
HAL Id: hal-04025948
https://hal.science/hal-04025948

Submitted on 14 Mar 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

GCPU_OpticalFlow: a GPU accelerated Python
software for strain measurement

Ahmed Chabib, Jean-François Witz, Pierre Gosselet, Vincent Magnier

To cite this version:
Ahmed Chabib, Jean-François Witz, Pierre Gosselet, Vincent Magnier. GCPU_OpticalFlow:
a GPU accelerated Python software for strain measurement. SoftwareX, 2023, 26, pp.101688.
�10.1016/j.softx.2024.101688�. �hal-04025948�

https://hal.science/hal-04025948
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


GCPU_OpticalFlow: a GPU accelerated Python
software for strain measurement

Ahmed Chabib, Jean-François Witz,
Pierre Gosselet and Vincent Magnier

Univ. Lille, CNRS, Centrale Lille, UMR 9013
LaMcube, F-59000 Lille, France

March 14, 2023

Abstract

This paper introduces an open-source pixel-wise Digital Image Correlation tool
written in Python and targeting graphics processing units (GPUs) with the help of
Cupy and Rapids-cuCim libraries. It is capable of computing the kinematic fields
that transform an image into another in an efficient and quick way and it allows to
treat large images in the GPU. Even if GCPU_OpticalFlow can be easily used by
communities concerned by the estimation of displacement, it is particularly tuned
to estimate consistent strain (gradient) field. The detection of a crack in a material
is presented in this work as a demonstration.

Keywords: DIC; Optical Flow; Python; GPU; Mechanics; Strain Measurement;
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1 Motivation and significance

1.1 Introduction

Digital Image Correlation (DIC) is one of the most popular optical methods that provide
full-field displacement between consecutive images. After the notable advancement of this
technique, DIC has become more and more used in several scientific disciplines, notably in
materials science for strain measurement in order to deduce the properties of materials.

Most of DIC software are based on a local [24, 25, 26, 27, 28] or a global approach [24,
29, 34, 35]. As a result, the displacement field is calculated over subsets of pixels. We
propose through this paper a new open source code named GCPU_OpticalFlow, based
on D. Sun [4] methods, able to describe the motion at each single pixel.

The calculation of the kinematic fields from a sequence of images captured with modern
high-resolution cameras become increasingly expensive in terms of memory and compu-
tation, due to the copious volumes of data (tomography etc.). Hence the need to develop
an optimized fast code that takes up less memory. We propose to use a matrix-free im-
plementation of Krylov iterative solvers [14] suited to Graphics Processing Units(GPU)
so that no voluminous matrix needs to be stored. Some of the existing DIC pro-
grams are written with a low level programming language (C++ for the example) like
DICe [24], Ncorr [25] which make their understanding, execution and modification com-
plicated. Our code is implemented in the popular python language and relies on classical
libraries to optimize its performance and offload computations on the available hardware
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accelerators. Presently, the DIC programs are adapted to different architectures, like
CPU [24, 25, 26, 27, 28], Raspberry Pi [23] or even in GPU [20]. In contrast to this
software where no assumption on the nature of the displacements is made, the previous
work of our research team GPUcorrel [20] is based on a global approach and uses an inte-
grated correlation step. In other terms, the program expects a list of displacement fields
to extract from the image sequence and the calculated result is a linear combination of the
given basis. Moreover, GPUcorrel uses PyCUDA kernels which have the form of CUDA-C
code to target the GPU. Our software uses Cupy [15] and Cucim [16] libraries that con-
tain a GPU-accelerated version of Numpy, Scipy and Skimage functions and called easily
using the same syntax. The engine is able to use the alternatives of the GPU libraries on
CPU when the GPU or one of its related libraries is missing. For instance, if CuPy is not
found, Numpy will be used instead, all in the same single straightforward Python code
comprehended by non-experimented developers.

This article and software represents a bridge between the optical flow community that
does not deal with mechanical imaging and the DIC community, and enables the users,
particularly from mechanical engineering, to measure the pixel-wise displacements and
efficiently deduce strain.

