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1 Introduction

Genus interpolation between usual and free cumulant expansions

Set partitions, say of the set rrnss :" t1, 2 ¨¨¨, nu, are fundamental objects in combinatorics. Let Ppnq denote their set. Their census, subject to different conditions, has been and is still the subject of an abundant literature. In particular, it is well known, as we recall below in sect. 2.2, that any partition α may be assigned a genus gpαq by a formula descending from Euler's relation. Curiously, the census of partitions according to their genus is still an open problem, in spite of several fundamental contributions, [START_REF] Cori | Counting genus one partitions and permutations[END_REF][START_REF] Cori | Counting partitions of a fixed genus[END_REF][START_REF] Kreweras | Sur les partitions non croisées d'un cycle[END_REF][START_REF] Walsh | Counting rooted maps by genus I[END_REF][START_REF] Walsh | Counting rooted maps by genus II[END_REF]. Except for a few particular cases, only the case of genus 0 is thoroughly known: the non crossing partitions (or planar) have been enumerated by Kreweras [START_REF] Kreweras | Sur les partitions non croisées d'un cycle[END_REF], before reappearing in various contexts, matrix integrals [START_REF] Brézin | Planar diagrams[END_REF], free probability [START_REF] Speicher | Multiplicative functions on the lattice of non-crossing partitions and free convolution[END_REF][START_REF] Voiculescu | Addition of non-commuting random variables[END_REF]. . . The question also arises in probability theory and statistical mechanics. There, it is common practice to associate cumulants to moments of random variables. If X is a random variable with moments m n " EpX n q of arbitrary order, we decompose these moments on cumulants κ m and their products associated with partitions α P Ppnq

m n " ÿ αPPpnq κ α . (1) 
Thus each term in (1) may be regarded as associated with a splitting of rrnss into parts described by the partition in statistical mechanics, the terms κ α are dubbed the connected parts of the moment m n . If α denotes the number of parts of cardinality in the partition α, with ř n "1 α " n, then 1

κ α :" n ź "1 κ α . (2) 
depends only on the type rαs " r1 α 1 2 α 2 ¨¨¨n αn s of the partition α; rαs may be regarded as a partition of the integer n. By a small abuse of notation, we use the same letter κ to denote elementary cumulants κ , P N; compound ones κ α , α P Ppnq as in [START_REF] Coquereaux | Counting partitions by genus. II. A compendium of results[END_REF]; or κ rαs " κ α , rαs $ n, and we rewrite m n " ÿ rαs$n c n,rαs κ rαs [START_REF] Cori | Counting genus one partitions and permutations[END_REF] where c n,rαs denotes the number of partitions of type rαs (a coefficient of a Bell polynomial)

c n,rαs " n! ś n "1 α !p !q α . (4) 
Then, making use of the genus gpαq mentioned above, it is natural to modify the expansion (3) by weighting the various terms acccording to their genus. Introducing a parameter , we write m n p q " ÿ αPPpnq gpαq κ α [START_REF] Cvitanovic | Planar perturbation expansion[END_REF] or

m n p q " ÿ rαs$n gmaxprαsq ÿ g"0 C pgq n,rαs g κ rαs , (6) 
where C pgq n,rαs counts the number of partitions of type rαs and of genus g. For example, m 4 p q " κ 4 `4 κ 3 κ 1 `p2 ` qκ 2 2 `6 κ 2 κ 1 2 `κ1 4 , see below.

1 I'm assuming here that the moments and cumulants do not depend on extra variables like momenta, etc.

1 Obviously ř g C pgq n,rαs " c n,rαs , the coefficient in (4), thus for " 1, we recover the usual expansion (3), whereas for " 0, we have an expansion on non crossing (or free, or planar) cumulants. Thus [START_REF] Drouffe | Quantum field theory techniques in graphical enumeration[END_REF] provides an interpolation between the usual cumulant expansion and that on non crossing ones.

In this paper, we try to determine the numbers C pgq n,rαs . Or alternatively, we strive to find relations between the (ordinary) generating functions (GF) of the m n p q and of the κ :

Zpx, q " 1 `ÿ ně1 m n p qx n (7) 
"

ÿ gě0 Z pgq pxq g W pxq " ÿ ě1 κ x . (8) 
This will be achieved for genus 1 and 2, and the corresponding expressions of Z pgq pxq are given by Theorem 1, (28), and Theorem 2, (45). Extension to higher genera is in principle feasible, if the list of their primitive diagrams is known.

