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A similarity renormalization group approach to Green’s function methods
Antoine Marie1, a) and Pierre-François Loos1, b)

Laboratoire de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse, CNRS, UPS, France

The family of Green’s function methods based on the GW approximation has gained popularity in the electronic
structure theory thanks to its accuracy in weakly correlated systems combined with its cost-effectiveness.
Despite this, self-consistent versions still pose challenges in terms of convergence. A recent study [J. Chem.
Phys. 156, 231101 (2022)] has linked these convergence issues to the intruder-state problem. In this work, a
perturbative analysis of the similarity renormalization group (SRG) approach is performed on Green’s function
methods. The SRG formalism enables us to derive, from first principles, the expression of a naturally static
and Hermitian form of the self-energy that can be employed in quasiparticle self-consistent GW (qsGW )
calculations. The resulting SRG-based regularized self-energy significantly accelerates the convergence of
qsGW calculations, slightly improves the overall accuracy, and is straightforward to implement in existing
code.
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I. INTRODUCTION

The one-body Green’s function provides a natural and
elegant way to access the charged excitation energies of
a physical system.1–4 The non-linear Hedin equations
consist of a closed set of equations leading to the ex-
act interacting one-body Green’s function and, therefore,
to a wealth of properties such as the total energy, den-
sity, ionization potentials, electron affinities, as well as
spectral functions, without the explicit knowledge of the
wave functions associated with the neutral and charged
electronic states of the system.5 Unfortunately, solving
exactly Hedin’s equations is usually out of reach and
one must resort to approximations. In particular, the
GW approximation,4–9 which has been first introduced
in the context of solids10–19 and is now widely applied
to molecular systems,20–46 yields accurate charged exci-
tation energies for weakly correlated systems9,47–51 at a
relatively low computational cost.52–58

The GW method approximates the self-energy Σ which
relates the exact interacting Green’s function G to a non-
interacting reference version G0 through a Dyson equation
of the form

G(1, 2) = G0(1, 2) +

∫
d(34)G0(1, 3)Σ(3, 4)G(4, 2), (1)

a)Electronic mail: amarie@irsamc.ups-tlse.fr
b)Electronic mail: loos@irsamc.ups-tlse.fr

where 1 = (x1, t1) is a composite coordinate gathering
spin-space and time variables. The self-energy encapsu-
lates all the Hartree-exchange-correlation effects which
are not taken into account in the reference system. Ap-
proximating Σ as the first-order term of its perturbative
expansion with respect to the screened Coulomb potential
W yields the so-called GW approximation3,5

Σ(1, 2) = iG(1, 2)W (1, 2). (2)

Diagrammatically, GW involves a resummation of the
(time-dependent) direct ring diagrams via the com-
putation of the random-phase approximation (RPA)
polarizability59,60 and is thus particularly well suited for
weak correlation.

Despite a wide range of successes, many-body pertur-
bation theory has well-documented limitations.48,57,61–68
For example, modeling core-electron spectroscopy requires
core ionization energies which have been proven to be
challenging for routine GW calculations.49,69–71 Many-
body perturbation theory can also be used to access
optical excitation energies through the Bethe-Salpeter
equation.35,41,72,73 However, the accuracy is not yet sat-
isfying for triplet excited states, where instabilities of-
ten occur.27,30,31,42 Therefore, even if GW offers a good
trade-off between accuracy and computational cost, some
situations might require higher precision. Unfortunately,
defining a systematic way to go beyond GW via the in-
clusion of vertex corrections has been demonstrated to
be a tricky task.47,74–92 For example, Lewis and Berkel-
bach have shown that naive vertex corrections can even
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worsen the quasiparticle energies with respect to GW .93
We refer the reader to the recent review by Golze and
co-workers4 for an extensive list of current challenges in
Green’s function methods.
Many-body perturbation theory also suffers from the

infamous intruder-state problem,94–99 where they man-
ifest themselves as solutions of the quasiparticle equa-
tion with non-negligible spectral weights. In some cases,
this transfer of spectral weight makes it difficult to dis-
tinguish between a quasiparticle and a satellite. These
multiple solutions hinder the convergence of partially
self-consistent schemes,55,100,101 such as eigenvalue-only
self-consistent GW 102–106 (evGW ) and quasiparticle self-
consistent GW 105,107–110 (qsGW ). The simpler one-shot
G0W0 scheme10,14,18,102,111–115 is also impacted by these
intruder states, leading to discontinuities and/or irregular-
ities in a variety of physical quantities including charged
and neutral excitation energies, correlation and total
energies.44,100,101,116–119 These convergence problems and
discontinuities can even happen in the weakly correlated
regime where the GW approximation is supposed to be
valid.

In a recent study, Monino and Loos showed that the
discontinuities could be removed by the introduction,
in the quasiparticle equation, of a regularizer inspired
by the similarity renormalization group (SRG).101 En-
couraged by this study and the recent successes of reg-
ularization schemes in many-body quantum chemistry
methods, such as in single- and multi-reference pertur-
bation theory,120–125 the present work investigates the
application of the SRG formalism in GW -based methods.
In particular, we focus here on the possibility of curing
the qsGW convergence issues using the SRG.

The SRG formalism has been developed independently
by Wegner126 in the context of condensed matter systems
and Glazek & Wilson127,128 in light-front quantum field
theory. This formalism has been introduced in quantum
chemistry by White129 before being explored in more
detail by Evangelista and coworkers in the context of
multi-reference electron correlation theories.122,123,130–137
The SRG has also been successful in the context of nuclear
structure theory, where it was first developed as a mature
computational tool thanks to the work of several research
groups.138–145 See Ref. 142 for a recent review in this
field.