1.2 Principles of DIC and Optical Flow

Let f and g be a sequence of two images, where f is the reference image and g is the
deformed one. The objective of DIC is to find a transformation of the image that keeps
the gray levels invariant between two images.

f(x) = g(x+ u(x)), u is the displacement field. (1)
It is impossible to estimate the displacement that transforms f to g at each pixel directly
from the conservation law (1) as the number of unknowns exceeds the number of equations.
To solve this problem, DIC algorithms transform the ill-posed optical flow problem into
a well-posed one by using a grid of pixels, aiming at reducing the number of the degrees
of freedom [2]. This grid can be local, FEM (Finite Element Method) [36] or even X-
FEM (Extended Finite Element Method) [3]. Therefore, the displacement, written uh,
is interpolated on a basis of continuous shape functions with local support. In order to
quantify the difference between the images, the integral of squared differences is chosen
as a metric. Then the purpose of DIC is the minimization of the objective function (2)
with respect to uh.

E(uh) =

∫
Ω

(
f(x)− g

(
x+ uh(x)

))2

dx (2)

The use of a reduced dimension search space acts in itself as a regularization. Nev-
ertheless, when willing to decrease the size of the grid, a Tikhonov-type regularization is
commonly added, leading to a new objective function:

E(uh) =

∫
Ω

(
f(x)− g

(
x+ uh(x)

))2

+ λ(∇uh)2dx, for λ > 0. (3)

Optical flow methods share the purpose of DIC but they make the hypothesis that a
well mastered regularization makes it possible to get rid of the interpolation grid, leading
to computations at the pixel scale, see [1, 7]:

E(u) =

∫
Ω

(
f(x)− g

(
x+ u(x)

))2

+ λ(∇u)2dx (4)

Notice that in [4], other energies were proposed where Li and Osher’s median filter [13]
was interspersed. This resulted in the removal of the outliers at the cost of a slight energy
increase.
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2 Software description

2.1 Software functionalities

GCpu_OpticalFlow is coded in Python language and requires some external modules. It
is implemented as simply as possible in order to be understandable and editable by all the
researchers regardless of their programming skills. Therefore, the software uses Cupy and
cuCim to run on the GPU. Cupy is a high-level GPU-accelerated computing library which
contains a GPU version of NumPy and SciPy libraries able to run on NVIDIA CUDA or
on AMD ROCm platforms, whereas cuCim is a library that provides a CUDA-accelerated
implementation of a wide range of image processing operations existing in scikit-image.
This software only works with NVIDIA GPUs with at least the 3.0 version of Compute
Capability.

At every warping step, the algorithm requires the resolution of the following linear
system: [

I2
x + λ∆ IxIy
IxIy I2

y + λ∆

] [
dUk+1

dV k+1

]
=

[
IxIt + λ∆Uk

IyIt + λ∆V k

]
, (5)

where k is the current iteration, dUk+1 and dV k+1 are respectively the horizontal and
the vertical flow increment, Uk and V k are respectively the horizontal and the vertical
current estimated flow field, λ represents the regularization parameter, Ix and Iy are the
spatial derivatives of the image, It is the temporal derivative and ∆ is the discrete Laplace
operator. When handling high resolution images, the matrix can not fit in the memory
and therefore the resolution is computationally costly.

The preconditioned minimum residual method MINRES [17] is used in this software.
The choice of this solver is motivated not only by its ability to take advantage of the
symmetry of the system matrix but also by the possibility of a matrix-free implementation.
While evaluating the matrix-vector product in the resolution step, the Laplace operator
is computed using the laplace() function of scipy or cupyx.scipy for GPU, to avoid any
additional matrix storage.

In numerical analysis, the preconditioner is a practical tool to increase the rate of
convergence, in our case it has been observed that using the following preconditioner P
can decrease the number of iterations that MINRES takes to converge.

P =

[
(I2

x + 8λ)−1 0
0 (I2

y + 8λ)−1

]
(6)

As usually done in DIC methods, the gradient of the second warped image ∇g(x+ u)
is replaced by the gradient of the reference image of the sequence ∇f(x) so that costly
computation can be avoided. This can be explained by the fact that at the convergence
the images of the sequence converge to the same solution [18].