Eliminating or reinserting singletons

In a partition, parts of size 1 are called singletons. It is natural and easy to remove them in the counting, or to relate the countings of partitions with or without singletons. Let us denote with a hat the GF of partitions without singletons: Ẑpgq pxq, and derive the relation between Ẑpgq pxq and Z pgq pxq. This is particularly easy in the language of statistics, where discarding singletons amounts to going to a centered variable: X " X `EpXq " X `m1 " X `κ1 m n " EpX n q " Epp X `κ1 q n q " n ÿ r"0 ˆn r ˙m n´r κ k 1 and, since singletons do not affect the genus, see below sect. 2.6,

C pgq n,rα 1 ,1 r s " ˆn r ˙Cpgq n´r,rα 1 s (9) 
where the partition α 1 is singleton free (s.f.). For example,

m 1 " κ 1 m 2 " κ 2 `κ2 1 m 3 " κ 3 `3κ 2 κ 1 `κ3 1 m 4 " κ 4 `p2 ` qκ 2 2 `4κ 3 κ 1 `6κ 2 κ 2 1 `κ4 1 m 5 " κ 5 `5 κ 4 κ 1 `5p1 ` qκ 3 κ 2 `10 κ 3 κ 1 2 `5p2 ` q κ 2 2 κ 1 `10 κ 2 κ 1 3 `κ1 5 , etc. 2 Then Z pgq pxq " ÿ ně0 x n ÿ rαs αPPpnq C pgq n,rαs κ rαs " ÿ ně0 x n n ÿ r"0 ÿ rα 1 s α 1 PPpn´rq, s.f. C pgq n,r1 r ,α 1 s κ rα 1 s κ r 1 " ÿ n 1 ě0 x n 1 ÿ rα 1 s α 1 PPpn 1 q, s.f. C pgq n 1 ,rα 1 s κ rα 1 s ÿ rě0 ˆn1 `r r ˙κr 1 x r " ÿ n 1 ě0 ÿ rα 1 s α 1 PPpn 1 q, s.f. C pgq n 1 ,rα 1 s κ rα 1 s x n 1 p1 ´κ1 xq n 1 `1 " 1 1 ´κ1 x Ẑpgq `x 1 ´κ1 x ˘, (10) 
and conversely Ẑpgq puq "

1 1 `κ1 u Z pgq `u 1 `κ1 u ˘. ( 11 
)
2 Partitions and their genus

In this section, we recall some standard notions on partitions, show how to associate a graphical representation to a partition and introduce its genus in a natural way.

Parts of a partition

As explained in sect. 1, we are interested in partitions of the set rrnss.

Note that when listing the parts of a partition α " pti 1 u, ¨¨¨ti α 1 u, tj 1 , j 2 u. ¨¨¨q, (i) the ordering of elements in each part is immaterial, and we thus choose to write them in increasing order;

(ii) the relative position of parts is immaterial. For example, consider the partition pt1, 3, 4, 6, 7u, t2, 5, 9u, t8u, t10uq of rr10ss. It is of type r1 2 , 3, 5s with two singletons t8u and t10u. Clearly the order of elements within each part is irrelevant, e.g. parts t1, 3, 4, 6, 7u and t3, 4, 1, 7, 6u describe the same subset of rr10ss. One may thus order the elements of each part. Likewise the relative order of the parts is immaterial: pt1, 3, 4, 6, 7u, t2, 5, 9u, t8u, t10uq and pt2, 5, 9u, t8u, t1, 3, 4, 6, 7u, t10uq describe the same partition.

Combinatorial and graphical representations of a partition and its genus

A general partition α of Ppnq may be described in terms of a pair of permutations σ and τ , both in S n : σ is the cyclic permutation p1, 2, ¨¨¨, nq; τ belongs to the class rαs of S n , and its cycles are described by the parts of α, thus subject to the condition (i) above: each cycle is an increasing list of integers. The genus g of the partition is then defined by [START_REF] Jacques | Sur le genre d'une paire de substitutions[END_REF] n `2 ´2g " #cypτ q `#cypσq `#cypσ ˝τ ´1q [START_REF] Kreweras | Sur les partitions non croisées d'un cycle[END_REF] or in the present case, ´2g "

ÿ α ´1 ´n `#cypσ ˝τ ´1q . (13) 
(f) since here #cypσq " 1 and #cypτ q " ř α k . Since #cypσ ˝τ ´1q ě 1, we find an upper bound on g g ď g max :"

Z 1 2 pn ´ÿ α k q ^, (14) 
see also [START_REF] Yip | Genus one partitions[END_REF]. We recall below why this definition of the genus is natural.