The SRG transformation aims at decoupling an internal
(or reference) space from an external space while incorpo-
rating information about their coupling in the reference
space. This process often results in the appearance of
intruder states.122,123 However, SRG is particularly well-
suited to avoid these because the decoupling of each ex-
ternal configuration is inversely proportional to its energy
difference with the reference space. By definition, intruder
states have energies that are close to the reference energy,
and, therefore, are the last to be decoupled. By stopping
the SRG transformation once all external configurations
except the intruder states have been decoupled, corre-
lation effects between the internal and external spaces

can be incorporated (or folded) without the presence of
intruder states.
The goal of this manuscript is to determine if the

SRG formalism can effectively address the issue of in-
truder states in many-body perturbation theory, as it
has in other areas of electronic and nuclear structure
theory. This open question will lead us to an intruder-
state-free static approximation of the self-energy derived
from first-principles that can be employed in partially
self-consistent GW calculations. Note that throughout
the manuscript we focus on the GW approximation but
the subsequent derivations can be straightforwardly ap-
plied to other self-energies such as the one derived from
second-order Green’s function146–162 or the T -matrix
approximation.78,80,89,163–174
The manuscript is organized as follows. We begin by

reviewing the GW approximation in Sec. II and then
briefly introduce the SRG formalism in Sec. III. A per-
turbative analysis of SRG applied to GW is presented in
Sec. IV. The computational details are provided in Sec. V
before turning to the results (Sec. VI). Our conclusions
are drawn in Sec. VII. Unless otherwise stated, atomic
units are used throughout.

II. THE GW APPROXIMATION

The central equation of many-body perturbation theory
based on Hedin’s equations is the so-called dynamical and
non-Hermitian quasiparticle equation which, within the
GW approximation, reads

[F + Σ(ω = εp)]ψp(x) = εpψp(x), (3)

where F is the Fock matrix in the orbital basis148 and
Σ(ω) is (the correlation part of) the GW self-energy. Both
are K ×K matrices with K the number of one-electron
orbitals. Throughout the manuscript, the indices p, q, r, s
are general orbitals while i, j, k, l and a, b, c, d refer to
occupied and virtual orbitals, respectively. The indices µ
and ν are composite indices, that is, ν = (ia), referring
to neutral (single) excitations.

The self-energy can be physically understood as a cor-
rection to the Hartree-Fock (HF) problem (represented by
F ) accounting for dynamical screening effects. Similarly
to the HF case, Eq. (3) has to be solved self-consistently
but the dynamical and non-Hermitian nature of Σ(ω), as
well as its functional form, makes it much more challeng-
ing to solve from a practical point of view.

The matrix elements of Σ(ω) have the following closed-
form expression81,175–178

Σpq(ω) =
∑

iν

W ν
piW

ν
qi

ω − εi + Ων − iη
+
∑

aν

W ν
paW

ν
qa

ω − εa − Ων + iη
,

(4)
where η is a positive infinitesimal and the screened two-
electron integrals are

W ν
pq =

∑

ia

〈pi|qa〉 (X + Y )
ν
ia, (5)
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with X and Y the components of the eigenvectors of the
direct (i.e. without exchange) RPA problem defined as

(
A B
−B −A

)(
X Y
Y X

)
=

(
X Y
Y X

)(
Ω 0
0 −Ω

)
, (6)

with

Aia,jb = (εa − εi)δijδab + 〈ib|aj〉 , (7a)
Bia,jb = 〈ij|ab〉 , (7b)

and where

〈pq|rs〉 =

∫∫
ψp(x1)ψq(x2)ψr(x1)ψs(x2)

|r1 − r2|
dx1dx2 (8)

are bare two-electron integrals in the spin-orbital basis.
The diagonal matrix Ω contains the positive eigenvalues

of the RPA problem defined in Eq. (6) and its elements
Ων appear in Eq. (4).
As mentioned above, because of the frequency depen-

dence of the self-energy, solving exactly the quasiparticle
equation (3) is a rather complicated task. Hence, several
approximate schemes have been developed to bypass full
self-consistency. The most popular strategy is the one-
shot (perturbative) GW scheme, G0W0, where the self-
consistency is completely abandoned, and the off-diagonal
elements of Eq. (3) are neglected. Assuming a HF starting
point, this results in K quasiparticle equations that read

εHFp + Σpp(ω)− ω = 0, (9)

where Σpp(ω) are the diagonal elements of Σ and εHFp
are the HF orbital energies. The previous equations are
non-linear with respect to ω and therefore have multiple
solutions εp,z for a given p (where the index z is numbering
solutions). These solutions can be characterized by their
spectral weight given by the renormalization factor

0 ≤ Zp,z =

[
1− ∂Σpp(ω)

∂ω

∣∣∣∣
ω=εp,z

]−1

≤ 1. (10)

The solution with the largest weight Zp ≡ Zp,z=0 is re-
ferred to as the quasiparticle while the others are known
as satellites (or shake-up transitions). However, in some
cases, Eq. (9) can have two (or more) solutions with simi-
lar weights, hence the quasiparticle is not well-defined.
One obvious drawback of the one-shot scheme men-

tioned above is its starting-point dependence. Indeed, in
Eq. (9) we choose to rely on HF orbital energies but this
is arbitrary and one could have chosen Kohn-Sham ener-
gies (and orbitals) instead. As commonly done, one can
even “tune” the starting point to obtain the best possible
one-shot GW quasiparticle energies.50,104,179–182

Alternatively, one may solve iteratively the set of quasi-
particle equations (9) to reach convergence of the quasi-
particle energies, leading to the partially self-consistent
scheme named evGW . However, if one of the quasiparti-
cle equations does not have a well-defined quasiparticle

solution, reaching self-consistency can be challenging, if
not impossible. Even at convergence, the starting point
dependence is not totally removed as the quasiparticle
energies still depend on the initial set of orbitals.104
In order to update both the orbitals and their corre-

sponding energies, one must consider the off-diagonal
elements in Σ(ω). To avoid solving the non-Hermitian
and dynamic quasiparticle equation defined in Eq. (3),
one can resort to the qsGW scheme in which Σ(ω) is
replaced by a static approximation ΣqsGW . Then, the
qsGW equations are solved via a standard self-consistent
field procedure similar to the HF algorithm where F is
replaced by F + ΣqsGW . Various choices for ΣqsGW are
possible but the most popular is the following Hermitian
approximation

ΣqsGW
pq =

1

2
Re[Σpq(εp) + Σpq(εq)], (11)

which was first introduced by Faleev and co-workers107–109
before being derived by Ismail-Beigi as the effective Hamil-
tonian that minimizes the length of the gradient of the
Klein functional for non-interacting Green’s functions.183
The corresponding matrix elements are

ΣqsGW
pq =

1

2

∑

rν

[
∆ν
pr

(∆ν
pr)

2 + η2
+

∆ν
qr

(∆ν
qr)

2 + η2

]
W ν
prW

ν
qr,

(12)
with ∆ν

pr = εp − εr − sgn(εr − εF )Ων (where εF is the
energy of the Fermi level). One of the main results of the
present manuscript is the derivation, from first principles,
of an alternative static Hermitian form for the qsGW
self-energy.

