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Abstract: Video anomaly detection consists of detecting abnormal events in videos. Since abnormal events are rare,
anomaly detection methods are mainly not fully supervised. One such popular family of methods learn nor-
mality by training an autoencoder (AE) on normal data and detect anomalies as they deviate from this nor-
mality. But the powerful reconstruction capacity of AE makes it still difficult to separate anomalies from
normality. To address this issue, some works enhance the AE with an external memory bank or attention
modules but still these methods suffer in detecting diverse spatial and temporal anomalies. In this work, we
propose a method that leverages unsupervised and self-supervised learning on a single AE. The AE is trained
in an end-to-end manner and jointly learns to discriminate anomalies using three chosen tasks: (i) unsuper-
vised video clip reconstruction; (ii) unsupervised future frame prediction; (iii) self-supervised playback rate
prediction. Furthermore, to correctly emphasize the detected anomalous regions in the video, we introduce
a new error measure, called the blur pooled error. Our experiments reveal that the chosen tasks enrich the
representational capability of the autoencoder to detect anomalous events in videos. Results demonstrate our
approach outperforms the state-of-the-art methods on three public video anomaly datasets.

1 INTRODUCTION

Since past few years, the task of video anomaly detec-
tion (VAD) has attained a major attention in the com-
puter vision research (Li et al., 2013; Lu et al., 2013;
Kiran et al., 2018; Ramachandra et al., 2022). Indeed,
this task is interesting as well as challenging since it
requires in depth comprehension of space-time fea-
tures in order to distinguish anomalous events from
normal events in the video. The anomalous events
are the ones which do not conform with the largely
present normal events, i.e., they are rare. Due to this,
we do not know in advance what kinds of abnormal
events may appear in the video as they depend on the
context. For example, for a site where only pedes-
trians are authorized, all the vehicles are anomalies

a https://orcid.org/0000-0003-2666-7586
b https://orcid.org/0000-0002-5577-5335
c https://orcid.org/0000-0002-7059-6028
d https://orcid.org/0000-0003-0933-2485
e https://orcid.org/0000-0001-9208-6275

but for another site where pedestrians and bicycles
are allowed, vehicles except bicycles are anomalies.
Similarly, on one site all abrupt movements like run-
ning, chasing, brawling, etc. are abnormal while for
another site running is considered normal. All these
points require the development of approaches which
can generalize on different contexts without labelled
data.

One of the most highly successful approaches to
tackle this problem is to use a deep convolutional au-
toencoder (AE) with proxy tasks such as frame recon-
struction or frame prediction (Hasan et al., 2016; Luo
et al., 2017; Zhao et al., 2017; Chang et al., 2020;
Ramachandra et al., 2022). Furthermore, AE based
approaches often have the least assumptions on data.
The basic idea of using an AE is to learn normal-
ity from training data in order to detect anomalous
events while testing. But many works have shown that
the strong reconstruction capacity of the autoencoder
makes it still difficult to distinguish anomalous events
from normal events (Gong et al., 2019; Astrid et al.,
2021a; Lv et al., 2021a; Szymanowicz et al., 2022).



Many works have addressed this problem by attaching
different functionalities to the AE like memory mod-
ules (Gong et al., 2019; Park et al., 2020; Liu et al.,
2021b), attention modules (Lv et al., 2021a), pseudo
anomalies (Astrid et al., 2021a; Astrid et al., 2021b),
optical flow (Liu et al., 2018; Liu et al., 2021b; Cho
et al., 2022), clustering (Chang et al., 2020), etc. But
all these works still struggle to detect diverse spa-
tial and temporal anomalies, especially in challeng-
ing datasets with multiple scenes such as the Shang-
haiTech dataset (Luo et al., 2017). External super-
vision can also be added to all the above approaches,
e.g., using a pre-trained network for first detecting ob-
jects of interest and later employing an unsupervised
pipeline (with or without AE) to detect anomalies (Yu
et al., 2020; Georgescu et al., 2021a; Georgescu et al.,
2021b; Liu et al., 2021b). The main problem with
these approaches is that they assume all abnormal ob-
ject classes are known, i.e., they will fail to detect an
anomaly if it belongs to an object class unknown to
the object detector. Furthermore, their capability to
detect anomalies directly depend on the object detec-
tor and external dataset used to train it.

In this work, we proceed with the AE based ap-
proaches, proposing a method that leverages unsu-
pervised and self-supervised learning on a single AE.
To this end, we devise multiple tasks to enhance the
normal spatio-temporal understanding of the AE by
training it only on the normal data. Each task has
its specific objective: (i) video clip reconstruction
(VCR) to learn spatio-temporal characteristics of the
normal videos; (ii) future frame prediction (FFP) to
learn how normal spatio-temporal patterns propagate
along the videos; (iii) playback rate prediction (PRP)
to strengthen the playback speed perception of the en-
coder.

