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Transverse fluctuations control the assembly of semiflexible filaments

The kinetics of the assembly of semiflexible filaments through end-to-end annealing is key to the structure of the cytoskeleton, but is not understood. We analyze this problem through scaling theory and simulations, and uncover a regime where filaments ends find each other through bending fluctuations without the need for the whole filament to diffuse. This results in a very substantial speed-up of assembly in physiological regimes, and could help understand the dynamics of actin and intermediate filaments in biological processes such as wound healing and cell division.

The self-assembly of cytoskeletal filaments is crucial for many cellular functions, including wound healing [1], and cell division [2]. The growth kinetics of these filaments strongly influences the morphology of the networks they form, from bundled to entangled structures [3][4][5][6][7]. Unlike the well-understood actin filaments and microtubules [START_REF] Howard | Mechanics of motor proteins and the cytoskeleton[END_REF], intermediate filaments of vimentin and keratin crucial for cell shape and mechanical integrity [START_REF] Sanghvi-Shah | [END_REF] mainly grow by end-to-end annealing [10][11][12][13][14]. This mechanism is also at work in worm-like micelles [15], DNA [16], some synthetic polymers [17], and plays a secondary role in the assembly of actin [18,19] and microtubules [20]. As filaments elongate by end-to-end annealing, their diffusion becomes slower due to an increased viscous drag. The time needed to find other reaction partners then increases, giving rise to diffusion-limited growth [21]. Theoretical models have been proposed to describe the dependence of the polymer growth kinetics on physical properties such as length, flexibility and concentration [22][23][24][25][26][27]. Many have however employed the Gaussian chain model, which provides a poor description of cytoskeletal filaments [START_REF] Howard | Mechanics of motor proteins and the cytoskeleton[END_REF].

Here, we instead tackle the more general case of semiflexible filaments, and uncover a new assembly regime driven by transverse fluctuations. While rigid rods react slowly due to the need of mobilising the center of mass (Fig. 1A), these fluctuations speed up the search of bonding partners, leading to faster assembly (Fig. 1B).

FIG. 1. Rigid filaments (A) assemble by displacing their center of mass, which results in a reaction rate K ∝ L -1 , with L the mean contour length, and slow growth (L ∝ t 1/2 ). Here we show that semiflexible filaments (B) take advantage of transverse fluctuations to quickly join their ends, resulting in a constant reaction rate (K ∝ L 0 ) and faster growth (L(t) ∝ t).

We first describe the growth regimes successively encountered by a growing filament, then validate the resulting scaling laws using Brownian dynamics simulations.

We model the annealing of semiflexible filaments as an irreversible reaction whereby an i-mer and a j-mer form an i + j-mer (Fig. 1). The reaction rate constant K i,j generically depends on the lengths of the reacting filaments [21]. Filaments undergo annealing via reactive sites (monomers) located at their ends that bind immediately upon contact, and we assume the system is dilute enough to ignore steric constraints, e.g., entanglements [START_REF] Doi | The theory of polymer dynamics[END_REF][START_REF] Lang | [END_REF]. We also neglect hydrodynamic interactions, and describe filament dynamics with the Rouse model [START_REF] Doi | The theory of polymer dynamics[END_REF]. Finally, our scaling discussion ignores numerical prefactors as well as length polydispersity, and thus considers a single typical contour length L and reaction rate constant K(L).

The annealing rate of a collection of filaments of length L stems from the dynamics of their reaction sites [22][23][24][25][26][27]. To describe it, we assume a scaling form x(t) ∝ t α for the root-mean squared displacement of one such site. For normal diffusion, α = 1/2, while α = 1/4 at short times in a long Gaussian polymer [START_REF] Doi | The theory of polymer dynamics[END_REF]. If α > 1/d, with d the dimension of space, the monomer explores space in a non-compact manner. Then, only a small fraction of the spanned volume x(t) d is visited during the time interval t. Denoting the monomer size by b, we assume that the reactants are uniformly distributed before the reaction and that the reaction takes place immediately when the reactants come within a distance

≈ b. Then, in d = 3 [26] K -1 ≈ ∞ τ b x -3 (t) dt, (1) 
where τ b is the time a monomer takes to move over a distance b. In the regimes considered below, this results in K(L) ∝ L -λ , where the exponent λ ≥ 0 depends on the physical process underlying the motion of the reactive sites. The number density of filaments ν evolves as ν = -K(L)ν 2 . Since ν = cb/L, with c the total monomer density, this implies L(t) ∝ t 1/(1+λ) [30][31][32].