Once again, in cases where multiple solutions have large
spectral weights, self-consistency can be difficult to reach
at the qsGW level. Multiple solutions of Eq. (9) arise
due to the ω dependence of the self-energy. Therefore,
by suppressing this dependence, the static approximation
relies on the fact that there is well-defined quasiparticle
solutions. If it is not the case, the self-consistent qsGW
scheme inevitably oscillates between solutions with large
spectral weights.55

The satellites causing convergence issues are the above-
mentioned intruder states.101 One can deal with them
by introducing ad hoc regularizers. For example, the iη
term in the denominators of Eq. (4), sometimes referred
to as a broadening parameter linked to the width of the
quasiparticle peak, is similar to the usual imaginary-shift
regularizer employed in various other theories plagued by
the intruder-state problem.97,101,124,184.
However, this η parameter is required to define the

Fourier transformation between time and energy repre-
sentation and should theoretically be set to zero.3 Several
other regularizers are possible120–122,125,185,186 and, in par-
ticular, it was shown in Ref. 101 that a regularizer inspired
by the SRG had some advantages over the imaginary shift.
Nonetheless, it would be more rigorous, and more instruc-
tive, to obtain this regularizer from first principles by
applying the SRG formalism to many-body perturbation
theory. This is one of the aims of the present work.
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III. THE SIMILARITY RENORMALIZATION GROUP

The SRG method aims at continuously transforming a
general Hamiltonian matrix to its diagonal form, or more
often, to a block-diagonal form. Hence, the first step is
to decompose this Hamiltonian matrix

H = Hd +Hod, (13)

into an off-diagonal part, Hod, that we aim at removing
and the remaining diagonal part, Hd.

This transformation can be performed continuously via
a unitary matrix U(s), as follows:

H(s) = U(s)HU †(s), (14)

where the flow parameter s controls the extent of the
decoupling and is related to an energy cutoff Λ = s−1/2.
For a given value of s, only states with energy difference
(with respect to the reference space) greater than Λ are
decoupled from the reference space, hence avoiding poten-
tial intruders. By definition, the boundary conditions are
H(s = 0) = H [or U(s = 0) = 1] and Hod(s =∞) = 0.

An evolution equation for H(s) can be easily obtained
by differentiating Eq. (14) with respect to s, yielding the
flow equation

dH(s)

ds
= [η(s),H(s)], (15)

where η(s), the flow generator, is defined as

η(s) =
dU(s)

ds
U †(s) = −η†(s). (16)

The flow equation can then be approximately solved by
introducing an approximate form of η(s).
In this work, we consider Wegner’s canonical

generator126

ηW(s) =
[
Hd(s),H(s)

]
=
[
Hd(s),Hod(s)

]
, (17)

which satisfies the following condition187

d

ds
Tr
[
Hod(s)2

]
≤ 0. (18)

This implies that the matrix elements of the off-diagonal
part decrease in a monotonic way throughout the trans-
formation. Moreover, the coupling coefficients associated
with the highest-energy determinants are removed first
as we shall evidence in the perturbative analysis below.
The main drawback of this generator is that it generates
a stiff set of ODE which is therefore difficult to solve
numerically. However, here we will not tackle the full
SRG problem but only consider analytical low-order per-
turbative expressions. Hence, we will not be affected by
this problem.142,188
Let us now perform the perturbative analysis of the

SRG equations. For s = 0, the initial problem is

H(0) = Hd(0) + λHod(0), (19)

where λ is the usual perturbation parameter and the off-
diagonal part of the Hamiltonian has been defined as the
perturbation. For finite values of s, we have the following
perturbation expansion of the Hamiltonian

H(s) = H(0)(s) + λ H(1)(s) + λ2H(2)(s) + · · · . (20)

The generator η(s) admits a similar perturbation expan-
sion. Then, as performed in Sec. IV, one can collect order
by order the terms in Eq. (15) and solve analytically the
low-order differential equations.

IV. REGULARIZED GW APPROXIMATION

Here, we combine the concepts of the two previous sub-
sections and apply the SRG method to the GW formalism.
However, to do so, one must identify the coupling terms
in Eq. (3), which is not straightforward. A way around
this problem is to transform Eq. (3) to an equivalent up-
folded form which elegantly highlights the coupling terms.
Indeed, the GW quasiparticle equation is equivalent to
the diagonalization of the following matrix189,190




F W 2h1p W 2p1h

(W 2h1p)† C2h1p 0

(W 2p1h)† 0 C2p1h


 , (21)

where the 2h1p and 2p1h matrix elements are

C2h1p
iν,jµ = (εi − Ων) δijδνµ, (22a)

C2p1h
aν,bµ = (εa + Ων) δabδνµ, (22b)

and the corresponding coupling blocks read [see Eq. (5)]

W 2h1p
p,iν = W ν

pi, W 2p1h
p,aν = W ν

pa. (23)

The usual GW non-linear equation can be obtained by
applying Löwdin partitioning technique191 to Eq. (21)
yielding189

Σ(ω) = W 2h1p
(
ω1−C2h1p

)−1

(W 2h1p)†

+W 2p1h
(
ω1−C2p1h

)−1

(W 2p1h)†,
(24)

which can be further developed to recover exactly Eq. (4).
Equations (21) and (3) yield exactly the same quasi-

particle and satellite energies but one is linear and the
other is not. The price to pay for this linearity is that the
size of the matrix in the former is O