PRP task is popular in self-supervised representa-
tion learning and is used for downstream supervised
tasks like action recognition and video retrieval (Be-
naim et al., 2020; Wang et al., 2020a; Yao et al.,
2020). We carefully adapt this task for VAD with
the motivation to detect anomalies caused by abrupt
motion. To our knowledge, it is the first time PRP
has been used for VAD and our experiments demon-
strate its effectiveness. Our method is end-to-end
trainable and is jointly trained on the three tasks.
While testing, the anomaly is detected as the com-
bined anomaly score of the three tasks is higher for
anomalous frames.

Most of the current methods use mean squared er-
ror (MSE) or peak signal to noise ratio (PSNR) for
the error measure between input and reconstructed
frames (Zhao et al., 2017; Gong et al., 2019; Park
et al., 2020; Astrid et al., 2021a; Astrid et al., 2021b;

Lv et al., 2021a). These measures integrate errors on
the whole image and are prone to noise (Sinha and
Russell, 2011; Gudi et al., 2022). Recently, the proxi-
mally sensitive error (PSE) remove incoherent noise
to better localize and thus detect anomalies (Gudi
et al., 2022). We take it further a step and introduce
a new measure, called the blur pooled error (BPE).
It is locally sensitive and keeps only relevant pixels
for error calculation. Most VAD works apply a min-
max rescaling to anomaly scores per video (Liu et al.,
2018; Gong et al., 2019; Park et al., 2020; Astrid
et al., 2021a; Astrid et al., 2021b). It is sensitive to
extreme values and to address this issue, we propose
a robust rescaling of scores.

Our main contributions are as follows:
• A method that leverages unsupervised and self-

supervised learning on a single AE, end-to-end
trained with chosen tasks: (i) video clip recon-
struction; (ii) future frame prediction; (iii) play-
back rate prediction.

• We introduce the blur pooled error (BPE), a lo-
cally sensitive measure that helps to correctly
detect the anomalous parts in the downsampled
video.

• We introduce a robust rescaling of anomaly score,
which is less sensitive to extreme values

• We conduct extensive experiments on three public
datasets, showing superior results to state-of-the-
art.

For research reproducibility, code is available here:
https://github.com/devashishlohani/luss-ae vad.

The article is organized as follows: Section 2
highlights related works, Section 3 describes details
of our method, Sections 4 and 5 present experiments
and results for different works, and Section 6 con-
cludes this paper.

2 RELATED WORKS

VAD approaches are often not fully supervised due
to lack of anomaly examples. There are two com-
mon VAD settings: unsupervised learning where only
the normal training data is used (Li et al., 2013; Lu
et al., 2013; Luo et al., 2017), and weakly supervised
learning where the video-level annotations are used
(Feng et al., 2021; Lv et al., 2021b; Tian et al., 2021).
We focus on the unsupervised learning as it is a more
practical setting which can be deployed in the site
without any requirement of annotations. Due to avail-
ability of only single class (normal) data during train-
ing, the classical two-class supervised classifier can-
not be used to detect anomalies. Thus, the VAD task

https://github.com/devashishlohani/luss-ae_vad


Figure 1: Overall schema of the proposed LUSS-AE method. A window of T consecutive frames is passed into the autoen-
coder, which reconstructs this window, followed by HFFP head which predicts the future (T +1)th frame. Another window of
T frames with original or accelerated playback rate is passed through the encoder and HPRP head to predict the playback rate
in the self-supervised way.

is indirectly addressed using proxy tasks like video
clip / frame reconstruction (Hasan et al., 2016; Gong
et al., 2019; Liu et al., 2021b), frame prediction (Liu
et al., 2018; Park et al., 2022), self-supervised tasks
(Yu et al., 2020; Georgescu et al., 2021a), etc. The
principal learning component is often an autoencoder
(Hasan et al., 2016; Luo et al., 2017; Ramachandra
et al., 2022), or an adversarial network (Liu et al.,
2018; Ye et al., 2019).

In the last few years, we have seen a massive ap-
plication of AEs for VAD (Kiran et al., 2018; Ra-
machandra et al., 2022). They are used in future frame
prediction (Liu et al., 2018; Park et al., 2022) or video
clip / frame reconstruction task (Hasan et al., 2016;
Zhao et al., 2017). These approaches use the powerful
representational capacity of the AE to learn normal
features while training and detect anomalies as they
deviate from these features. The problem is that the
AE even reconstruct the abnormal frames well, mak-
ing it difficult to separate them from normal frames
(Gong et al., 2019; Astrid et al., 2021a; Szymanowicz
et al., 2022). Many methods address this issue: (Gong
et al., 2019) and (Park et al., 2020) use memory mod-
ules to memorize normal patterns, (Lv et al., 2021a)
uses attention prototypes to encode normal dynam-
ics, (Astrid et al., 2021a; Astrid et al., 2021b) uses
pseudo anomalies to enrich encoder, etc. Still all these
works fail to detect diverse spatio-temporal anomalies
as they AE do not capture all the important and perti-
nent normal features.