Starting from a solution of monomers, filaments are initially much shorter than the persistence length L p [33],

and thus behave as rigid rods (L p = ∞). Their ends undergo diffusive dynamics, i.e. x 2 (t) ≈ Dt where D the center-of-mass diffusion coefficient of the filament. If each monomer is subjected to a viscous friction ζ, we have 1+λ) , the filament length reads

D = k B T b/ζL [28]. Equation (1) with τ b ≈ b 2 /D thus yields K ≈ b -3 τ b ≈ k B T b 2 /ζL. Since L(t) ∝ t 1/(
L(t)/b ≈ cb 3 t/τ 1/2 , (2) 
where τ ≈ b 2 ζ/k B T is the time a monomer takes to move by b. Thus both center-of-mass diffusion and filament growth slow down over time.

As the filaments elongate, bending fluctuations become relevant even as L L p . Indeed, the short-time dynamics of the reactive sites then becomes dominated by bending modes. Their root-mean squared displacement thus grows with time predominantly in the direction perpendicular to the local filament contour [33][34][35][36][37]. This results in a short-time subdiffusive regime, x(t) ∝ t 3/8 . This lasts until the time τ f ≈ τ (L 4 /L p b 3 ) required to relax the longest-wavelength bending mode of the filament. Subsequently, center-of-mass diffusion dominates filament motion. The typical monomer displacement thus reads

x(t) ≈ b 9 /L p 1/8 (t/τ ) 3/8 τ t τ f b 3 /L 1/2 (t/τ ) 1/2 t τ f . (3) 
In the regime considered here, the monomer displacement time τ b is computed from the short-time regime of Eq. (3), yielding τ b ≈ τ (L p /b) 1/3 . If the total duration τ f of the bending-fluctuations-dominated regime is much longer than the monomer displacement time τ b , this regime dominates the integral of Eq. (1), and therefore the reaction rate. We may equivalently require L L * ≈ b(L p /b) 1/3 . Since L(t) ∝ t 1/(1+λ) , this yields

K ≈ b 3 τ -1 b ≈ b 3 τ -1 (L p /b) -1/3 (for L L * ). (4) 
Thus, for filaments longer than L * , the reaction rate is independent of L, as also found for first-passage problems involving semiflexible filaments [38,39]. A scaling argument leading directly to Eq. ( 4) is presented in the Supplementary Information. As illustrated in Fig. 1B, transverse fluctuations then allow the reactive sites to "find" each other without center-of-mass motion. As the filaments elongate, their center-of-mass slows down, but the short-time dynamics of the reaction sites remains the same. This accounts for the independence of K on L and implies a constant growth speed

L(t)/b ≈ cb 3 t/τ b . (5) 
Mathematically, this stems from the τ b t τ f time domain dominating the integral of Eq. (1) when L L * .

Equation ( 5) is valid for L L * , while shorter filaments behave as rigid rods [Eq. (2)]. At the crossover between these two regimes, filaments have a length L * L p , meaning that bending fluctuations overtake center-ofmass diffusion before the filaments become fully flexible. The crossover time reads t * = τ (cb 3 ) -1 (L p /b) 2/3 .