(
K3
)
while it is only

O(K) in the latter. We refer to Ref. 189 for a detailed
discussion of the up/downfolding processes of the GW
equations (see also Refs. 119 and 190).
As can be readily seen in Eq. (21), the blocks W 2h1p

and W 2p1h are coupling the 1h and 1p configuration to
the 2h1p and 2p1h configurations. Therefore, it is natural
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to define, within the SRG formalism, the diagonal and
off-diagonal parts of the GW effective Hamiltonian as

Hd(s) =



F 0 0

0 C2h1p 0

0 0 C2p1h


 , (25a)

Hod(s) =




0 W 2h1p W 2p1h

(W 2h1p)† 0 0

(W 2p1h)† 0 0


 , (25b)

where we omit the s dependence of the matrices for the
sake of brevity. Then, our aim is to solve, order by order,
the flow equation (15) knowing that the initial conditions
are

H
(0)
d (0) =

(
F 0
0 C

)
, H

(0)
od (0) = 0, (26a)

H
(1)
d (0) = 0, H

(1)
od (0) =

(
0 W

W † 0

)
, (26b)

where the supermatrices

C =

(
C2h1p 0

0 C2p1h

)
, (27a)

W =
(
W 2h1p W 2p1h), (27b)

collect the 2h1p and 2p1h channels. Once the closed-
form expressions of the low-order perturbative expansions
are known, they can be inserted in Eq. (24) to define
a renormalized version of the quasiparticle equation. In
particular, we focus here on the second-order renormalized
quasiparticle equation.

A. Zeroth-order matrix elements

The choice of Wegner’s generator in the flow equation
[see Eq. (15)] implies that the off-diagonal correction is of
order O(λ) while the correction to the diagonal block is at
least O(λ2).142 Therefore, the zeroth-order Hamiltonian
is independent of s and we have

H(0)(s) = H(0)(0). (28)

B. First-order matrix elements

Knowing thatH(0)
od (s) = 0, the first-order flow equation

is

dH(1)

ds
=
[[
H

(0)
d ,H

(1)
od

]
,H

(0)
d

]
, (29)

which gives the following system of equations

dF (0)

ds
= 0,

dC(0)

ds
= 0, (30)

and

dW (1)

ds
= 2F (0)W (1)C(0)

− (F (0))2W (1) −W (1)(C(0))2. (31)

Equation (30) implies

F (1)(s) = F (1)(0) = 0, (32a)

C(1)(s) = C(1)(0) = 0, (32b)

and, thanks to the diagonal structure of F (0) (which is
a consequence of the HF starting point) and C(0), the
differential equation for the coupling block in Eq. (31) is
easily solved and yields

W ν(1)
pq (s) = W ν

pqe
−(∆ν

pq)
2s. (33)

At s = 0, W ν(1)
pq (s) reduces to the screened two-electron

integrals defined in Eq. (5), while,

lim
s→∞

W ν(1)
pq (s) = 0. (34)

Therefore, W
ν(1)
pq (s) is a genuine renormalized two-

electron screened integral. It is worth noting the close
similarity of the first-order elements with the ones derived
by Evangelista in Ref. 122 in the context of single- and
multi-reference perturbation theory (see also Ref. 142).

C. Second-order matrix elements

The second-order renormalized quasiparticle equation
is given by

[
F̃ (s) + Σ̃(ω = εp; s)

]
ψp(x) = εpψp(x), (35)

with a renormalized Fock matrix of the form

F̃ (s) = F (0) + F (2)(s), (36)

and a renormalized dynamical self-energy

Σ̃(ω; s) = V (1)(s)
(
ω1−C(0)

)−1

(V (1)(s))†, (37)

with elements

Σ̃pq(ω; s) =
∑

iν

W ν
piW

ν
qi

ω − εi + Ων
e−[(∆ν

pi)
2+(∆ν

qi)
2]s

+
∑

aν

W ν
paW

ν
qa

ω − εa − Ων
e−[(∆ν

pa)2+(∆ν
qa)2]s.

(38)

As can be readily seen above, F (2) is the only second-
order block of the effective Hamiltonian contributing to
the second-order SRG quasiparticle equation. Collecting
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FIG. 1. Schematic evolution of the quasiparticle equation as
a function of the flow parameter s in the case of the dynamic
SRG-GW flow (magenta) and the static SRG-qsGW flow
(cyan).

every second-order term in the flow equation and per-
forming the block matrix products results in the following
differential equation

dF (2)

ds
= F (0)W (1)W (1),† +W (1)W (1),†F (0)

− 2W (1)C(0)W (1),†, (39)

which can be solved by simple integration along with the
initial condition F (2)(0) = 0 to yield

F (2)
pq (s) =

∑

rν

∆ν
pr + ∆ν

qr

(∆ν
pr)

2 + (∆ν
qr)

2
W ν
prW

ν
qr

×
[
1− e−[(∆ν

pr)2+(∆ν
qr)2]s

]
. (40)

At s = 0, the second-order correction vanishes, hence
giving

lim
s→0

F̃ (s) = F (0). (41)

For s→∞, it tends towards the following static limit

lim
s→∞

F̃ (s) = εpδpq +
∑

rν

∆ν
pr + ∆ν

qr

(∆ν
pr)

2 + (∆ν
qr)

2
W ν
prW

ν
qr, (42)

while the dynamic part of the self-energy [see Eq. (37)]
tends to zero, i.e.,

lim
s→∞

Σ̃(ω; s) = 0. (43)

Therefore, the SRG flow continuously transforms the dy-
namical self-energy Σ̃(ω; s) into a static correction F̃

(2)
(s).

As illustrated in Fig. 1 (magenta curve), this transforma-
tion is done gradually starting from the states that have
the largest denominators in Eq. (42).
For a fixed value of the energy cutoff Λ, if |∆ν

pr| �
Λ, then W ν

pre
−(∆ν

pr)2s ≈ 0, meaning that the state is
decoupled from the 1h and 1p configurations, while, for
|∆ν

pr| � Λ, we have W ν
pr(s) ≈ W ν

pr, that is, the state
remains coupled.