Example.

For the above partition of rr10ss, σ " p1, 2, ¨¨¨, 10q, τ " p1, 3, 4, 6, 7qp2, 5, 9qp8qp10q, σ ˝τ ´1 " p1, 8, 9, 6, 5, 3, 2, 10qp4qp7q. Thus 2g " 11 ´4 ´3 " 4, g " 2, while g max " 3.

To a given partition, we may also attach a map: it has α -valent vertices, in short -vertices2 , for " 1, 2, ¨¨¨, whose edges are numbered clockwise by the elements of the partition, and a special n-valent vertex, with its n edges numbered anti-clockwise from 1 to n, see Fig. 1a,c. Edges are connected pairwise by matching their indices. Two maps are regarded as topologically equivalent if they encode the same partition. In fact it is topologically equivalent and more handy to attach n points clockwise on a circle, and to connect them pairwise by arcs of the circle, see Fig. 1b. Now the permutation σ describes the connectivity of the n points on the circle, while τ describes how these points are connected through the other vertices. It is readily seen that the permutation σ ˝τ ´1 describes the circuits bounding clockwise the faces of the map. This is even more clearly seen if one adopts a double line notation for each edge [START_REF] Hooft | A Planar Diagram Theory for Strong Interactions[END_REF], thus transforming the map into a "fat graph", see Fig. 1e . Thus the number of cycles of σ ˝τ ´1 is the number f of faces of the map. Since each face is homeomorphic to a disk, gluing a disk to each face transforms the map into a closed Riemann surface, to which we may apply Euler's formula

2 ´2g " #pverticesq ´#pedgesq `#pfacesq " 1 `ÿ α ´n `f (15) 
with f " #cypσ ˝τ ´1q, and we have reproduced [START_REF] Lando | Graphs on Surfaces and Applications, with an appendix by D. Zagier[END_REF].

Remark 1. This coding of a map, or here of a partition, by a pair of permutations, with a resulting expression of its genus, is an old idea originating in the work of Jacques, Walsh and Lehman [START_REF] Jacques | Sur le genre d'une paire de substitutions[END_REF][START_REF] Walsh | Counting rooted maps by genus I[END_REF][START_REF] Walsh | Counting rooted maps by genus II[END_REF] and rediscovered and used with variants by many authors since then [START_REF] Drouffe | Quantum field theory techniques in graphical enumeration[END_REF].

Remark 2. The diagrammatic representation that we adopt here differs from that of other authors [START_REF] Cori | Counting partitions of a fixed genus[END_REF][START_REF] Yip | Genus one partitions[END_REF]: in fact it is the dual picture, with our vertices corresponding to faces of these authors. Our preference for the former is due to its analogy with Feynman diagrams. . .

Glossary

It may be useful to list some elements of terminology used below. It is convenient to represent a partition of Ppnq by a diagram. It may be a circular diagram, with n points equidistributed clockwise, as on Fig. 1-d, and it has a genus as explained above. We distinguish the points on the circle from the vertices which lie inside the disk. Occasionally we use a linear diagram, with n points labelled from 1 to n on a line (or an arc), and vertices above the line. Note that if we give each point of the circle a weight x and each k-vertex the weight κ k , the sum of diagrams of genus g builds the GF Z pgq pxq. In a (circular) diagram, we call 2-line a pair of edges attached to a 2-vertex. In the following, the middle 2-vertex will be omitted on 2-lines, to avoid overloading the figures. A 2-line is then just a straight line between two points of the circle. In a diagram, we call adjacent a pair of edges joining a vertex to adjacent points on the circle. For example, on Fig. 2, the edges ending at 1 and 3 are not adjacent, those ending at 3 and 4 are. In the following discussion, it will be important to focus on a point on the circle, say point 1, and see what it is connected to. We shall refer to it as the marked point. If α is a partition of Ppnq of a given type, all its conjugates by powers of the cyclic permutation σ have the same type. Counting partitions of a given type thus amounts to counting orbits of diagrams under the action of σ, while recording the length (cardinality) of each orbit. Diagrammatically, the point 1 being marked, we list orbits under rotations of the inner pattern of vertices and edges by the cyclic group Z n , and record the length of each orbit. An orbit has a weight equal to its length n{s, where s is the order of the stabilizer of the diagram -a subgroup of the rotation group. For example, the left-most diagram of Fig. 8 has s " 2, the right-most s " 8, the others have s " 1.