Some works add an external supervision to the

VAD pipeline, often using a pre-trained object detec-
tor or feature extractor. The object detector detects all
objects of interest in the video, which are later fed to
a VAD pipeline. Also known as object-centric meth-
ods (Ionescu et al., 2019; Georgescu et al., 2021a;
Liu et al., 2021b), they assume that all possible object
classes are known a priori, and that datasets used to
train object detectors contain all these objects, which
is strong limitation for generalization. Furthermore,
omission or false detection of objects can also lead
to failure of VAD. Similarly, works that use a pre-
trained feature extractor (Wang et al., 2020b) have
same problems and are also biased towards external
dataset where features were learned.

Nowadays, self-supervised learning is used in
many applications (Liu et al., 2021a). It uses self-
supervisory signals from the data itself and does not
require external annotations. It is often used as a pre-
training step to enrich a learning module, which is
later used for downstream tasks like video classifi-
cation, detection, etc. (Yao et al., 2020). Concern-
ing VAD, a recent work uses several self-supervised
tasks to jointly train a 3DCNN to detect anomalies
(Georgescu et al., 2021a). It has promising results
but relies on an external supervision via a pre-trained
YOLOv3 detector.

In this work, we propose a approach without any
external supervision, using unsupervised and self-
supervised learning to jointly train an AE for VAD.
We use three tasks, two common unsupervised VAD
tasks: video clip reconstruction (VCR), future frame



prediction (FFP) and a new task called the playback
rate prediction (PRP). The PRP task, often used in
self-supervised learning, deals with understanding the
playback rate of a video (Benaim et al., 2020; Wang
et al., 2020a; Yao et al., 2020). We carefully ac-
commodate this task for VAD, with the objective to
detect abrupt motion based anomalies by reinforcing
the speed understanding of the encoder. Overall, our
method is end-to-end trainable and can be applied on
any AE.

3 METHOD

In this section, we present our proposed LUSS-AE
(Leveraging Unsupervised and Self-Supervised Au-
toEncoder) method, illustrated in Figure 1. The main
idea is to learn normal spatio-temporal features in or-
der to detect anomalies. To this end, we propose
to train a 3D convolutional autoencoder (3DCAE)
on normal videos using carefully designed tasks in a
unsupervised or self-supervised manner. The video
clip reconstruction task learns spatio-temporal char-
acteristics of normal videos. The future frame pre-
diction task is designed to learn the propagation of
spatio-temporal patterns in the normal videos. Fi-
nally, the playback rate prediction task strengthens the
speed understanding of the encoder. The autoencoder
is jointly trained on all these tasks. During testing,
each of these branches provides a score to distinguish
anomalous frames from non-anomalous ones.

3.1 Learning normality using multiple
tasks

In this subsection, we explain how the proposed tasks
help in learning normal characteristics during train-
ing. We describe each task with its role, followed by
details on how all these tasks are trained in a joint and
end-to-end manner.

Before defining the tasks, we define the video clip.
Given a video with n frames {I1, I2, . . . , In}, a video
clip V of length l and temporal gap s between frames
is defined as:

Vl,s =
{

I1, I1+s, . . . , I1+(l−1)s
}
= {I1+ts}0≤t<l , (1)

where for simplicity, we assume clip starts from 1st

frame.

3.1.1 Video Clip Reconstruction (VCR)

Reconstructing a video clip is one of the most pop-
ular tasks for unsupervised VAD (Zhao et al., 2017;
Gong et al., 2019; Astrid et al., 2021a; Astrid et al.,

2021b; Liu et al., 2021b). It aims to reconstruct an
input video clip using an AE type network. The AE is
trained only on normal video clips with the learning
objective of minimizing the MSE between the input
and reconstructed clips. The main hypothesis is that
the abnormal clips will be badly reconstructed during
testing.

Using Eq. (1), a non-strided video clip of length
T +1 frames can be defined as:

VT+1,1 = {I1, I2, . . . , IT , IT+1} . (2)

The first T frames of this clip is used for the VCR task
and we denote it as XVCR, i.e., XVCR = {I1, I2, . . . , IT}.
This video clip goes through the autoencoder fol-
lowed by an activation function to produce a re-
constructed clip as X̂VCR = tanh(Dec(Enc(XVCR))),
where Enc and Dec stand for encoder and decoder
networks respectively. The loss function can then be
defined as:

LVCR =
1

T ×C×H ×W

∥∥X̂VCR −XVCR
∥∥2

F , (3)

where C, H and W denotes channels, height and width
of each frame and ∥ · ∥F denotes the Frobenius norm.

3.1.2 Future Frame Prediction (FFP)

Predicting a future frame is also a well-spread task
for unsupervised VAD (Liu et al., 2018; Park et al.,
2020; Liu et al., 2021b; Lv et al., 2021a). It aims to
predict an unseen future frame, given an input video
clip. This requires comprehension of how normal
spatio-temporal patterns propagate along the video
clip. Similar to VCR task, the objective is to mini-
mize the MSE between the predicted and actual future
frame. Since the AE is trained only on normal videos,
it should predict the anomalous frames incorrectly.