D. Alternative form of the static self-energy

Because the large-s limit of Eq. (35) is purely static and
Hermitian, the new alternative form of the self-energy
reported in Eq. (42) can be naturally used in qsGW
calculations to replace Eq. (11). Unfortunately, as we
shall discuss further in Sec. VI, as s→∞, self-consistency
is once again quite difficult to achieve, if not impossible.
However, one can define a more flexible new static self-
energy, which will be referred to as SRG-qsGW in the
following, by discarding the dynamic part in Eq. (35) (see
cyan curve in Fig. 1). This yields a s-dependent static
self-energy which matrix elements read

ΣSRG-qsGW
pq (s) =

∑

rν

∆ν
pr + ∆ν

qr

(∆ν
pr)

2 + (∆ν
qr)

2
W ν
prW

ν
qr

×
[
1− e−[(∆ν

pr)2+(∆ν
qr)2]s

]
. (44)

Note that the static SRG-qsGW approximation defined
in Eq. (44) is straightforward to implement in existing
code and is naturally Hermitian as opposed to the usual
case [see Eq. (12)] where it is enforced by brute-force
symmetrization. Another important difference is that the
SRG regularizer is energy-dependent while the imaginary
shift is the same for every self-energy denominator. Yet,
these approximations are closely related because, for η = 0
and s→∞, they share the same diagonal terms.

It is well-known that in traditional qsGW calculations,
increasing η to ensure convergence in difficult cases is most
often unavoidable. Similarly, in SRG-qsGW , one might
need to decrease the value of s to ensure convergence.
Indeed, the fact that SRG-qsGW calculations do not
always converge in the large-s limit is expected as, in
this limit, potential intruder states have been included.
Therefore, one should use a value of s large enough to
include as many states as possible but small enough to
avoid intruder states.

It is instructive to examine the functional form of both
regularizing functions (see Fig. 2). These have been plot-
ted for a regularizing parameter value of η = 1, where
we have set s = 1/(2η2) such that the first-order Taylor
expansion around (x, y) = (0, 0) of both functional forms
is equal. One can observe that the SRG-qsGW surface
is much smoother than its qsGW counterpart. This is
due to the fact that the SRG-qsGW functional at η = 0,
fSRG-qsGW (x, y; 0), has fewer irregularities. In fact, there
is a single singularity at x = y = 0. On the other hand,
the function fqsGW (x, y; 0) is singular on the two entire
axes, x = 0 and y = 0. We believe that the smooth-
ness of the SRG-qsGW surface is the key feature that
explains the faster convergence of SRG-qsGW compared
to qsGW . The convergence properties and the accuracy
of both static approximations are quantitatively gauged
in Sec. VI.

To conclude this section, we briefly discussed the case of
discontinuities mentioned in Sec. I. Indeed, it has been pre-
viously mentioned that intruder states are responsible for
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FIG. 2. Functional form of the qsGW self-energy (left) for η = 1 and the SRG-qsGW self-energy (right) for s = 1/(2η2) = 1/2.

both the poor convergence of qsGW and discontinuities
in physical quantities.44,100,101,116–119 Is it then possible
to rely on the SRG machinery to remove discontinuities?
Not directly because discontinuities are due to intruder
states in the dynamic part of the quasiparticle equation.
However, as we have seen just above the functional form
of the renormalized equation makes it possible to choose
s such that there is no intruder states in its static part.
Performing a bijective transformation of the form,

e−∆s = 1− e−∆t, (45)

on the renormalized quasiparticle equation (35) reverses
the situation and makes it possible to choose t such that
there is no intruder states in the dynamic part, hence
removing discontinuities. Note that, after this transforma-
tion, the form of the regularizer is actually closely related
to the SRG-inspired regularizer introduced by Monino
and Loos in Ref. 101.

V. COMPUTATIONAL DETAILS

Our set of systems is composed by closed-shell com-
pounds that correspond to the 50 smallest atoms and
molecules (in terms of the number of electrons) of the
GW100 benchmark set.48 We will refer to this set as
GW50. Following the same philosophy as the quest
database for neutral excited states,192,193 their geome-
tries have been optimized at the CC3/aug-cc-pVTZ basis
level194,195 using the cfour program.196

The two qsGW variants considered in this work
have been implemented in an in-house program, named
quack.197 The GW implementation closely follows the
one of molgw.178 In all GW calculations, we use the
aug-cc-pVTZ cartesian basis set and self-consistency is

performed on all (occupied and virtual) orbitals, includ-
ing core orbitals. We use (restricted) HF guess orbitals
and energies for all self-consistent GW calculations. The
maximum size of the DIIS space198,199 and the maximum
number of iterations were set to 5 and 64, respectively.
In practice, one may achieve convergence, in some cases,
by adjusting these parameters or by using an alternative
mixing scheme. However, in order to perform black-box
comparisons, these parameters have been fixed to these
default values. The η value has been set to 10−3 for the
conventional G0W0 calculations (where we eschew lin-
earizing the quasiparticle equation) while, for the qsGW
calculations, η has been chosen as the largest value where
one successfully converges the 50 systems composing the
test set.

The various GW -based sets of values are compared with
a set of reference values computed at the ∆CCSD(T) level
with the same basis set. The ∆CCSD(T) principal ion-
ization potentials (IPs) and electron affinities (EAs) have
been obtained using gaussian 16200 (with default param-
eters) within the restricted and unrestricted formalism
for the neutral and charged species, respectively.
All the numerical data associated with this study are

reported in the Supporting Information.

VI. RESULTS

A. Flow parameter dependence of SRG-qsGW

This section starts by considering a prototypical molec-
ular system, the water molecule, in the aug-cc-pVTZ
basis set. Figure 3 shows the error in the principal IP
[with respect to the ∆CCSD(T) reference value] as a
function of the flow parameter in SRG-qsGW (green
curve). The corresponding HF and qsGW (computed
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FIG. 3. Error [with respect to ∆CCSD(T)] in the principal
IP of water in the aug-cc-pVTZ basis set as a function of the
flow parameter s for SRG-qsGW (green curve). The HF (cyan
line) and qsGW (blue line) values are also reported.

with η = 0.05) values are also reported for the sake of
comparison. The IP at the HF level (cyan line) is too
large; this is a consequence of the missing correlation and
the lack of orbital relaxation in the cation, a result that
is well understood.93,148 The usual qsGW scheme (blue
line) brings a quantitative improvement as the IP is now
within 0.3 eV of the reference value.