As the filaments eventually grow much longer than the persistence length (L L p ), the short-time dynamics of the reactive sites is still dominated by the bending modes and independent of L [Eq. (3)]. At the time τf = τ (L p /b) 3 , the monomer displacement x(t) becomes of order L p . For later times, the filament behaves as a Gaussian chain [36,37] governed by Rouse relaxation modes [START_REF] Doi | The theory of polymer dynamics[END_REF]. Segments of the filaments with length ≈ L p then diffuse while elastically coupled with the neighboring segments, leading to a slow, subdiffusive regime x(t) ∝ t 1/4 . This lasts up to the Rouse relaxation time τ R = τ (L p L 2 /b 3 ). Subsequently, the segments of the chain essentially move together and their displacement is again dominated by center-of-mass diffusion. Combining these three regimes (bending fluctuations, Rouse modes and center-of-mass diffusion), we write for L L p :

x(t) ≈      b 9 /L p 1/8 (t/τ ) 3/8 τ t τf L p (t/τ f ) 1/4 τf t τ R (Dt) 1/2 t τ R , (6) 
where D(L) is the diffusion constant of the "rigid rod" regime. The integral in Eq. ( 1) can now be split into three pieces, the last (t τ R ) of which is negligible, yielding

K -1 ≈ τ b -3 (L p /b) 1/3 1 + (3/4) (L/L * * ) 1/2 , (7) 
where L * * = L p (L p /b) 2/3 and where each term of the sum stems from one of the remaining pieces of the integral. When L L * * , the reaction rate thus crosses over from the bending-fluctuations-dominated regime of Eq. ( 4) to a Gaussian regime with K ≈ b 3 τ -1 (L/L p ) -1/2 . In this regime, the mean contour length increases as

L(t)/L * ≈ cb 3 t/τ 2/3 . (8) 
The crossover time associated with

L * * is t * * = τ (cb 3 ) -1 (L p /b) 2 .
This last regime can be understood as follows: After the transverse fluctuations have relaxed (t > τf ), the monomers perform a compact exploration of space and quickly explore the region of size R ≈ L 1/2 occupied by the filaments. The filaments then behave as diffusing reactive spheres with radius R ∝ L 1/2 and diffusion coefficient D ∝ L -1 . Their reaction rate then obeys the well-known Smoluchowski formula [40],

K = 4πDR ∝ L -1/2 , which results in L ∝ t 2/3 [26].
Equation ( 8) is valid up to L = L 3 p /b 2 , after which the filament starts to feel its own excluded volume and its dynamics changes [37].
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To test the robustness of our predictions when these assumptions are relaxed, we run Brownian dynamics simulations of semiflexible polymers undergoing irreversible end-to-end annealing. The polymers are purely repulsive Lennard-Jones beads of diameter σ = 1 connected by finite-extensible nonlinear elastic (FENE) springs [41]. The Lennard-Jones interaction energy is = 1. To simulate semiflexible filaments, we impose an angular potential [42] U ang (θ) = ε b [1cos(θ)] to bonded triplets, where θ is the triplet angle and ε b the bending stiffness. For stiff enough filaments L p = ε b /k B T , which we use throughout. We consider L p values ranging between 10 and 5 × 10 3 (filaments with L p < 10 tend to form spurious loops [43]). We carry out the simulations using LAMMPS [44], and thermalize the system to an average temperature k B T = 1.0 through a Langevin thermostat [45]. A high monomer friction is imposed in order to simulate Brownian dynamics. To simulate filament annealing, each time two reactive sites come into contact a FENE bond is created between them provided that the angle θ between prospective bonded triplets is larger than θ min = 160 • to prevent excessive accumulation of bending energies upon binding. Each monomer can form at most two bonds, so that when polymers are formed, only their ends act as reactive sites. See also the Supplementary Information.

To assess the validity of our filament annealing dynamics dominated by diffusion and bending fluctuations, we monitor the mean filament contour length L(t) and compare it to our scaling predictions. We start from a monomer solution, implying L(0) = 1, and thus monitor L(t) -1. In Fig. 3A we show L(t) for systems of polymers with monomer concentration c = 10 -2 and 10 ≤ L p ≤ 5 × 10 3 (solid lines). At short times, namely for 1 L -1 3, we observe a transient regime of sublinear growth L(t) ∝ t β with β 0.4. We attribute this behavior to slower filament relaxation following binding in the presence of excluded volume interactions (Sup- plementary Information). After this transient, growth obeys a power law L(t) ∝ t β where β strongly depends on L p . For large L p , we observe β = 1/2, as predicted for rigid rods. As L p is decreased, this exponent increases and approaches 1 (linear growth) as expected for the fluctuations-dominated regime.