This task uses the same input of VCR task, i.e.,
XVCR. After passing through the AE, the video clip
XVCR goes through the prediction head HFFP to predict
the future frame as X̂FFP = HFFP(Dec(Enc(XVCR))).
This frame is compared with the actual future frame,
i.e., frame T + 1 of VT+1,1 (see Eq. (2)) denoted as
XFFP, where XFFP = IT+1. The loss function is then
defined as:

LFFP =
1

C×H ×W

∥∥X̂FFP −XFFP
∥∥2

F . (4)

3.1.3 Self-supervised Playback Rate Prediction
(PRP)

The PRP task in self-supervised representation learn-
ing is used as a pretext task to learn transferable se-
mantic spatio-temporal features for downstream tasks
like action recognition (Benaim et al., 2020; Wang



et al., 2020a; Yao et al., 2020). In other words, first
PRP task is performed and later the learned model is
adapted to downstream tasks. Contrary to them, we
perform the PRP task on a single AE with two other
tasks, all done simultaneously in a joint and end to
end manner.

The original PRP task generates speed labels for
video clip sampled at different rates and aims at pre-
dicting them (Benaim et al., 2020; Wang et al., 2020a;
Yao et al., 2020). Since we know that the training
videos in VAD are normal, we adapt this task to gen-
erate two speed-rate labels: original playback rate
(implying normal behaviour) and accelerated play-
back rate with 2x to 5x speed (implying abnormal be-
haviour). The motive is to enforce the encoder with
motion comprehension of normal videos. During test-
ing, we hypothesize that the encoder would detect
anomalies caused by irregular and abrupt motion.

Concretely, given a video clip, this task aims to
predict its playback rate. The clip with default play-
back rate of the video is termed as the original play-
back rate clip and the clip formed by skipping 1 (2x),
2 (3x), 3 (4x) or 4 (5x) frames is designated as an ac-
celerated playback rate clip. The input XPRP is a video
clip of length T , chosen between an original play-
back rate (class c = 1) and an accelerated playback
rate (class c = 2) with equal chance (50% probability
each):

XPRP =

{
VT,1 when c = 1
VT,s∈{2,3,4,5} when c = 2

, (5)

where the accelerated playback rate clip, when c = 2,
is a temporally strided video clip with temporal gap s
randomly chosen between 2 and 5. The loss function
for this classification task is the binary cross-entropy
(BCE), defined as:

LPRP =− ∑
c=1,2

y[c] log(ŷ[c]) , (6)

where ŷ = softmax(HPRP(Enc(XPRP))) ∈ R2, HPRP is
the playback rate prediction head and y is the one-hot
encoding of the ground-truth classes for XPRP.

3.1.4 Training objective

A single autoencoder is trained with the above men-
tioned tasks in a joint and end-to-end manner. The
overall training loss is defined as the weighted sum of
individual loss functions:

L= λ1LVCR +λ2LFFP +λ3LPRP , (7)

where λ1, λ2 and λ3 are the weights in (0,1] that
regulate the importance of each task. The sum of
these weights is not necessarily 1, even though we

could regularize them such that the sum is always one.
Since it just the matter of regularization, the overall
impact of weights remains the same.

3.2 Detecting anomaly

In this subsection, we describe how the video anoma-
lies are detected during testing. Given a test video
clip, each of the three tasks provides an anomaly score
and if the weighted sum of these scores is above a
threshold, it is flagged as an anomaly, as illustrated in
Figure 2. We first define below some image or video
error measures and then how these measures help to
calculate the final anomaly score.

3.2.1 Image error measures

To quantitatively assess how well a future frame is
predicted or how well a video clip is reconstructed,
we need to compare them with the appropriate ground
truth using some error measures. The most widely
used measure in the domain of VAD is MSE (Zhao
et al., 2017; Liu et al., 2018; Gong et al., 2019; Lv
et al., 2021a). Given two images J, Ĵ ∈ RH×W×C, the
MSE is calculated as:

MSE(J, Ĵ) =
1

C×H ×W

∥∥Ĵ− J
∥∥2

F . (8)

Since last few years, many VAD works use the peak
signal to noise ratio (PSNR) measure (Ye et al., 2019;
Astrid et al., 2021a; Astrid et al., 2021b; Park et al.,
2022). But PSNR also depends on MSE as can be
seen in its mathematical formulation. Both MSE and
PSNR integrate errors on the whole image and there-
fore are prone to random and incoherent noise (Sinha
and Russell, 2011; Gudi et al., 2022). To overcome
this, a new measure called the proximally sensitive
error (PSE) is proposed by (Gudi et al., 2022). It is
defined as:

PSE(J, Ĵ) =
1

C×H ×W

∥∥(Ĵ− J)∗G(σ,k)
∥∥2

F , (9)

where ∗ is the convolution operator and G(σ,k) is a 2D
Gaussian kernel with size k and standard deviation σ,
given by:

G(σ,k)[i, j] =
1

2πσ2 e−
i2+ j2

2σ2 , (10)

where i and j are the pixel coordinates centered in the
kernel. Note, the kernel size has a direct relation with
standard deviation as k = 6σ−1. Thanks to the Gaus-
sian convolution, PSE smooths incoherent noise and
is locally sensitive. However, an anomaly generating
an important error in some pixels can disappear in the
noise of all other pixels of the high-dimensional im-
age.