At s = 0, the SRG-qsGW IP is equal to its HF coun-
terpart as expected from the discussion of Sec. IV. As
s grows, the IP reaches a plateau at an error that is
significantly smaller than the HF starting point. Further-
more, the value associated with this plateau is slightly
more accurate than its qsGW counterpart. However, the
SRG-qsGW error does not decrease smoothly between
the initial HF value and the large-s limit. For small s, it
is actually worse than the HF starting point.
This behavior as a function of s can be understood

by applying matrix perturbation theory to Eq. (21).201
Through second order in the coupling block, the principal
IP is

IP ≈ −εh −
∑

iν

(W iν
h )2

εh − εi + Ων
−
∑

aν

(W aν
h )2

εh − εa − Ων
, (46)

where h is the index of the highest occupied molecular
orbital (HOMO). The first term of the right-hand side of
Eq. (46) is the zeroth-order IP and the following two terms
originate from the 2h1p and 2p1h coupling, respectively.
The denominators of the 2p1h term are positive while the
denominators associated with the 2h1p term are negative.
As s increases, the first states that decouple from the

HOMO are the 2p1h configurations because their energy
difference with respect to the HOMO is larger than the
ones associated with the 2h1p block. Therefore, for small
s, only the last term of Eq. (46) is partially included,
resulting in a positive correction to the IP. As soon as s
is large enough to decouple the 2h1p block, the IP starts

decreasing and eventually goes below the initial value at
s = 0, as observed in Fig. 3.

Next, the flow parameter dependence of SRG-qsGW is
investigated for the principal IP of two additional molec-
ular systems as well as the principal EA of F2. The left
panel of Fig. 4 shows the results for the lithium dimer, Li2,
which is an interesting case because, unlike in water, HF
underestimates the reference IP. Yet, the qsGW and SRG-
qsGW IPs are still overestimating the reference value as
in H2O. Indeed, we can see that the positive increase of
the SRG-qsGW IP is proportionally more important than
for water. In addition, the plateau is reached for larger
values of s in comparison to Fig. 3.

Now turning to lithium hydride, LiH (see middle panel
of Fig. 4), we see that the qsGW IP is actually worse than
the fairly accurate HF value. However, SRG-qsGW does
not suffer from the same problem and improves slightly
the accuracy as compared to HF.

Finally, we also consider the evolution with respect to
s of the principal EA of F2 that is displayed in the right
panel of Fig. 4. The HF value is largely underestimating
the ∆CCSD(T) reference. Performing a qsGW calculation
on top of it brings a quantitative improvement by reducing
the error from −2.03 eV to −0.24 eV. The SRG-qsGW
EA (absolute) error is monotonically decreasing from the
HF value at s = 0 to an error close to the qsGW one at
s→∞.

B. Statistical analysis

Table I shows the principal IP of the 50 molecules
considered in this work computed at various levels of
theory. As previously mentioned, the HF approximation
overestimates the IPs with a mean signed error (MSE)
of 0.56 eV and a mean absolute error (MAE) of 0.69 eV.
Performing a G0W0 calculation on top of this mean-field
starting point, G0W0@HF, reduces by more than a factor
two the MSE and MAE, 0.29 eV and 0.33 eV, respectively.
However, there are still outliers with large errors. For
example, the IP of N2 is overestimated by 1.56 eV, a
large discrepancy that is due to the HF starting point.
Self-consistency mitigates the error of the outliers as the
MAE at the qsGW level is now 0.57 eV and the standard
deviation of the error (SDE) is decreased from 0.31 eV
for G0W0@HF to 0.18 eV for qsGW . In addition, the
MSE and MAE (0.23 eV and 0.25 eV, respectively) are
also slightly improved with respect to G0W0@HF.
Let us now turn to our new method, the SRG-qsGW

self-consistent scheme. Table I shows the SRG-qsGW val-
ues for s = 103. The statistical descriptors corresponding
to this alternative static self-energy are all improved with
respect to qsGW . In particular, the MSE and MAE are
decreased by 0.06 eV. Of course, these are small improve-
ments but this is done with no additional computational
cost and it can be easily implemented in existing code by
changing the form of the static self-energy. The evolution
of the statistical descriptors with respect to the various
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FIG. 4. Error [with respect to ∆CCSD(T)] in the principal IP of Li2, LiH, and BeO in the aug-cc-pVTZ basis set as a function
of the flow parameter s for the SRG-qsGW method (green curves). The HF (cyan lines) and qsGW (blue lines) values are also
reported.
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FIG. 5. Histogram of the errors [with respect to ∆CCSD(T)] for the principal IP of the GW50 test set calculated using HF,
G0W0@HF, qsGW , and SRG-qsGW . All calculations are performed with the aug-cc-pVTZ basis.

methods considered in Table I is graphically illustrated
in Fig. 4. The decrease of the MSE and SDE correspond
to a shift of the maximum of the distribution toward zero
and a contraction of the distribution width, respectively.

In addition to this improvement in terms of accuracy,
the SRG-qsGW scheme has been found to be much easier
to converge than its qsGW parent. Indeed, up to s = 103,
it is straightforward to reach self-consistency for the 50
compounds at the SRG-qsGW level. For s = 5× 103,
convergence could not be attained for 11 systems out of 50.
However, this is not a serious issue as the MAE of the test
set is already well converged at s = 103. This is illustrated
by the green curve of Fig. 6 which shows the evolution of
the SRG-qsGW MAE with respect to s. The convergence
plateau of the MAE is reached around s = 50 while the
convergence problems arise for s > 103. Therefore, for
future studies using the SRG-qsGW method, a default
value of the flow parameter equal to 5× 102 or 103 is
recommended.

