High Reynolds Channel Flows: Upstream interaction of various wall deformations

The flow at high Reynolds number in the entrance of distorted channel is considered. We analyse the anticipated fluid responds to a downstream wall distortion, and we find that the non linear upstream length ∆ = O(R 1/7 e ), using either a new asymptotic approach called Successive Complementary Expansions Method (SCEM) with generalized asymptotic expansions and a modal analysis of the perturbed flow. Comparisons with Navier-Stokes solutions show that the mathematical model is well founded.

Introduction

This paper considers the upstream interaction of flows in a two-dimensional channel at high Reynolds number with wall deformations. An asymptotic model using the successive complementary expansion method with generalized asymptotic expansions, called GIBL for Global Interactive Boundary Layer [START_REF] Cousteix | Asymptotic Analysis and Boundary Layers[END_REF][START_REF] Cathalifaud | Non linear aspects of high Reynolds number channel flows[END_REF], is used. The aim is to analyse the non linear asymptotic length ∆ of the upstream influence of an accident at x = x 0 at the walls. As Smith [START_REF] Smith | Upstream interactions in channel flows[END_REF] we found that ∆ = O(R 1/7 e ), where R e is the Reynolds number. The only hypothesis on the wall accident is that it is significant enough to perturbe the Poiseuille flow, so that the Poiseuille flow is no more a good approximation in the boundary layer. Then by assuming an exponential variation in x of the perturbed flow, in order to obtain the Poiseuille flow as x → -∞ (i.e. far upstream the wall deformations), we perform an eigenvalue analysis. We thus found that the first mode is related to nonsymmetric wall deformations. Two kind of wall deformations are considered (local and global distortions) and comparisons between GIBL, Navier-Stokes solutions and eigenmodes show that the model is well founded.

Geometrical configuration

Two kind of geometrical configuration have been considered for the accident: (i) a local wall perturbation as in figure 1, or (ii) a global wall curvature as in figure 2. In the test case (i), the walls are deformed in a domain x 0 ≤ x ≤ x 0 + L such as:

y x y u = 1 2 -G(x, ε) y l = -1 2 + F(x, ε) x = x 0
F = h l 2 1 + cos 2πx L ; G = - h u 2 1 + cos 2πx L . (1) 
where h u and h l are small parameters.

In the test case (ii), we use a generalized system of coordinates, where X and Y are distances along and perpendicular to the line H = 0. We call it the median line if the upper (or inner) and lower (or external) walls are respectively given by Y = ± 1 2 .

For a point M with general coordinates X and Y , we can write

--→ OM = --→ OM 0 + Y n,
where n is the unit normal vector. Then, -→ dM = dX (1 + KY) τ + dY n, where τ is the unit vector tangent at M 0 to the median line in such a way that (τ, n) is direct; K(X) is the algebraic curvature of this line. Thus, K < 0 in the case of figure 2. The curvature K and its variation in X are small. We thus describe the channel variable curvature for X > 0 by K = δk(X) , where δ is a small positive parameter. Let U and V denote the velocity components parallel and perpendicular to the line H = 0, then, as V = Uτ + V n, the full equations of motion written in generalized coordinates are given in [START_REF] Zagzoule | Uniformaly Valid Approximation Flow analysis in Curved Channels[END_REF]. These equations must be solved with boundary conditions: 

U = V = 0 for Y = ± 1 2 . M X Y R c C M0 y x + 1 2 -1 2 
H(x, y) = 0 X = X 0

Fully established flow in a curved channel

For a channel of constant curvature δ, the fully established flow U 0 is solution of

(1 + δY) d 2 U 0 dY 2 + δ dU 0 dY - δ 2 1 + K 0 Y U 0 = -GR e (2)
where G = -∂P ∂X is constant, and with U 0 = 0 for Y = ± 1 2 . Notice that for δ = 0 we retrieve the equation for the Poiseuille flow:

d 2 U 0 dY 2 = -2.
The exact solution is given by:

U 0 (Y ) = 1 64 GR e f (δ,Y ) (δ 2 (1 + δY )) (3) 
where

f (δ,Y ) = δ 3 (1 -4Y 2 ) + 8δ 2 Y (2Y -1) + 4δ(-4Y 2 + 8Y -3) + 16(1 -2Y) ln 2 -δ 2δ + -δ 3 (1 -4Y 2 ) + 8δ 2 Y (2Y + 1) + 4δ(4Y 2 + 8Y + 3) + 16(1 + 2Y) ln 2 + δ 2δ - 32 2δY + δ 2 Y 2 + 1 ln 1 + δY δ
As shown in figure 3, the corresponding exact solution U 0 (y) bends towards the internal wall of the bend. Notice that, for a small constant curvature δ and for a flow rate of 1/6, an approximate solution O(δ) is

U 0 = 1 4 -Y 2 1 - 2δ 3 Y , which implies a skin friction of C f R e 2 = 1 ∓ δ 3 .

Global Interactive Boundary Layer (GIBL) model

According to the SCEM, a Uniformaly Valid Approximation (UVA) for the velocity and pressure fields (U,V, P) is obtained by complementing the core approximation

(U 1 = u 0 + δu 1 ,V 1 = δv 1 , P 1 = p 0 + δp 1 ) such as: U = u 0 (Y ) + δ [u 1 (X,Y, δ) + U BL (X, η, δ)] V = δ [v 1 (X,Y, δ) + εV BL (X, η, δ)] P = p 0 (X) + δ [p 1 (X,Y, δ, ε) + ∆(ε)P BL (X, η, δ, ε)] (4) 
where lim η→∞ U BL = 0, lim η→∞ V BL = 0 and lim η→∞ P BL = 0 (see [START_REF] Zagzoule | Uniformaly Valid Approximation Flow analysis in Curved Channels[END_REF] for more details).

Thus, we obtain Uniformaly Valid Approximation (UVA) equations:

∂U ∂X + ∂V ∂Y = 0 U ∂U ∂X + V ∂U ∂Y = - ∂P 1 ∂X + 1 R e ∂ ∂Y (1 + KY) ∂U ∂Y
with the following boundary conditions,

U = V = 0, for Y = ± 1 2
. The core equations being:

u 0 ∂V 1 ∂X -Ku 2 0 = - ∂P 1 ∂Y -u 0 ∂V 1 ∂Y + V 1 du 0 dY = - ∂(P 1 -p 0 ) ∂X A simplified model for the pressure gives ∂P 1 ∂X = dp 0 dX + δ A ′′′ + k ′ Z η η c u 2 0 (η ′ ) dη ′ + δB ′ (X). At the medline, i.e. for η = η c , since the UVA V should match the core approximation V 1 , we impose the coupling condition V = V 1 = -A ′ (X)u 0 .
For more details about GIBL, see the companion paper [START_REF] Zagzoule | High Reynolds Channel Flows: Variable curvature[END_REF].

Upstream interaction

Upstream length

In a straight channel, upstream of the wall accident, for x < 0, the GIBL and core equations become:

U ∂U ∂x + V ∂U ∂y = - ∂P 1 ∂x + 1 Re ∂ 2 U ∂y 2 (5) 
∂U ∂x + ∂V ∂y = 0 (6) -U 0 ∂V 1 ∂y + V 1 dU 0 dy = - ∂(P 1 -P 0 ) ∂x (7) U 0 ∂V 1 ∂x = - ∂(P 1 -P 0 ) ∂y (8) 
We now consider perturbations of the following form: U = U 0 + εu, V = εv and P 1 = P 0 + λp 1 . If the critical unknown streamwise length scale is ∆, then, with x = x ∆ and thus V = ∆V , we obtain from (5,6,7,8) the following perturbation equations:

∂u ∂x + ∂v ∂y = 0 (9) U 0 ∂u ∂x + v dU 0 dy + ε u ∂u ∂x + v ∂u ∂y = - λ ε ∂p 1 ∂x + ∆ Re ∂ 2 u ∂y 2 (10) -U 0 ∂v 1 ∂y + v 1 dU 0 dy = - λ ε ∂p 1 ∂x (11) U 0 ∂v 1 ∂x = - λ∆ 2 ε ∂p 1 ∂y ( 12 
)
If ε is the boundary layer thickness, the first significant perturbation is such as An upstream interaction takes place if we have a generation of a significant transverse pressure gradient in the core flow, which implies from (12) that λ∆ 2 ε = O(1). Thus, we easily obtain (as did Smith [START_REF] Smith | Upstream interactions in channel flows[END_REF] by regular asymptotic expansions) the following crucial orders:

U 0 = O(ε), v = O(ε)
∆ = O(R 1/7 e ), ε = O(R -2/7 e ) and λ = O(R -4/7 e
).