The coefficients C pgq n,rαs

We now return to our problem of determining the coefficients C pgq n,rαs in [START_REF] Drouffe | Quantum field theory techniques in graphical enumeration[END_REF]. From the previous discussion, if we denote O n prαsq Ă S n the subset of permutations of class rαs, whose cycles involve only increasing sequences of integers, we have

C pgq n,rαs " # " τ ˇˇτ P O n prαsq, g " 1 2 ´n `1 ´ÿ α ´#cypσ ˝τ q ¯* . (16) 
Alternatively, one may use the diagrammatic language to write

C pgq n,rαs " ÿ orbits length of orbit " n ÿ orbits 1 s , (17) 
with a sum over orbits of diagrams of type rαs and genus g.

Remark on matrix integrals

As 't Hooft's double line notation [START_REF] Hooft | A Planar Diagram Theory for Strong Interactions[END_REF] suggests, the coefficient

C n,rαs p q " ÿ g C pgq n,rαs g (18) 
could be defined and computed in matrix integrals -(i) as the coefficient of ś κ α in the computation of x 1 N : tr M n :y rc in a matrix theory with action S " ´1 2 N tr M 2 `N ř κ tr M { ; the notation : : and the subscript "rc" will be explained shortly; -(ii) as the value of x: 1 N tr M n : :

ś pN tr M { q α α !
:y rc in a Gaussian matrix theory. In both cases, " 1 N 2 , if N is the size of the (Hermitian) matrices; C n,rαs pN ´2q is given by a sum of Feynman diagrams (in fact, of "fat graphs", or of maps) with 1 `ř α vertices, n edges ("propagators") joining the n-vertex tr M n to the other -vertices, and f faces associated with each closed index circuit. The double dots : : is a standard notation in quantum field theory, where it denotes the normal or Wick product, that forbids edges from a vertex to itself: here it forces all edges to reach the n-vertex. The crucial point is that we impose a restricted crossing ("rc") condition: the edges connecting each -vertex to the n-vertex cannot cross one another, thus respecting their original cyclicity and ordering. Only crossings of edges emanating from distinct vertices are allowed.

It is that constraint, a direct consequence of rule 2.1 (i) above, that makes the computation of the coefficients C pgq n,rαs by matrix integrals or group theoretical techniques, , and the writing of recursion formulae between them, quite non trivial. For partitions into doublets, however, one deals only with 2-vertices for which the constraint is irrelevant, and C pgq n"2p,r2 p s is computable by these techniques [START_REF] Harer | The Euler characteristic of the moduli space of curves[END_REF][START_REF] Lando | Graphs on Surfaces and Applications, with an appendix by D. Zagier[END_REF][START_REF] Walsh | Counting rooted maps by genus I[END_REF]. g " 1 ´p3 `1 ´10 `6q{2 " 1; (b) after removal of the three adjacent edges coming from the "centipede" t8, 9, 10u, here a 3-vertex, now n 1 " 7, f 1 " 4, g 1 " 1; (c) after reduction of two sets of adjacent edges to points 3 and 4, and 6, 7 and 1: now 

n 2 " 4, f 2 " 1, g 2 " 1`p2`1´4`1q{2 " 1.