On the other hand, the qsGW convergence behavior is
more erratic as shown by the blue curve of Fig. 6 where
we report the variation of the qsGW MAE as a function
of η =

√
1/(2s). At η = 10−2 (s = 5× 103), convergence

could not be reached for 13 molecules while 2 systems were
already problematic at η = 5× 10−2 (s = 200). These
convergence problems are much more dramatic than for
SRG-qsGW because the MAE has not reached its limiting

●

●

●

●●

●

●

●

●

●

●

●

●●●●●●

◆◆
●

●

0.05 0.10 0.50 1 5 10
0.0

0.2

0.4

0.6

0.8

1.0

0.0010.010.11101001000

FIG. 6. Evolution of the SRG-qsGW (green) and qsGW
(blue) MAEs for the principal IPs of the GW50 test set as
functions of s and η, respectively. The bottom and top axes
are related by s = 1/(2η2). A different marker has been used
for qsGW at η = 0.05 because the MAE includes only 48
molecules.

value before these issues arise. For example, out of the
37 molecules that could be converged for η = 10−2, the
variation of the IP with respect to η = 5× 10−2 can go
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TABLE I. Principal IP and EA (in eV) of the GW50 test set calculated using ∆CCSD(T) (reference), HF, G0W0@HF, qsGW ,
and SRG-qsGW . The statistical descriptors associated with the errors with respect to the reference values are also reported. All
calculations are performed with the aug-cc-pVTZ basis.

Principal IP Principal EA
∆CCSD(T) HF G0W0@HF qsGW SRG-qsGW ∆CCSD(T) HF G0W0@HF qsGW SRG-qsGW

Mol. (Ref.) (η = 10−3) (η = 10−1) (s = 103) (Ref.) (η = 10−3) (η = 10−1) (s = 103)
He 24.54 24.98 24.59 24.58 24.55 −2.66 −2.70 −2.66 −2.66 −2.66
Ne 21.47 23.15 21.46 21.83 21.59 −5.09 −5.47 −5.25 −5.19 −5.19
H2 16.40 16.16 16.49 16.45 16.45 −1.35 −1.33 −1.28 −1.28 −1.28
Li2 5.25 4.96 5.38 5.40 5.37 0.34 −0.08 0.17 0.18 0.21
LiH 8.02 8.21 8.22 8.25 8.15 −0.29 0.20 0.27 0.27 0.27
HF 16.15 17.69 16.25 16.45 16.34 −0.66 −0.81 −0.71 −0.70 −0.70
Ar 15.60 16.08 15.72 15.61 15.63 −2.55 −2.97 −2.68 −2.64 −2.65
H2O 12.69 13.88 12.90 12.98 12.88 −0.61 −0.80 −0.68 −0.65 −0.66
LiF 11.47 12.91 11.40 11.75 11.58 0.35 0.29 0.33 0.33 0.33
HCl 12.67 12.98 12.78 12.77 12.72 −0.57 −0.79 −0.64 −0.63 −0.63
BeO 9.95 10.45 9.74 10.32 10.18 2.17 1.80 2.28 2.10 2.13
CO 13.99 15.11 14.80 14.34 14.33 −1.57 −1.80 −1.66 −1.61 −1.62
N2 15.54 16.68 17.10 15.93 15.91 −2.37 −2.20 −2.10 −2.10 −2.10
CH4 14.39 14.83 14.76 14.67 14.63 −0.65 −0.79 −0.70 −0.68 −0.68
BH3 13.31 13.59 13.68 13.62 13.59 −0.09 −0.81 −0.46 −0.29 −0.30
NH3 10.91 11.69 11.22 11.18 11.10 −0.61 −0.80 −0.68 −0.66 −0.66
BF 11.15 11.04 11.34 11.19 11.18 −0.80 −1.06 −0.90 −0.87 −0.86
BN 12.05 11.55 11.76 11.89 11.90 3.02 2.97 3.90 3.41 3.44
SH2 10.39 10.49 10.51 10.50 10.45 −0.52 −0.76 −0.60 −0.58 −0.59
F2 15.81 18.15 16.35 16.27 16.22 0.32 −1.71 −0.53 0.10 0.07
MgO 7.97 8.75 8.40 8.54 8.36 1.54 1.40 1.64 1.72 1.71
O3 12.85 13.29 13.56 13.34 13.27 1.82 1.32 2.19 2.23 2.17
C2H2 11.45 11.16 11.57 11.46 11.43 −0.80 −0.80 −0.71 −0.71 −0.71
HCN 13.76 13.50 13.86 13.75 13.73 −0.53 −0.61 −0.52 −0.55 −0.54
B2H6 12.27 12.84 12.81 12.67 12.64 −0.52 −0.64 −0.56 −0.55 −0.55
CH2O 10.93 12.09 11.39 11.33 11.25 −0.60 −0.70 −0.61 −0.62 −0.62
C2H4 10.69 10.26 10.74 10.70 10.67 −1.90 −0.86 −0.75 −0.73 −0.74
SiH4 12.79 13.23 13.22 13.15 13.11 −0.53 −0.69 −0.59 −0.57 −0.58
PH3 10.60 10.60 10.79 10.76 10.73 −0.51 −0.71 −0.58 −0.56 −0.57
CH4O 11.09 12.30 11.55 11.49 11.39 −0.59 −0.76 −0.64 −0.62 −0.63
H2NNH2 9.49 10.38 9.84 9.81 9.73 −0.60 −0.82 −0.69 −0.65 −0.65
HOOH 11.51 13.17 11.96 11.95 11.86 −0.96 −0.89 −0.75 −0.72 −0.72
KH 6.32 6.61 6.44 6.50 6.38 0.30 0.21 0.28 0.28 0.28
Na2 4.93 4.53 4.98 5.03 5.01 0.36 −0.01 0.26 0.27 0.30
HN3 10.77 11.00 11.12 10.92 10.89 −0.51 −0.75 −0.6 −0.56 −0.56
CO2 13.80 14.82 14.24 14.12 14.06 −0.88 −1.22 −0.98 −0.95 −0.95
PN 11.90 12.00 12.33 12.12 12.09 −0.02 −0.72 −0.03 0.02 0.00
CH2O2 11.54 12.94 12.00 11.97 11.88 −0.63 −0.79 −0.69 −0.66 −0.67
C4 11.43 11.61 11.77 11.57 11.54 2.38 0.58 2.24 2.29 2.30
C3H6 10.83 11.25 11.20 11.07 11.03 −0.94 −0.88 −0.75 −0.73 −0.73
C2H3F 10.63 10.48 10.84 10.73 10.69 −0.65 −0.80 −0.69 −0.68 −0.68
C2H4O 10.29 11.64 10.84 10.74 10.66 −0.54 −0.69 −0.56 −0.57 −0.57
C2H6O 10.82 12.05 11.37 11.25 11.15 −0.58 −0.78 −0.65 −0.62 −0.62
C3H8 12.13 12.73 12.61 12.51 12.46 −0.63 −0.83 −0.70 −0.67 −0.67
NaCl 9.10 9.60 9.20 9.25 9.16 0.67 0.56 0.64 0.64 0.64
P2 10.72 10.05 10.49 10.43 10.40 0.43 −0.35 0.47 0.48 0.47
MgF2 13.93 15.46 13.94 14.23 14.07 0.29 −0.03 0.15 0.21 0.21
OCS 11.23 11.44 11.52 11.37 11.32 −1.43 −1.27 −1.03 −0.97 −0.98
SO2 10.48 11.47 11.38 10.85 10.82 2.24 1.84 2.82 2.74 2.68
C2H3Cl 10.17 10.13 10.39 10.27 10.24 −0.61 −0.79 −0.66 −0.65 −0.65
MSE 0.56 0.29 0.23 0.17 −0.25 0.02 0.04 0.04
MAE 0.69 0.33 0.25 0.19 0.31 0.16 0.13 0.12
RMSE 0.87 0.43 0.29 0.23 0.49 0.28 0.23 0.22
SDE 0.68 0.31 0.18 0.16 0.43 0.29 0.23 0.22
Min −0.67 −0.29 −0.29 −0.32 −2.03 −0.85 −0.22 −0.25
Max 2.34 1.56 0.57 0.42 1.04 1.15 1.17 1.16
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up to 0.1 eV.
This difference in behavior is due to the energy