Figure 2: Overall schema of the proposed LUSS-AE method during testing. A window of T +1 consecutive frames is drawn
sequentially from the test video. The first T frames from this window is the input to the system and the output for each task
is computed on it. The anomaly score is determined for each task, i.e., AVCR, AFFP and APRP, and the final anomaly score is
their weighted sum.

In this article, we take this idea one step further
and introduce the blur pooled error (BPE), defined as:

BPE(J, Ĵ) =
1

C×H ×W

∥∥Sb((Ĵ− J)∗Bk)
∥∥2

F , (11)

where Bk is a generic 2D low-pass filter with kernel
size k, and Sb signifies a subsampling with stride b
(Zhang, 2019). Using a low-pass filter smooths inco-
herent noise, like PSE, then subsampling keeps only
the most pertinent values from the input, increasing
sensitivity to anomalies. All these measures can eas-
ily be extended to video clip by applying them to each
frame.

3.2.2 Anomaly score and rescaling

During testing, a non-strided video clip of T + 1
frames is used. The anomaly score for frame T + 1
is composed of three parts, one for each task.
(i) The VCR anomaly score is defined as:

AVCR =
1
T

T

∑
t=1

E(Ît , It) , (12)

where It , Ît are the t th frame and its reconstruction,
and E can be one of MSE, PSE or BPE.
(ii) The FFP anomaly score is defined as:

AFFP = E(ÎT+1, IT+1) . (13)

(iii) The PRP anomaly score is defined as the proba-
bility of accelerated class (c = 2):

APRP = ŷ[2] , (14)

where ŷ is the output of PRP branch as defined in
Eq. (6).
The final anomaly score is defined as:

A= α1AVCR +α2AFFP +α3APRP , (15)

where α1,α2,α3 are the weights in [0,1] for the three
scores. Even though these weights have similar func-
tioning like λ weights of training, they do not have a
direct relationship with them. This is because the A
and L values are different. While AVCR and AFFP can
also use PSE and BPE, their counterpart in L use only
MSE. Besides, APRP is the softmax value, while LPRP
is a binary cross-entropy value.

Most VAD works apply a min-max rescaling to
scores per video (Liu et al., 2018; Gong et al., 2019;
Park et al., 2020; Astrid et al., 2021a; Astrid et al.,
2021b). This scaling bounds values to interval [0,1]
where the minimum and maximum values are forced
to be 0 and 1 respectively. Due to this, it is prone to
outliers with extreme values. To address this issue, we
propose a robust rescaling per video. For a test video
with n frames, the rescaled anomaly score for frame t
is defined as:

Ãt =
At −med({Ai})

iqr1−99 ({Ai})
, (16)

where med(·) and iqr1−99(·) are respectively the me-
dian and the interquantile range (between 1st and 99th

percentiles) of scores {Ai}n
i=1. Finally, like previous

methods, the higher scores correspond to anomalies.



4 EXPERIMENTS

4.1 Datasets

We perform experiments on three publicly available
benchmark datasets: UCSD Ped2 (Li et al., 2013),
CUHK Avenue (Lu et al., 2013), and ShanghaiTech
(Luo et al., 2017). Each dataset has a standard train-
ing / test division, where the training set consists of
only normal videos while testing set has videos with
one or more anomalous events.
UCSD Ped2. This dataset consists of 16 training and
12 test videos with 12 anomalous events, where nor-
mal videos include walking pedestrians and anoma-
lies include bikes, carts, or skateboards (Li et al.,
2013).
CUHK Avenue. It contains 16 training and 21 test
videos with 47 anomalous events, where anomalies
include objects such as bikes or human actions such
as unusual walking directions, running, or throwing
stuff (Lu et al., 2013).
ShanghaiTech. It contains 330 training and 107 test
videos with total of 130 anomalous events. Unlike
the previous two datasets, this dataset is multi-view
with 13 different views. Anomalous events include
running, stealing, riding bicycle, jumping and fight-
ing (Luo et al., 2017).

4.2 Evaluation metric

We evaluate with the highly used frame-level area
under the receiver operating characteristic (AUROC)
metric (Kiran et al., 2018). The ROC curve is ob-
tained by varying the threshold on the frame level
anomaly score, to separate anomaly from normality
class across the whole test set. A higher value in-
dication better performance. Some works compute
a “AUROC per video” and report the average, also
called macro-averaged AUC (Georgescu et al., 2021a;
Georgescu et al., 2021b; Ristea et al., 2022). In this
metric, the succession of thresholds to estimate the
ROC curve is not common to all test videos. Since
thresholds are adapted to each video, ROC curve is in
risk to be over-fitted, providing overly optimistic per-
formances. Consequently, AUROC should always be
a “AUROC on all videos” (micro-averaged AUROC)
computed on the whole test set with thresholds com-
mon to all test videos (Fawcett, 2006; Lohani et al.,
2021).