Reducing the diagrams

In this subsection, we show that certain modifications of a diagram associated with a partition do not modify its genus. This discussion follows closely that of Cori and Hetyei [START_REF] Cori | Counting partitions of a fixed genus[END_REF]. (i) Removing singletons. Removing p singletons changes the number of parts ř α k by ´p, n by ´p and the number of faces f is unchanged, hence according to [START_REF] Voiculescu | Addition of non-commuting random variables[END_REF] the genus remains unchanged. (ii) Removing centipedes. Definition. A centipede is a planar linear subdiagram made of a p-vertex, all the edges of which are attached in a consecutive way to the outer circle, Fig. 2. In other words, it corresponds to a part of the partition with consecutive integers (modulo n), tj, j `1, ¨¨¨, j `pu . Removing it changes the number of parts ř α k by ´1, n by ´p and the number of faces f by ´pp ´1q, see the figure, hence the genus remains unchanged. (iii) Removing adjacent edges If two edges emanating from a vertex go to two consecutive points of the circle, (adjacent pair), see Fig 2b-c, removing one of them does not change ř α k but changes n and f by ´1, hence does not change the genus. One may iterate this operation on the same vertex until one meets a crossing with an edge emanating from another vertex. (If no crossing occurs, this means that the vertex and its edges formed a centipede in the sense of (ii) and may be erased without changing the genus.) To allow an unambiguous reconstruction of all diagrams later in the dressing process, we adopt the following Convention 1: in removing such adjacent edges, one keeps the edge attached to the marked point 1, or the first edge encountered clockwise starting from 1, and one removes the others. See Fig. 2 for illustration. (iv) Removing parallel lines Definition. Two pairs of edges joining two vertices respectively to points i and j `1, and to points i `1 and j on the circle are said to be parallel. Note that this is equivalent to saying that they form a 2-cycle of the permutation σ ˝τ ´1. And conversely, any such 2-cycle is associated with two parallel pairs of edges. (a) If one of these two vertices is a 2-vertex, one may remove the corresponding pair of edges and the 2-vertex without changing the genus, since ř α and f have decreased by 1 and n by 2, see Fig. 3 for illustration. If both pairs of edges are attached to 2-vertices, we choose by Convention 2 to keep the pair attached to the point of the circle of smallest label. In particular, if one of the pairs is attached to the marked point 1, it is kept and the other removed. (b) If both pairs of edges are attached to vertices of valency larger that 2, we keep them both. See Fig. 13 below for an example. After carrying these removals of parallel lines, we are left with primitive or semi-primitive diagrams (or partitions), following Cori-Hetyei's terminology: in primitive diagrams, no parallel pair is left; therefore, by the remark above, all cycles of σ ˝τ ´1 have length larger than 2. Semi-primitive diagrams still have parallel pairs of type (b). Now Cori and Hetyei have proved some fundamental results: Proposition. To an arbitrary diagram corresponds a unique primitive (or semi-primitive) diagram obtained by a sequence of reductions as above, and independent of the order of these reductions. Our new observation is that, conversely, any diagram may be recovered by "dressing" a primitive (or semi-primitive) diagram, as we shall see below.

Moreover, Proposition. [START_REF] Cori | Counting partitions of a fixed genus[END_REF] For a given genus, there are only a finite number of primitive diagrams. This follows from two inequalities: f " #cypσ ˝τ ´1q ď n 3 , since in a primitive diagram all cycles of σ ˝τ ´1 are of length larger or equal to three (see above); and ř α i ď n{2 after eliminating the singletons. Hence plugging these inequalities in [START_REF] Lando | Graphs on Surfaces and Applications, with an appendix by D. Zagier[END_REF], we get for a primitive diagram n ď 6p2g ´1q .

(

) 19 
As for the semi-primitive diagrams, it was shown in [START_REF] Cori | Counting partitions of a fixed genus[END_REF] that they are all obtained by a finite number of operations from the primitive ones, hence are themselves in finite number. For example Proposition [START_REF] Cori | Counting partitions of a fixed genus[END_REF] The irreducible diagrams of genus 1 are the two diagrams of Fig. 4, that have two, resp. three 2-lines. No semi-primitive occurs in genus 1. The proof of that statement is given in [START_REF] Cori | Counting partitions of a fixed genus[END_REF], sect. 8, where the two primitive partitions or diagrams are referred to as β 1 and β 2 .

3 From genus 0 to genus 1 . . .

Non crossing partitions and the genus 0 generating function

Recall first that in genus 0, the formula given by Kreweras [START_REF] Kreweras | Sur les partitions non croisées d'un cycle[END_REF] on the census of non crossing partitions may be conveniently encoded in the following functional relation between the genus 0 GF of moments Z p0q pxq and that of cumulants W pxq defined above3 Z p0q pxq " 1 `W pxZ p0q pxqq .

(20) 16), namely the length of its orbit.
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Figure 5: A graphical representation of identity Z p0q pjq " W pj Z p0q pjqq Indeed by application of Lagrange formula, one recovers Kreweras' result

C p0q n,rαs " n! pn `1 ´ř α k q! ś k α k ! , (21) 
as proved in [START_REF] Brézin | Planar diagrams[END_REF].

There is a simple diagrammatical interpretation of the relation (20) due to Cvitanovic [START_REF] Cvitanovic | Planar perturbation expansion[END_REF], see Fig. 5, which reads: in an arbitrary planar (i.e., non-crossing) diagram, the marked point 1 on the exterior circle is necessarily connected to a n-vertex, n ě 1, between the n edges of which lie arbitrary insertions of other (linear) diagrams of Z p0q . Our aim is to extend this kind of relation to higher genus.