2.2 Software architecture

To estimate flow fields with large motion, the method uses an incremental multi-resolution
technique. A pyramid of images is built by down-sampling the sequence. The flow field
estimated in a level is thereafter up-sampled and used to initialize the next level as
illustrated in Fig. 1. The main function of the software is compute_flow_base(). It
returns ul and vl, the horizontal and the vertical displacements for a specified level l
after solving the system (5) 10 times and getting the best flow increments, and it takes
as one of its arguments the up-sampled displacements computed in the previous level
as an initial state. It should be noted that in the top level, the initialization is given
by optical_flow_tvl1() function of skimage or cucim.skimage. compute_flow_base() is
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Figure 1: Representation of the pyramidal approach

called at each level by the compute_flow() function which allows the management of the
pyramid and returns the final estimated displacements. The flowchart in Fig. 2 shows the
main functions of the software modules.

Figure 2: Flow-chart of flow field estimation with GCPU_OpticalFlow

3 Illustration
We created, in the folder Test, a script named mainscript.py which allows the user to
quickly test the program. This script is able to estimate the motion from the sequence
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of images in the Images folder. It generates two .npy files, u_cucim and v_cucim corre-
sponding to the horizontal and vertical displacements.

To demonstrate the usefulness of the method, we used two images of a holed ±45
carbon/epoxy composite material specimen Fig. 4 on which a uniaxial tensile force is
applied. The setup is schematized in Fig. 3, it generates a sequence of 1120×7830 images
where each pixel is equivalent to 0.022 mm. This type of material is chosen because of its
particularity of creating cracks, which provides an excellent case to test and to analyze
the method on discontinuities.

Figure 3: Experimental setup with (A)
the camera, (B) the sample under test-
ing and (C) the uniaxial tensile testing
machine.

Figure 4: Dimensions of the used ±45
Carbon Epoxy specimen.

The results presented in Fig. 5 and Fig. 6 show that the method can detect the only
crack in the sample. We observe that the choice of the amplitude of the regularization
parameter as well as the size of the window of the median filter could play an important
role. Increasing the value of λ leads to decreasing the noise on the image but it can lead
to strain diffusion as the result of using a quadratic norm. We also remark that increasing
the size of the median filter can provide less noisy results.

4 Impact
In order to compare the performance of our method with a global DIC software, we use
YaDICS [22], a program which demonstrated its competence to effectively generate the
kinematic fields [21] in various disciplines of experimental mechanics. The window size
in the DIC approach is decreased to the maximum in order to compare the performance,
since GCPU_OpticalFlow generates the fields at every pixel. The result is shown in Fig. 7
and Table 1. We observe, that the crack is clearly detected. Note that the interpolation
error given by the norm of the difference between the warped image and the reference
one, is 5.42 × 10−2 and 5.64 × 10−2 for YaDICs and GCPU_OpticalFlow respectively,
meaning that the quality of the solution is unchanged. The main difference is that the
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(a) λ = 3× 103 (b) λ = 5× 103

(c) λ = 5× 104 (d) λ = 105

Figure 5: Uniaxial strain εxx in function of λ with fixed 3× 3 median filter

DIC method takes more than 11 minutes for YaDICs using an AMD Ryzen Threadripper
1950X 16-Core Processor. On the other side, due to the performance improvement efforts,
the GCPU takes only 15 seconds using a the same processor with an NVIDIA GeForce
RTX 3070 GPU, meaning that our software in this case is 44 times faster.

For the purpose of getting a clear idea about the difference between the residuals of
both software, a graph is presented in Fig. 8. We mean by the image energy, the energy
calculated by first term of the function E (4) related to the gray value constancy, while
the gradient displacement energy is the value given by the gradient of the transformation
that figures in the second term of the same function E. Different values of λ varying from
3 × 103 to 106 are used for GCPU, and various element size between 2 and 50 are used
in YaDICs case, since these two parameters are meant to smooth the calculated fields by
each program. It can be clearly observed that for an equivalent smoothness level, GCPU
provides better quality results as its image energy is lower than YaDICs’. To quantify
the difference, the areas under the curves are measured and we can notice that the value
given by YaDICs is 6.42 greater than the one calculated by GCPU_OpticalFlow.