4.3 Implementation details

We resize each video frame to 256×256 and rescale
pixels to the range [−1,1]. To be comparable with

other methods, we use the widely popular 3D con-
volutional AE architecture (Gong et al., 2019; Astrid
et al., 2021a; Astrid et al., 2021b), consisting of
strided 3D convolutions for encoding and strided 3D
deconvolutions for decoding. It takes a video clip of
16 frames in grayscale, i.e., T =16, C=1, H=256 and
W=256 respectively. The prediction head HFFP is at-
tached at the end of the AE and consists of a single 2D
convolution, followed by a tanh activation. The play-
back rate prediction head HPRP is attached at the end
of the encoder and consists of a series of 3D pooling,
2D convolution and pooling and fully connected lay-
ers to produce an output of size 2, one for each class.
The input clip for PRP task is chosen between origi-
nal playback rate and accelerated playback rate with
equal chance (50% probability for each). For each
batch of accelerated playback rate, the value of s is
chosen randomly from (2,3,4,5) with equal chance for
the four values. The balance weights in the training
objective function are set to λ1=0.6, λ2=0.4 and λ3=1
respectively and they were found using grid search on
the overall loss. The whole model is trained end-to-
end using the Adam optimizer (Kingma and Ba, 2015)
with a learning rate of 10−4 and a batch size of 16.

While testing, we use different measures like
MSE, PSE and BPE for the anomaly score. For PSE
and BPE, we use σ=1, b=2 while keeping the same
kernel size of k=5. For blur kernel, we use a Gaussian
filter. After grid search, we set the optimal weights
for anomaly score (α1,α2,α3) as (0.1, 0.8, 1), (0.1, 1,
0.1) and (0.2, 0.2, 0.9) for Ped2, Avenue and Shang-
haiTech dataset respectively.

5 RESULTS

5.1 Video Anomaly Detection

5.1.1 Quantitative comparison with state of the
art

Table 1 shows the results of our LUSS-AE method
compared with existing state of the art methods. As
explained in Section 2, we do not compare with meth-
ods having external supervision. The work of MNAD
(Park et al., 2020) is re-implemented by (Menon and
Stephen, 2021), and MPN (Lv et al., 2021a) is re-
implemented by us using their provided source code.
In both cases, the claimed results were not repro-
ducible, and they are marked with * in the table.

We can observe that our method outperforms all
the other methods across all the datasets. The per-
formance gain in Ped2 and Avenue datasets is less
significant as in the Shanghai dataset. In fact, it has



Table 1: Quantitative comparison with the existing state of the art methods: AUROC (in %) for VAD is computed on Ped2,
Avenue and Shanghai test sets. Numbers in bold indicate the best performance, and ∗ indicate non-reproducible results.

Method Ped2 Avenue Shanghai
AnoPCN (Ye et al., 2019) 96.80 86.20 73.60
MemAE (Gong et al., 2019) 94.10 83.30 71.20
UNet-inte (Tang et al., 2020) 96.30 85.10 73.00
Cluster AE (Chang et al., 2020) 96.50 86.00 73.30
MNAD (Park et al., 2020) ∗ 97.00 88.50 70.50
MNAD (Menon and Stephen, 2021) 96.33 87.91 67.81
STEAL Net (Astrid et al., 2021b) 98.40 87.10 73.70
LNTRA (Astrid et al., 2021a) 96.50 84.91 75.97
MPN (Lv et al., 2021a) ∗ 96.90 89.50 73.80
MPN [ours] 96.13 83.90 73.00
ITAE (Cho et al., 2022) 97.30 85.80 74.70
VQU-Net (Szymanowicz et al., 2022) 89.20 88.30 -
FastAno (Park et al., 2022) 96.30 85.30 72.20
LUSS-AE [ours] 98.52 89.04 81.21

been suggested to not use the Ped2 dataset as it is al-
most saturated (Acsintoae et al., 2022). The Shanghai
dataset is considered one of the most difficult dataset
and our high performance gain of 5.24% demon-
strates the viability of our method. Furthermore, the
fact that our method works on all the datasets, irre-
spective of the type of anomalies, shows the gener-
alizing ability of our method. Even though, we use
the same architecture for autoencoder like many other
methods (Gong et al., 2019; Astrid et al., 2021a;
Astrid et al., 2021b), still our proposed method out-
performs them without using any sort of external
memory or supervision. All these points demon-
strate the strength and effectiveness of our LUSS-AE
method.

5.1.2 Qualitative results

In this part, we discuss the strengths and weaknesses
of our method via illustrative examples.

Figure 3 demonstrates an illustrative example of
our method tested on a video with two anomalous
events, both containing movement of bikes. Here, the
people move with relatively normal speed while bikes
move with fast speed. Also, the number of people
are relatively less in this example and bike does oc-
cupy a big area, which means its displacement causes
a big spatio-temporal change. We can observe that
as soon as the bike enters the scene, we have a high
jump in APRP and it remains high until the bike exits
the scene. It jumps up again in next scene and have
highest value when two bikes move in the scene. Re-
garding AVCR and AFFP, the scores remain high when
bikes are in the scene. Overall, our method detects
both anomalous events in this example.