As filaments elongate, many-body excluded volume interactions become more important and hinder diffusion [START_REF] Doi | The theory of polymer dynamics[END_REF]. This may drastically slow down the motion of the reactive sites, and could conceivably contribute to the observed crossover from sublinear (∝ t 1/2 ) to linear growth in Fig. 3A. To prove that this crossover is instead due to the switching between a rigid rod regime and a fluctuations-dominated one, we simulate a system of "phantom" polymers (Fig. 3B). There, the excluded volume interactions between non-bonded neighbors are removed so that distinct filaments can freely cross each other. The crossover from sublinear to linear growth is preserved in this system, implying that it is not caused by steric effects. There are, however, two differences with Fig. 3A. First, at very early times L increases approximately as t 1/2 instead of t 0.4 , suggesting that the transient regime discussed above may be caused by excluded volume effects. Secondly, the phantom polymers display a faster growth (1.5-2 times faster for c = 10 -2 ) both in the sublinear and in the linear regime (see dashed line in Fig. 3B). To explain this second effect, one could speculate that excluded volume interactions slow down the movement of reactive sites and thus reduce the prefactor in the x(t) ∝ t 3/8 relation. We however show that this is not the case by directly monitoring these mean-squared displacements (Supplementary Information). We instead attribute the slower assembly in non-phantom networks to the inaccessibility of some potential reaction partners the data collapse on a single master curve, in agreement with the theoretical scaling regimes. The density-dependent behavior at small t (shaded area) is due to the rapid formation of a small number of bonds between nearby monomers at the very beginning of the simulation.

due to steric hindrance [5,46]. Finally, to confirm that the main assembly mechanism switches from center-of-mass diffusion to bending fluctuations as filament lengthen, we plot (L -1)/L * against t/t * , where L * and t * are respectively the crossover length and time between the two regimes. Our model predicts that the data should collapse onto the same master curve, with the crossover taking place at t/t * ≈ 1, (L -1)/L * ≈ 1. We show that this is indeed the case in Fig. 4, although the collapse fails for filaments smaller than a dimer (L 2), where the reaction rate is K ≈ b 3 /τ as expected for single monomers [47]. The collapse there is further distorted by dimerization events occurring within the first simulation time step in the denser regimes (c 10 -2 ). Following this initial regime (shaded area in Fig. 4), the data collapse on a master curve which displays a crossover between two power-law regimes, confirming our theoretical predictions for both excluded volume and phantom systems. Indeed, we observe a regime with slope 1/2 (rigid rod regime, dotted line), followed by a rather broad crossover to a linear one (fluctuations-driven regime, solid line). While we do not observe the Gaussian regime in our simulations, we recall that our theory predicts its onset only in very long filaments L L * * ∝ L 5/3 p . We thus estimate L * * ≈ 46 for our smallest values of L p , which may put this regime out of reach of our current simulations once geometrical prefactors are taken into account.

Overall, the fluctuations-driven regime predicted in this work allows for much faster growth of annealing semiflexible filaments compared to rigid rods. This mechanism is likely relevant in the cell cytoskeleton. In vi-mentin intermediate filaments with L p 1 µm and b 50 nm [48,49], we thus expect our regime to dominate assembly for filament lengths comprised between L * 140 nm and L * * 7.4 µm. This is consistent with the typical lengths between 200 nm and 10 µm observed in cells [50,51]. Estimating the resulting speed-up in assembly as the ratio K semiflex /K rigid ≈ (L/b)(L p /b) -1/3 , where K rigid ≈ k B T b 2 /ζL and K semiflex is given by Eq. ( 4) yields a 40-fold speed-up for a 5 µm vimentin filament. Actin filaments, which display significant endto-end annealing under some conditions [18,19], may be similarly affected. There, L p 18 µm and b 5.5 nm [START_REF] Howard | Mechanics of motor proteins and the cytoskeleton[END_REF] and so L * 82 nm and L * * 4.0 mm, whereas the in vivo filament lengths are comprised between 100 nm and a few microns [52]. For a 5 µm actin filament, we estimate a speed-up ratio of 60. Our analysis shows that transverse fluctuations dominate the assembly up to values of L * * much longer than the filament persistence length. This implies that the long-length Gaussian regime should very rarely, if ever, be observed. Our findings moreover shed new light on experimental observations of rigid-rod-like assembly kinetics (K ∝ L -1 ) in concentrated actin [19] and vimentin [46] undergoing annealing in vitro. These observations indicate that other phenomena such as lateral interactions (e.g. bundling [3][4][5][6]), may play a role in these experiments and effectively increase the rigidity of the filaments.

