
ELoRa: End-to-end Emulation of Massive IoT

LoRaWAN Infrastructures

Alessandro Aimi∗†, Stéphane Rovedakis†, Fabrice Guillemin∗, and Stefano Secci†

∗Orange Innovation, France. {alessandro.aimi, fabrice.guillemin}@orange.com
†Cedric, Cnam, France. {alessandro.aimi, stephane.rovedakis, stefano.secci}@cnam.fr

Abstract—In this paper, we present ELoRa, an emulation tool
that generates Long Range Wide Area Network (LoRaWAN) traf-
fic for an arbitrary number of LoRa devices and in an end-to-end
virtualized LoRaWAN setting. Using ns-3, we improve an existing
radio access network simulator to produce traffic compatible with
ChirpStack, an open-source, cloud-native, LoRaWAN network
functions stack. Our tool can be used to create realistic traffic
and anomalies in order to test orchestration techniques on a
real, distributed infrastructure. Moreover, the LoRaWAN core
network functions (bridges, network server) are agnostic to the
simulation of the radio access and can change parameters of
simulated devices using native LoRaWAN protocol primitives,
therefore enabling live-testing of resource allocation techniques
to manage the radio access network. Multiple ELoRa instances
can be connected to the same LoRaWAN core, each instance
being able to support 50000 devices and 7 gateways.

Index Terms—LoRaWAN, Massive IoT, E2E, Emulation

I. INTRODUCTION

In the growing Internet of Things (IoT), Long Range

Wide Area Networks (LoRaWANs) [1] has become a popular

solution for environment sensing and monitoring thanks to its

cheap and easy-to-operate nature. Due to the unavailability

of large-scale real-life testbeds, many simulators have been

developed to study LoRaWAN at scale [2], [3]. These tools

aim at accurately modeling the radio performance of devices

and gateways, but do not cover the core network functions, in

particular LoRaWAN network servers and bridging functions.

On the other hand, only basic traffic generators currently exist

for network servers [4] without, however, the possibility of

producing non-trivial management scenarios involving the ra-

dio access network, resource allocations and traffic anomalies.

In this paper, we present ELoRa [5], a software tool aimed

at accurately emulating end-to-end (E2E) LoRaWAN traffic,

from device to server. ELoRa is built using the well known

ns-3 network simulator [6], extending the LoRaWAN module

presented in [2]. Among existing simulators, this module

presents the most complete implementation of the LoRaWAN

Medium Access Control (MAC) protocol. In our proposition,

we build a translation layer between the simulation, and real

(UDP-encapsulated) LoRaWAN traffic, de facto enabling two-

way real-time communications with the outside environment.

The resulting UDP traffic is transparently accepted by most

LoRaWAN servers, as we re-implement in ns-3 the gateway

packet forwarder protocol [7] developed by Semtech, which

patented the Long Range (LoRa) modulation technology.

In our proposition, we focus on the well established Chirp-

Stack open-source LoRaWAN network server [8]. To enable

the server’s full device management capabilities, we include

a component exploiting the REST API of ChirpStack to

seamlessly register devices on the server. In addition, we sig-

nificantly improve the original simulator to produce traffic that

is compatible with a real server. Changes include, but are not

limited to, resolving multiple MAC layer inaccuracies, adding

cryptographic capabilities to devices, as well as introducing a

tool to emulate smart-city traffic as per [9], and implementing

the generation of LoRaWAN .pcap packet captures that can

be dissected in programs like Wireshark [10].

Thanks to the variety of modeling tools offered by ns-3,

ELoRa makes it possible to test management techniques on

LoRaWAN servers under countless realistic scenarios and

loads. Furthermore, parameters of simulated devices can be

controlled live by the server to test existing and novel radio re-

source management algorithms in an comprehensive E2E con-

trolled environment. Thanks to the cloud-native architecture of

Chirpstack, ELoRa can be deployed locally to the server or

in a distributed fashion, standalone, in multiple instances, or

accompanying other traffic flows from real networks.

The paper is organized as follows. The system architecture

and contribution are illustrated in Section II. We detail an

example scenario emulated with ELoRa in Section III. Con-

cluding remarks are presented in Section IV.

II. SYSTEM ARCHITECTURE

ELoRa is a discrete-event simulation tool running in real-

time and interacting with other processes in the operating

system. It takes benefit of the typical ns-3 object-oriented C++

workflow, requiring the specification of all simulated elements

in a main file that is then compiled and executed by command

line. As usual for ns-3 simulations, it runs under GNU/Linux

as a single-threaded process. The architecture of a Chirpstack

deployment with ELoRa is shown in Figure 1. In the following,

we detail the different elements, from left to right.

The simulated radio channel is defined in terms of path loss

and delay, picking up one out of the numerous models offered

by ns-3 [11]. Simulated IoT devices and gateways are placed

in a three dimensional space. Position and mobility can also

be set with several models, such as for instance, hexagonal

tiling for gateways, and uniformly in range for devices [12].