Figure 4 demonstrates the working of LUSS-AE
on a test video of Shanghai dataset containing three
different anomalous events: person turning in wrong
direction and person jumping, brawling/chasing ac-
tion, and stone picking. In the first anomalous event,
AVCR and AFFP have higher values than APRP in the
beginning. The anomaly here consists of person turn-
ing in wrong direction which is well captured by the
VCR and FFP task. Later, when the person jumped,
APRP suddenly increases, indicating its sensitivity to
abrupt motion. During the second anomalous event,
we observe that APRP has higher values than AVCR
and AFFP, thus contributing primarily to detect the
anomaly. The APRP starts to increase just before the
start of this event because the person in red starts to
suddenly approach the other person. We then observe
a first peak of APRP as one person pushes other to the
ground. We later observe a big second peak of APRP
and this relates to fast movement chasing. However,
the third event is very rare (picking up stones) and
does not contain large spatio-temporal movement in
the scene and thus our method fails to detect it. In
fact, the score in later frames is slightly higher than
the third event because there are three people in close
proximity, trying to change directions, which is con-
sidered anomalous for Shanghai dataset. Overall, the
VCR and FFP tasks work better in anomalies without
abrupt motions and PRP task addresses the anomalies
with sudden motions. There is still a room to improve
the spatio-temporal comprehension of AE for VAD,
possibly with a data augmentation technique as the
datasets lack more examples of scenarios.



Figure 3: LUSS-AE working illustration on video 11 0176 of Shanghai test set. Anomaly scores (AVCR, AFFP, APRP, A) are
plotted per video frame; red regions depict anomalous events and some illustrative frames are shown above the plot, where
the yellow and red bounding boxes exhibit objects of interest and anomalies respectively.

Figure 4: LUSS-AE working illustration on video 05 0023 of Shanghai test set. Anomaly scores (AVCR, AFFP, APRP, A) are
plotted per video frame; red regions depict anomalous events and some illustrative frames are shown above the plot, where
the yellow and red bounding boxes exhibit objects of interest and anomalies respectively.

5.2 Ablation studies

In this subsection, we study the importance and influ-
ence of different parts of our proposed method.

5.2.1 Are all tasks useful for VAD?

In this ablation study, we analyze the impact of dif-
ferent tasks on the autoencoder for detecting anoma-
lies. Table 2 shows combinations of different tasks
and their respective AUROC performances on Avenue
and Shanghai datasets. Concretely, for each of these
combinations, we train and test AE using the chosen
tasks, and use the introduced BPE wherever applica-
ble.

We can observe that when AE is trained only with
the VCR task, the VAD performance is the least,
i.e., 82.72% and 73.11%. We consider this as the
baseline since this a standard task in VAD (Kiran
et al., 2018) and we combine it with other tasks to
assess their impact. Using VCR and FFP task to-
gether boosts the performance with a gain of 5.23%

and 3.24% over the baseline, indicating the impor-
tance of learning spatio-temporal propagation through
the FFP task. Similarly, when PRP task is trained
together with the VCR task, we observe an increase
of 4.71% and 6.09% on baseline, validating that in-
deed PRP task enriches the comprehension of normal
spatio-temporal features for anomaly detection. Fi-
nally, when all the tasked are used together, we ob-
serve a substantial yield in performance with 6.32%
and 8.10% over baseline, demonstrating the effective-
ness of our proposed approach to train AE by leverag-
ing unsupervised and self-supervised tasks for VAD.

5.2.2 Is the autoencoder enriched by FFP and
PRP?

In this paper, we have a 3D convolutional AE well-
used in many previous works (Gong et al., 2019;
Astrid et al., 2021a; Astrid et al., 2021b). All these
works used AE with the VCR task. In this study, we
first reproduced their work by training and testing AE
with the VCR task. Then we trained AE with the pro-



Table 2: Influence of different tasks (VCR, FFP and FRP)
used during training and testing of AE on Avenue and
Shanghai datasets, in terms of AUROC (%).

Tasks AUROC (%)
VCR FFP PRP Avenue Shanghai
✓ 82.72 73.11
✓ ✓ 87.95 76.35
✓ ✓ 87.43 79.20
✓ ✓ ✓ 89.04 81.21

posed tasks, i.e., VCR, FFP and PRP, and tested using
only the VCR task. This way, we can assess the im-
pact of these tasks on AE’s comprehension of normal-
ity during training in order to detect anomalies during
testing.

Table 3 shows the impact of these tasks on AE. We
can clearly remark that our proposed training tasks
enriched the normality understanding of the autoen-
coder for VAD, with a gain of 3.76% and 2.26% in
performance on Avenue and Shanghai datasets.