Our numerical simulations reveal that our mechanism does not give rise to widespread filament alignment, and that it is surprisingly robust to molecular crowding and excluded volume interactions. One could indeed naively expect excluded volume effects to significantly slow down network assembly when L becomes comparable with the mesh size ξ = (cb) -1/2 , as would be the case for diffusion in a suspension of rigid rods [START_REF] Doi | The theory of polymer dynamics[END_REF]. For a filament volume fraction c = 10 -2 (c = 10 -1 ), this would lead to significant excluded volume effects for filaments comprising more than ≈ 10 (3) monomers. By contrast, our theory accurately describes the simulated assembly dynamics well beyond these thresholds. This suggests that smallscale end fluctuations remain unhindered by neighboring filaments even in situations where the filament center-ofmass diffusion is largely inhibited, allowing the filaments to keep on annealing. These unhindered fluctuations are evidenced by the preservation of the x(t) ∝ t 3/8 scaling for the filament end displacement even in the presence of excluded volume interactions [START_REF] Lang | [END_REF] (Supplementary Information). This implies that filament assembly continues unabated into the L > ξ, "entangled network" regime of the semiflexible filament solution, where its short-term elastic modulus and its viscoelastic relaxation time both quickly increase with increasing filament length [53]. In cells, typical values of ξ range roughly between 100 and 500 nm [54,55]. This corresponds to reduced concentrations c between 10 -2 and 0.25 for vimentin (b 50 nm). This is enough to strongly suppress the filaments' centerof-mass diffusion but not our fluctuations-driven mechanism, implying even larger speed-up ratios than esti-mated above. Our estimates thus suggest that the mechanism described here may be crucial in allowing the cell to quickly assemble cytoskeletal structures in response to external stimuli. Beyond questions of time scales, these considerations may shift the balance between filament growth and, e.g., the build-up of entanglements during nonequilibrium cytoskeletal self-assembly, and thus have a profound impact on dictating the very structure and mechanics of cytoskeletal networks.

SUPPLEMENTARY INFORMATION SI. SCALING ARGUMENT FOR THE FLUCTUATION-DRIVEN GROWTH REGIME

In this section, we present a simple scaling argument to derive Eq. ( 4). Let us consider two semiflexible filaments of length L with diffusion coefficient D, and let us consider a spherical region whose center is the center of mass of the filaments and whose radius is L/2. When the two filaments meet by diffusing, the respective spherical regions, of volume V c ≈ L 3 (neglecting numerical prefactors), overlap for a time τ c ≈ L 2 /D. During this time, the reactive ends of the two filaments perform a non-compact exploration of space, with their root-mean squared displacement given by x(t) ≈ b 9 /L p 1/8 (t/τ ) 3/8 , with

τ = b 3 /LD. Thus, the time needed to explore a volume b 3 is τ b = (b 3 /LD)(L p /b) 1/3
. Accordingly, the time required to explore the whole volume

V c is τ e ≈ τ b (V c /b 3 ) ≈ (L 2 /D)(L p /b) 1/3
. Thus, over the time τ c , only a fraction τ c /τ e ≈ (L 2 /D)(L p /b) -1/3 of the volume V c will be explored. This makes use of the fact that the reactive ends perform a non-compact exploration of space. If a similar argument was repeated for Gaussian polymers, for which the ends perform a compact exploration of space, one would find that the whole volume V c is explored during the time τ c . Finally, the reaction rate can be obtained as K ≈ V c /τ e ≈ LD(L p /b) -1/3 , which is equivalent to Eq. (4).