In our implementation, devices can be set to send periodical

or Poisson traffic, with different payload sizes. We include an



Fig. 1. Software architecture of an ELoRa deployment (left) on Chirpstack (right).

allocation helper for these parameters to emulate smart-city

traffic as proposed in [9].

Currently the module supports Class A devices, the base-

line LoRaWAN type, in the EU868 region. Devices comply

with the frame format defined in the specifications [1], [13].

When compared with the original simulator, devices now

implement all Class A mandatory MAC primitives. Using the

cryptographic libraries from [14], we add message integrity

code computation on uplink frames and the possibility to

decrypt payloads from the server. Also, we introduce the

option to export .pcap files of bidirectional traffic from

the perspective of any device or gateway. In addition to the

metrics produced by the ns-3 tracing system (e.g., packet

delivery ratio, packet loss causes, channel utilization, energy

consumption), such files can be used to examine live and in

detail the serialized content of headers to show which MAC

commands are exchanged.

All devices and gateways send frames through the same

radio channel using multiple frequencies and modulation pa-

rameters. All interference computations happen according to

the model in [2], with the added possibility of using the Signal

to Interference Ratio (SIR) matrix from [15]. The different

transmission parameters used are taken into account by the

interference model. In the original simulator, interference

between uplink and downlink frames is computed as if it was

uplink on uplink. It has been shown that downlink transmis-

sions retain an average 90% Packet Delivery Ratio (PDR) in

the scenario of equal-power, concurrent uplink traffic [16]. For

more accurate results, and in lack of a specific interference

model, we consider downlink and uplink transmissions to be

independent in terms of interference. Still, we maintain the

assumption that gateways cannot receive uplink frames while

busy transmitting downlink.

Uplink frames can be received by one or multiple gateways,

which forward received traffic to core functions. The original

module had a high level model of both the forwarding and

the server. In our proposition, we implement in ns-3 the UDP

packet forwarder protocol [7], integrating most libraries used

in real gateways to communicate with servers. This lightweight

application encapsulates LoRaWAN frames in UDP, and man-

ages the synchronization of downlink transmissions from the

server with reception windows of devices.

The UDP packets are sent to a final node using one of

the connection models offered by ns-3, for instance ‘IP over

CSMA’, and then they exit the simulation. This is made

possible by the ns-3 TapBridge class on the final node.

Ns-3 already serializes packets as if they were real ones, so

the TapBridge node creates a tap interface in the underlying

operative system and takes care of translating bidirectional

traffic between the simulation and the operative system. Here,

a ChirpStack Gateway Bridge can be deployed locally, or

traffic can be forwarded to another machine hosting one. From

this point, traffic enters the ChirpStack server infrastructure.

ChirpStack architecture is composed of different compo-

nents that are generally deployed as containers. Components

communicate with secure protocols (MQTT [17], gRPC [18]),

and can be easily distributed to achieve Multi-access Edge

Computing (MEC) goals. There can be multiple (MQTT)

sources of LoRaWAN traffic, and gRPC is used to manage

the server API. A separate translation component is given

to provide a REST endpoint for the API. Most components

expose metrics that can be exported with Prometheus [19]

and observed in Grafana [20]. Finally, numerous end user

integration schemes are available to exploit the data carried

by frames or to elaborate additional metrics on the traffic.

To take full advantage of the server’s network management

features, i.e., to see metrics and enable parameter reconfigu-

ration, devices and gateways need to be registered. For this

reason, we develop an helper component using libcurl [21]

to interact with the server’s REST API. An API key can

be generated directly from the server graphical interface and

copied in the helper. All simulated objects are registered at

the beginning of the simulation and then teared down on any

interruption of the ELoRa process.

III. EXAMPLE SCENARIO

We emulate 7 gateways positioned using hexagonal tiling

at a distance of 5km from each other; 1000 static devices are

placed uniformly at a maximal distance of 2.5km from any

gateway, at an height between 1 and 10 meters. Their be-

haviour and payload are selected by following the distribution

indicated in [9] for commercial devices in the city of New



Fig. 2. The dashboard of ChirpStack.

Fig. 3. Metrics monitoring example with Grafana.

York. Path loss is computed using the Okumura-Hata model

for large urban areas with Rayleigh fading [12].

In Figure 2, we show the dashboard of ChirpStack when ex-

ecuting ELoRa with the described configuration. After 1 hour

the server has detected more than an half of the devices, while

devices with longer periodicity have only been registered. The

server has increased the transmission data-rate of devices with

the default Adaptive Data Rate (ADR) algorithm [3]. This

helps reduce both interference and the impact of limitation

on duty-cycle imposed on the EU868 band.

This is confirmed by Grafana metrics shown in Figure 3,

where uplink UDP traffic increases, and the amount of ac-

knowledgments to downlink MAC primitives decreases. The

overall amount of traffic declines so the Chirpstack Gateway

Bridge uses less memory. Finally, we can see the initial API

calls of ELoRa to register simulated objects, and a second step

representing internal API calls performed by the server.

In our testing, we were able to repeat this scenario with up

to 50000 devices before being CPU bounded on an Intel Core

i7-6600U @ 2.60GHz processor. During this limit case, the

process was exhibiting a stable 950 MB of RAM usage.