(13)

Eigenmode analysis

For x < 0, the linearized UVA system of equations may be written as :

             U 0 ∂u ∂x + U ′ 0 v = - ∂p 1 ∂x + 1 Re ∂ 2 u ∂y 2 ∂u ∂x + ∂v ∂y = 0 U 0 ∂v 1 ∂x = - ∂p 1 ∂y (14) 
By replacing v 1 by v in the transverse core momemtum equation, and by assuming the following form for u, v and p 1 :

u(x, y) = û(y)e θx , v(x, y) = v(y)e θx , p 1 (x, y) = p1 (y)e θx ( 15 
)
we obtain for the perturbations: We just have now to find the eigenvalues and eigenfunctions of the matrix B -1 A, where :

θ   U 0 0 1 1 0 0 0 U 0 0   q =     D 2 Re -U ′ 0 0 0 -D 1 0 0 0 -D 1     q (16) where q =   û v p1   , D 1 = ∂ ∂y and D 2 = ∂ 2 ∂y 2 . -0.5 0 0.5 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 (a) -2 -1.8 -1.6 -1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.
A =     D 2 Re -U ′ 0 0 0 -D 1 0 0 0 -D 1     and B =   U 0 0 1 1 0 0 0 U 0 0   (17) 
For R e = 1000, the first positive eigenvalue found is θ 1 ≃ 2.0441. The figure 4(a) represents the eigenfunctions of this mode. As shown in figure 4(b), by computing this first positive eigenvalue for different Reynolds number ranging from 10 3 to 10 6 , we obtain that the corresponding upstream influence ∆ = O(R 1/7 e ) as in the analysis of the section 5.1.

Results

Both the order analysis of section 5.1 and the eigenmode analysis of section 5.2 show that ∆ = O(R 1/7 e ). We now compute the flow field using the GIBL model described in section 4 for different accident types at x = 0. First, we have considered a straight channel connected at x = 0 to a curved channel of constant curvature. The figures 5 (a) and (b) represent the median curved length evolution of V (X, η c ) for, respectively, a fixed δ = 0.2 at different Reynolds numbers, and a fixed R e = 1000 at different wall curvature. These two results confirm that ∆ = O(R 1/7 e ). 

Conclusion

The non linear upstream effect on a channel flow submitted to asymmetric disturbance has been studied. By using three differents tools, a new asymptotic approach called Successive Complementary Expansions Method (SCEM) with generalized asymptotic expansions, a modal analysis and direct Navier-Stokes computations, we found that the upstream influence length ∆ = O(R 1/7 e ).
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 1 Fig. 1. (i) case: Local wall perturbation; location of the accident at x = x 0 .
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 2 Fig. 2. (ii) case: Global wall curvature; location of the accident at X = X 0 .
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 3 Fig. 3. Velocity profile U 0 (Y ); Poiseuille flow (dashed line); profile for δ = 1 (straight line).
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 4 Fig. 4. (a) Profiles of the first mode eigenfunctions û (straight line), v (dashed line) and p1 (dotted line) for Re = 1000; (b) Upstream influence of the first mode for Re = 10 3 (straight line), 10 4 (black circle), 10 5 (dashed line), 10 6 (white square).
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 5 Fig. 5. (ii) case: straight channel connected at x = 0 to a curved channel of constant curvature; (a) δ = 0.2, R e from 100 to 10000; (b) R e = 1000, δ from 0.1 to 1
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 567 Fig. 6. (i) case: straight channel perturbed at x = 0 with L = 4H, h u = h l = 0.3; x-evolution of the adimensionnalized V (x, η c ) for different values of R e (from 100 to 10000).