The methods used by the program were coded in [6] using Matlab. Unlike Python
which became a vastly accepted open-source programming language, Matlab isn’t free
nor open-source. The Matlab implementation was expensive in terms of memory and
calculations. To estimate the motion for an (N × N) pixels sequence, the storage of
O(N4) coefficients of Laplace matrix and of the main matrix of the linear problem (5)
was needed. Thanks to GCPU_OpticalFlow, we are able to solve the same problem using
only O(N2) coefficients. Using this approach, we can treat larger volume of data on the
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(a) Median 3× 3 (b) Median 5× 5

(c) Median 9× 9 (d) Median 11× 11

Figure 6: Uniaxial strain εxx in function of the median size with fixed λ = 3× 103

GPU.
In the future this work will be integrated to Crappy [19], which is a locally developed

Python module capable of commanding advanced experimental mechanical tests and able
to acquire data in real time.

5 Conclusion
The presented software is an open-source Python module for full field displacement and
strain computing, able to run in both GPU and CPU and based on D. Sun models. In our
implementation, we used a matrix-free Krylov solver to reduce the computational cost and
the memory storage. It has been shown by the example that the code computes efficiently
the strain at each pixel of the image. We also presented the benefits and limitations of
the size of the median filter and the parameter of regularization on the discontinuities.

Finally, in the long term this method will be extended to work on three-dimensional
tomographic images.

6 Acknowledgements
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(a) YaDICs strain with 2 × 2 window, 3 × 3
median (b) GCPU strain λ = 3× 103, 5× 5 median

Figure 7: Strain field computed by YaDICs and GCPU_OpticalFlow

Field Method Mean Std Median NMAD

u
Y aDICs -5.307e+1 2.881e+1 -5.375e+1 2.436e+1
GCPU -5.315e+1 2.868e+1 -5.388e+1 2.428e+1

∆u ∗ ∗ ∗∗ 8.00e-2 1.3e-1 1.3e-1 8.00e-2

v
Y aDICs -1.367e-1 3.391e+0 -7.050e-2 2.755e+0
GCPU -2.210e-1 3.312e+0 -2.500e-1 2.606e+0

∆v ∗ ∗ ∗∗ 8.43e-2 7.90e-2 1.79e-1 1.49e-1

εxx
Y aDICs 1.35e-1 4.500e-2 1.070e-2 6.832e-3
GCPU 1.32e-1 2.640e-2 1.054e-2 5.678e-3

∆εxx ∗ ∗ ∗∗ 3.00e-3 1.86e-2 1.60e-4 1.15e-3

εyy
Y aDICs -7.000e-3 1.840e-2 -8.000e-3 5.37e-3
GCPU -9.063e-3 1.338e-2 -8.000e-3 3.728e-3

∆εyy ∗ ∗ ∗∗ 2.06e-3 5.02e-3 0.00e-3 1.64e−3

εxy
Y aDICs -1.700e-4 2.431e-1 -8.38e-5 2.736e-3
GCPU -1.731e-4 1.353e-2 0.000e-3 3.564e-3

∆εxy ∗ ∗ ∗∗ 3.10e-6 2.29e-1 -8.38e-5 -8.28e-4

Table 1: Statistical indicators of GCPU_OpticalFlow and the interpolated YaDICs fields
and their differences

7 Declaration of competing interest
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Metadata

Nr. Code metadata description
C1 Current code version v1.0
C2 Permanent link to code, reposi-

tory used for this code version
https://github.com/
chabibchabib/GCpu_OpticalFlow

C3 Permanent link to Reproducible
Capsule

C4 Legal Code License GPLv2+
C5 Code versioning system used git
C6 Software code languages, tools,

services used
Python, Cupy, OpenCv, Rapids
Cucim and Numba

C7 Compilation requirements, oper-
ating environments & dependen-
cies

Numpy 1.20.3, Scikit-image 0.16.2,
Scipy 1.6.3, OpenCV 4.2.0 or newer
versions. Numba, NVIDIA CUDA
GPU with the Compute
Capability > 3.0, CUDA
Toolkit > 10.2, Cupy and Cucim

C8 Link to developer documenta-
tion, manual

https://gcpu-opticalflow.
readthedocs.io/

C9 Support email for questions ahmed.chabib@univ-lille.fr

Table 2: Code metadata
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