SII. SIMULATION MODEL

We run N V T Brownian dynamics simulations of a system of N = 8000 particles (monomers) in a cubic box with periodic boundary conditions. The number density of the monomers is c = N/V , where V is the system's volume. We consider here c = 10 -3 , 10 -2 and 10 -1 . The monomers interact thorough the purely repulsive WCA potential [56], a version of the Lennard-Jones potential which is cut and shifted at its minimum to model excluded volume interactions: 

U WCA (r) = 4
ε b =10 ε b =15 ε b =20 ε b =25 ε b =50 ε b =100
FIG. S1. Bond orientation correlation function, Eq. (S4), obtained from simulations of polymers with different bending energies ε b , compared to the theoretically predicted exponential decay of Eq. (S5) (solid lines).

Bonded monomers additionally interact through a finiteextensible-nonlinear-elastic (FENE) potential,

U FENE (r) = - Kr 2 0 2 ln 1 -(r/r 0 ) 2 , ( S2 
)
with K = 30 and r 0 = 1.5 (Kremer-Grest model [41]). These values are chosen in such a way to prevent chain crossing. Since non-bonded interactions are purely repulsive, this model mimics the behavior of polymers in an athermal solvent [START_REF] Doi | The theory of polymer dynamics[END_REF]. Here we use reduced units, so that σ = 1, = 1, k B = 1 (Boltzmann's constant), and the unit mass m is the monomer's mass. The units of temperature, number density and time are respectively [T ] = /k B [c] = σ -3 and [t] = mσ 2 / . In addition to the WCA and FENE potentials, bonded triplets interact through a bending potential that allows us to tune chain stiffness [42],

U ang (θ) = ε b [1 -cos(θ)], ( S3 
)
where θ is the triplet angle and ε b is the bending stiffness. For stiff enough polymers, L p = ε b /T , and thus we define here L p using this relation. The validity of this relation was also confirmed by analyzing the bond orientation correlation function cos(θ s ) , defined as [57] cos

(θ s ) ≡ b k • b k+s |b k | |b k+s | , ( S4 
)
where b k ≡ r k+1r k is the k-th bond vector, denote ensemble averages taken over all bond vectors separated by a chemical distance s. The persistence length L p of the polymers can be estimated by the exponential decay of this correlation function [58]: cos(θ s ) ∝ e -sb/Lp = e -sbT /ε b , (S5) where b 0.96 is the bond length. As shown in Fig. S1, by comparing cos(θ s ) obtained from simulations to the prediction of Eq. (S4), we have verified that the relation L p = ε b /T is satisfied for all ε b ≥ 10, which is the smallest value considered here. We also note that for L p < 10 looping of the polymers (cyclization) is not negligible [43] and leads to a different assembly kinetics, as chains that have formed loops are not reactive. The solvent is simulated implicitly using a Langevin thermostat [45], so that the dynamics of each particle is governed by the following equation:

mr = -ζ ṙ -∇U + η(t), ( S6 
)
where r is the position of a particle, ζ the viscous friction it experiences, m its mass, and U its potential energy. The term η is a stochastic force which represents the collisions with solvent molecules, and satisfies η(t) = 0 and η α (t)η β (t ) = 2mζk B T δ α,β δ(tt ), with η α its spatial components. To simulate Brownian dynamics, we choose a high friction coefficient, ζ = 200, so that the diffusion time of a free monomer is τ = σ 2 ζ/k B T = 200. The Langevin thermostat keeps the average temperature of the system constant at T = 1. The equation of motions are integrated using the velocity Verlet algorithm with a time step δt = 10 -3 . The initial state of the system is a monodisperse solution of monomers, so that L(0) = 1.

When the distance r between two unbonded monomers satisfies r < r bond = 1.122 2 1/6 (minimum of the WCA potential), provided that each of the two monomers have fewer than two bonded neighbors, a FENE bond is created between them. We note that, since the reaction happens instantaneously as soon as r < r bond , a small number of reactions take place during the first time step, i.e., L(δt) > 1. We impose the additional condition on bonding that the angle θ between prospective bonded triplets must be larger than θ min = 160 • to prevent excessive accumulation of bending energy as a result of the bond formation. This choice is also in agreement with recent experimental results, which suggest that intermediate polymer annealing can only take place if there is a high degree of local alignment between the reacting filaments [46]. We have also tested smaller values of θ min , down to θ min = 140 • verifying that there is no qualitative difference in the observables studied in this work.

