthen the RDD (restricted disjunctive decomposability) ax iom, so that for any two acts x * Ax* and x * Bx* representing bets on events A and B, we have max(x*Ax ., x * Bx.) = x * (AUB)x •. The strength ened form of the restricted disjunctive dominance is the following:

For the sake of clarity we use Savage's original num bering of axioms