(in)dependence of the regularizers. The SRG regularizer
first incorporates the terms with a large denominator and
subsequently adds the intruder states. Conversely, the
imaginary shift regularizer treats all terms equivalently.

Finally, we compare the performance of HF, G0W0@HF,
qsGW , and SRG-qsGW again but for the principal EAs
of GW50. The raw data are reported in Table I while
the corresponding histograms of the error distribution
are plotted in Fig. 7. The HF EAs are, on average,
underestimated with a MAE of 0.31 eV and some clear
outliers: −2.03 eV for F2 and 1.04 eV for CH2O, for exam-
ple. G0W0@HF mitigates the average error (MAE equals
to 0.16 eV) but the minimum and maximum error values
are not satisfactory. The performance of the two qsGW
schemes are quite similar for EAs with MAEs of the order
of 0.1 eV. These two partially self-consistent methods
reduce also the minimum errors but, interestingly, they
do not decrease the maximum error compared to HF.
Note that a positive EA indicates a bounded anion

state, which can be accurately described by the meth-
ods considered in this study. However, a negative EA
suggests a resonance state, which is beyond the scope of
the methods used in this study, including the ∆CCSD(T)
reference. As such, it is not advisable to assign a physical
interpretation to these values. Nonetheless, it is possible
to compare GW -based and ∆CCSD(T) values in such
cases, provided that the comparison is limited to a given
basis set.

VII. CONCLUSION

The present manuscript applies the similarity renor-
malization group (SRG) to the GW approximation of
many-body perturbation theory, which is known to be
plagued by intruder states. The problems caused by
intruder states in many-body perturbation theory are
numerous but here we focus on the convergence issues
caused by them.
SRG’s central equation is the flow equation, which

is usually solved numerically but can be solved analyti-
cally for low perturbation order. Applying this approach
in the GW context yields closed-form renormalized ex-
pressions for the Fock matrix elements and the screened
two-electron integrals. These renormalized quantities lead
to a regularized GW quasiparticle equation, referred to
as SRG-GW , which is the main result of this work.
By isolating the static component of SRG-GW , we

obtain an alternative Hermitian and intruder-state-free
self-energy that can be used in the context of qsGW
calculations. This new variant is called SRG-qsGW . Ad-
ditionally, we demonstrate how SRG-GW can effectively
resolve the discontinuity problems that arise in GW due
to intruder states. This provides a first-principles jus-
tification for the SRG-inspired regularizer proposed in
Ref. 101.

We first study the flow parameter dependence of the
SRG-qsGW IPs for a few test cases. The results show
that the IPs gradually evolve from the HF starting point
at s = 0 to a plateau value for s→∞ that is much closer
to the ∆CCSD(T) reference than the HF initial value. For
small values of the flow parameter, the SRG-qsGW IPs
are actually worse than their starting point. Therefore, it
is advisable to use the largest possible value of s, similar
to qsGW calculations where one needs to use the smallest
possible η value.

Next, we gauge the accuracy of the SRG-qsGW princi-
pal IP for a test set of 50 atoms and molecules (referred
to as GW50). The results show that, on average, SRG-
qsGW is slightly better than its qsGW parent. Despite
the fact that the increase in accuracy is relatively mod-
est, it comes with no additional computational cost and
is straightforward to implement, as only the expression
of the static self-energy needs to be modified. More-
over, SRG-qsGW calculations are much easier to converge
than their traditional qsGW counterparts thanks to the
intruder-state-free nature of SRG-qsGW .
Finally, the principal EAs of the GW50 set are also

investigated. It is found that the performances of qsGW
and SRG-qsGW are quite similar in this case. However, it
should be noted that most of the anions of the GW50 set
are resonance states, and the associated physics cannot
be accurately described by the methods considered in
this study. Therefore, a test set of molecules with bound
anions and their accompanying accurate reference values
would be valuable to the many-body perturbation theory
community.
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