SIII. ANALYSIS OF FILAMENTS MEAN-SQUARED DISPLACEMENT IN THE ABSENCE OF ASSEMBLY

Here we analyze the dynamics of individual filament ends depending on the presence or absence of excluded volume interactions. In our simulations, we observe that phantom polymers display faster growth than those with excluded volume interactions in the linear growth regime, i.e., they satisfy L(t) ∝ t but with a slightly larger prefactor (see Fig. 3). As discussed in the text, this could be attributed to a reduction of the prefactor of the meansquared displacement (MSD) x 2 (t) of the filaments ends in the fluctuations-dominated regime, where x 2 (t) ∝ t 3/4 . Here, we show that this is not the case by comparing the MSD of the reactive sites in a system of phantom polymers and in one with full excluded volume interactions, in the absence of annealing reaction.

We simulate the excluded volume and phantom systems starting from the same initial configuration, with mean contour length L 10, for which a faster growth of the phantom polymers is already observed. In Fig. S2 we show these data for c = 10 -2 (A) and c = 10 -1 (B). In order to highlight the bending-fluctuations regime, we plot x 2 (t)t -3/4 as a function of time instead of x 2 (t). In both panels, a plateau at intermediate times signals the presence of a x(t) ∝ t 3/8 dynamical regime. Eventually, at longer times, the dynamics becomes diffusive, i.e., x 2 (t) ∝ t. We observe that for c = 10 -2 (A), there is basically no difference between the phantom and excluded volume system. This leads us to speculate that the transient regime L(t) ∝ t 0.4 observed in the presence of excluded volume interactions may be due to a slower filament relaxation following binding in the presence of excluded volume interactions. For c = 10 -1 (B), again no difference is observed in the fluctuations-dominated regime, however the dynamics of the phantom filaments is faster at longer times as the filament can cross each other. Since a faster assembly of the phantom filaments is observed already for L 10 also for the lower density c = 10 -2 , as shown in Fig. 3, we conclude that this is not due to a faster dynamics of the reactive sites. Rather, it is due to the fact that the filaments can cross each other, thus finding reaction partners more easily [5,46].
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 32 FIG. 2. Simulation snapshots (N = beads) of systems with the same mean contour length L and concentration (c = 10 -2 ) but with different persistence lengths Lp putting them in the fluctuations-driven (A) and rigid-rod-like (B) regimes. Shorter filaments are colored darker than longer ones.
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 3 FIG. 3. Mean contour length as a function of time for excluded volume and phantom filaments with different persistence lengths Lp and concentration c = 10 -2 . (A): Excluded (B): Phantom. Dashed line: Lp = 5000 with excluded volume interactions [same as in panel (A), shown for comparison]. For both systems A and B, the long-time behavior of L(t) follows our predictions for the rigid rods (slope 1/2) and fluctuations-driven (slope 1) regimes, depending on Lp.

FIG. 4 .

 4 FIG. 4. Rescaled mean contour length as a function of time for excluded volume and phantom filaments with different persistence lengths Lp and concentrations c = 10 -3 , 10 -2 and 10 -1 . Here L * = b(Lp/b) 1/3 and t * = τ (cb 3 ) -1 (Lp/b) 2/3 . (A): Excluded volume. (B): Phantom.For both systems A and B, the data collapse on a single master curve, in agreement with the theoretical scaling regimes. The density-dependent behavior at small t (shaded area) is due to the rapid formation of a small number of bonds between nearby monomers at the very beginning of the simulation.

  FIG. S2.Mean-squared displacement x 2 (t) of the end monomers of the filaments in the absence of annealing reactions. To highlight the bending-fluctuations regime, we have multiplied x 2 (t) by t -3/4 . (A): c = 10 -2 , L = 10.1. Solid lines: excluded volume filaments. Symbols: phantom filaments. (B): c = 10 -1 , L = 10.2. Lines and symbols are as in (A). The fluctuations-dominated regime [plateau x 2 (t)t -3/4 const.] is unchanged when the excluded volume interactions are turned off.
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