IV. CONCLUSION

We have developed ELoRa, a tool to closely emulate

LoRaWAN traffic that is capable of interacting with real

server instances. ELoRa aims at helping research and industry

actors to better understand the capabilities and limitations of

LoRaWAN service infrastructures.

The flexibility of ns-3 enables emulation of real scenarios as

well as the introduction of anomalies affecting the radio link

and the server load. Radio parameters of simulated devices

can be changed using the LoRaWAN protocol directly from

the server API, allowing real-time experimentation with radio

resource allocation algorithms. To our knowledge, ELoRa is

the first tool for massive LoRaWAN simulation that presents

these features, difficult to replicate with physical testbeds.

Consequently, orchestration platforms can be plugged in to

test resource allocation techniques and improve the system’s

management automation capabilites under realistic loads. The

overall framework can be easily scaled and distributed thanks

to the cloud-native nature of ChirpStack.

ACKNOWLEDGMENT

This work was funded by the French ANR INTELLI-

GENTSIA project (grant nb: ANR-20-CE25-0011).

REFERENCES

[1] LoRaWAN L2 1.0.4 Specification, TS001-1.0.4, LoRa Alliance, 2020.
[2] D. Magrin, M. Centenaro, and L. Vangelista, “Performance evaluation

of LoRa networks in a smart city scenario,” in IEEE Int. Conf. Commun.

(ICC), 2017, pp. 1–7.
[3] M. Slabicki, G. Premsankar, and M. Di Francesco, “Adaptive configura-

tion of LoRa networks for dense IoT deployments,” in IEEE/IFIP Netw.

Oper. Management Symp. (NOMS), 2018, pp. 1–9.
[4] ChirpStack Simulator. (2020). ChirpStack. Accessed: Jan. 13, 2023.

[Online]. Available: https://github.com/brocaar/chirpstack-simulator
[5] ELoRa. (2023). Orange. Accessed: Mar. 2, 2023. [Online]. Available:

https://github.com/non-det-alle/elora-docker
[6] Ns-3 Network Simulator v3.37. (2008). nsnam. Accessed: Jan. 13, 2023.

[Online]. Available: https://www.nsnam.org
[7] Lora network packet forwarder project v4.0.1. (2017). Semtech. Ac-

cessed: Jan. 13, 2023. [Online]. Available: https://github.com/Lora-net/
packet forwarder

[8] ChirpStack v4. (2022). ChirpStack. [Online]. Accessed: Jan. 13, 2023.
Available: https://www.chirpstack.io

[9] R. Huang, H. Li, B. Hamzeh, Y. Choi, S. Mohanty, and C. Hsu, “Pro-
posal for evaluation methodology for 802.16p,” IEEE 802.16 Broadband
Wireless Access Work. Group, IEEE C802.16p-11/0102r2, May 2011.

[10] Wireshark v4. (2022). The Wireshark Foundation. Accessed: Jan. 13,
2023. [Online]. Available: https://www.wireshark.org

[11] M. Stoffers and G. Riley, “Comparing the ns-3 propagation models,”
in 20th IEEE Int. Symp. Modeling, Anal., Simul. Comput. Telecommun.

Syst. (MASCOTS), 2012, pp. 61–67.
[12] A. Aimi, F. Guillemin, S. Rovedakis, and S. Secci , “Traffic control

and channel assignment for quality differentiation in dense urban Lo-
RaWANs,” in 2022 20th Int. Symp. Modeling Optimization Mobile, Ad

hoc, Wireless Netw. (WiOpt), 2022, pp. 153–160.
[13] LoRaWAN Regional Parameters, RP002-1.0.4, LoRa Alliance, 2022.
[14] LoRaWAN end-device stack implementation and example projects v4.6.

(2015). Semtech. Accessed: Oct. 20, 2022. [Online]. Available: https:
//github.com/Lora-net/LoRaMac-node

[15] D. Croce, M. Gucciardo, S. Mangione, G. Santaromita, and I. Tinnirello,
“Impact of LoRa imperfect orthogonality: Analysis of link-level perfor-
mance,” IEEE Commun. Lett., vol. 22, no. 4, pp. 796–799, Apr. 2018.

[16] R. Saroui, A. Guitton, O. Iova, and F. Valois, “Uplink and downlink
are not orthogonal in LoRaWAN!” in IEEE 96th Veh. Technol. Conf.

(VTC2022-Fall), 2022.
[17] MQTT. (2019). OASIS. Accessed: Jan. 13, 2023. [Online]. Available:

https://mqtt.org
[18] gRPC. (2016). Google. Accessed: Jan. 13, 2023. [Online]. Available:

https://grpc.io
[19] Prometheus. (2016). Cloud Native Computing Foundation. Accessed:

Jan. 13, 2023. [Online]. Available: https://prometheus.io
[20] Grafana. (2014). Grafana Labs. Accessed: Jan. 13, 2023. [Online].

Available: https://grafana.com
[21] libcurl. (1996). curl. Accessed: Jan. 13, 2023. [Online]. Available: https:

//curl.se/libcurl