Table 3: Influence of tasks (VCR, FFP and FRP) used dur-
ing training of AE on Avenue and Shanghai datasets, when
tested only with VCR, in terms of AUROC (%).

Training tasks Testing with VCR
Avenue Shanghai

VCR 82.72 73.11
VCR + FFP + PRP 86.48 75.37

5.2.3 Are error measures equivalent?

The goal of this ablation study is to see the effect of
different error measures, i.e., MSE, PSE and BPE, on
the VAD task. Since these measures apply to VCR
and FFP tasks, PRP task will not be considered here.

Figure 5 shows an illustrative example using the
FFP task to better understand these measures. We
can observe that AE did not correctly predict this
frame, where dropping bag is an anomaly. The er-
ror frame for MSE highlights this anomalous region
of image but it also captures the background noise of
the frame. The PSE error frame has a more visible
region of anomaly and it smooths some background
noise. Finally, the BPE error frame has a principal
focus on anomalous region and has least amount of
background noise. Furthermore, the BPE frame is
smaller than other maps as we remove irrelevant pix-
els via subsampling.

Table 4 shows the quantitative impact of these er-
ror measures. To be precise, we train our method with
the three tasks and test it with the respective tasks
and measures shown in the table. We can observe

that the PSE improves the performance in both tasks
with 1.01% and 1.23% respectively, signifying the
importance of proximity error and noise reduction.
BPE provides a significant boost in results with 1.53%
and 1.62% performance improvement over MSE in
the two tasks. This validates that our proposed BPE
should be used for the VAD task whenever frames or
clips are compared.

Table 4: Influence of error measure (MSE, PSE and BPE)
on each task (VCR and FFP) during testing of AE on Av-
enue dataset, in terms of AUROC (%).

Error measure Testing tasks
VCR FFP

MSE 84.95 85.38
PSE 85.96 86.61
BPE 86.48 87.00

5.2.4 Are anomaly score rescalings equivalent ?

We introduced the robust scaling in our work. In
Table 5, we provide the effect of rescaling scheme
on Avenue and Shanghai dataset. Ped2 and Avenue
dataset, being relatively simple and have smaller than
the Shanghai dataset, does not have many extreme
value outliers. We can observe in the table that due to
this, we do not have a big increase in performance in
Avenue dataset with robust scaling. However, we ob-
serve an impressive 2.06% increase in performance in
Shanghai dataset. This shows the viability of Robust
scaling, especially in the difficult dataset like Shang-
hai. Overall, the robust scaling should be used regard-
less of the dataset.
Table 5: Influence of anomaly score rescaling (Min-Max
and Robust) on Avenue and Shanghai datasets, in terms of
AUROC (%).

Rescaling Avenue Shanghai
Min-Max 89.01 79.15
Robust 89.04 81.21

5.3 Computational complexity

We use Nvidia GeForce RTX 3090 with 24 GB of
memory for all our experiments. Since our method
uses the 3DCAE proposed by (Gong et al., 2019) to
build LUSS-AE, we must compare with their autoen-
coder. Table 6 shows the computational complexity
comparison of our method with their autoencoder. We
can observe that our method uses only a bit more of
computational power both in terms of number of pa-



Ground truth Prediction MSE PSE
BPE

Figure 5: Illustration of different error measures on a test frame of the Avenue dataset. From left to right: actual frame (ground
truth), predicted frame, error frame for MSE, for PSE and for BPE.

rameters and FLOPs (MAC). However, Section 5.1.1
of our paper shows that LUSS-AE largely outperform
their method in all the three datasets.
Table 6: Computational complexity comparison of our
method with the baseline autoencoder (Gong et al., 2019).

Method #Params FLOPs
3DCAE (Gong et al., 2019) 5.98M 16.23G
LUSS-AE [ours] 6.12M 16.30G

6 CONCLUSIONS

In this work, we tackled the problem of detecting
video anomalies without annotations. To address this
problem, we proposed a novel regime that leverages
unsupervised and self-supervised learning on a single
autoencoder. Our method is end-to-end trained on the
normal data and jointly learns to discriminate anoma-
lies from normality using three chosen tasks: (i) unsu-
pervised video clip reconstruction; (ii) unsupervised
future frame prediction; (iii) self-supervised playback
rate prediction. To our knowledge, it was the first time
when PRP task was adapted for video anomaly detec-
tion. Our ablation study demonstrated the importance
of this task for unsupervised video anomaly detection.
To correctly focus on anomalous regions in the video,
we also proposed a new error measure, called the blur
pooled error (BPE) and a robust rescaling of anomaly
scores.

Our experiments demonstrate that the chosen
tasks enriched the spatio-temporal comprehension of
the autoencoder to better understand the normality for
detecting anomalies. Furthermore, a significant boost
in performance with respect to MSE showed the im-
portance of the BPE as it removes the background
noise by keeping only the pertinent pixels. Finally, the
overall results prove the relevance of our LUSS-AE
method since it outperformed all recent approaches in
three challenging datasets.

In future works, we would like to explore train-
ing our method with BPE and further strengthening it
with data augmentation techniques.
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