Dressing the genus 1 primitive diagrams

We have seen that genus 1 diagrams may be reduced to the two primitive ones of Fig. 4. We now write a relation à la Cvitanovic between the generating functions W , Z p0q and Z p1q , depicted in Fig. 6 Z p1q pxq " ÿ ně2 κ n nx n pZ p0q q n´1 Z p1q `sum of dressed diagrams of Fig. 4 , The dressing consists in reinserting the elements removed in steps (iv)-(i) of sect. 2.6, in that reverse order. First, additional 2-lines are introduced, "parallel" to the two, resp. three 2-lines of the primitive diagrams of Fig. 4. Each of these 2-lines carries by definition a 2-vertex. Then to reinsert "adjacent" edges removed in step (iii), each of these 2-vertices may be transformed into a k-vertex, whose k ´2 additional edges may fall, by Convention 1, on either of the two arcs of the circle adjacent to the end points of the 2-line and "clockwise downstream", and without crossing one another: there are k ´1 partitions of k ´2 into two parts, one of them possibly empty, hence 24). Bottom: a schematic representation of the dressing of the (red) 2-line attached to the marked point 1; or to another (blue) 2-line. In the latter case, according to Convention 1, additional edges may be "emitted" from the central vertex to go to clockwise adjacent points on the circle, and their contribution to the generating function is X 2 pxq. For the red line, these additional edges may connect to either side of the marked point, and they contribute Y 2 pxq to the GF.

2 2 2 X (x) 2 Y (x) 1-X (x) 2 (1-X (x)) ... ... ... x x x x x x x x x x x x x x = Σ = = Σ = x x + (1) x 1 Z (0) Z (0) Z (0) Z (0) Z (0) Z (0) Z (0) Z (0) Z (1) Z (0) x x x Z (0) x x x Z (0) x x x Z (0)
we attach a weight X 2 pxq :" ř kě1 pk ´1qκ k x k to each of these parallel lines. Since there is an arbitrary number r ě 0 of parallel lines, they contribute X 2 pxq r , and their geometric series sums up to 1{p1 ´X2 pxqq. The same applies to the original blue 2-lines of the primitive diagram of Fig. 6, which thus gives each a factor X 2 pxq. The red 2-line, which is the one attached to the marked point 1,has a different weight, as the k ´2 edges emanating from its k vertex may fall on either side of the marked point or on the rightmost part of the diagram (see Convention 2 above): this is associated with a partition of the k ´2 edges into three parts (two of them possibly empty), in number kpk ´1q{2, which gives the red 2-line a weight Y 2 pxq " ř k kpk´1q 2 κ k x k , while its dressing by parallel lines leads to a factor 1{p1 ´X2 pxqq 2 , because again, parallel lines above or below the red 2-line are possible. Last step consists in reinserting "centipedes" and (possibly) singletons, namely in changing everywhere x into x " xZ p0q pxq. In that way, we have reinstated all features that had been erased in the reduction to primitive diagrams, and constructed the contribution to the GF Z p1q pxq of all diagrams in which the marked point 1 is attached to an edge that belongs to a dressed primitive diagram. Indeed in the resulting diagrams, the marked point 1 may be attached to any of the edges, as it should: this is clear whenever that edge is an edge of the primitive diagram; this is also true if the edge is one of the parallel lines added, or one of the added adjacent edges: that was the role of the factors in the definition of X 2 or Y 2 to count these cases. It is thus clear that all possible diagrams of type (b) contributing to Z p1q have been obtained by the dressing procedure, and that they are generated once and only once, hence with the right weight. Finally the cases (a) where 1 is not attached to a dressed primitive, but to some genus 0 subdiagram, are accounted for by the first term in equ.(22).

The genus 1 generating function

Define

x " xZ p0q pxq .

Gathering all the contributions of sect. 3.2 we have

Z p1q pxq " ÿ ně2 κ n nx n pZ p0q pxqq n´1 Z p1q pxq `Y2 pxqX 2 pxq p1 ´X2 pxqq 3 `Y2 pxqX 2 2 pxq p1 ´X2 pxqq 4 , (24) 
i.e., p1 ´V pxqqZ p1q pxq " Y 2 pxqX 2 pxq p1 ´X2 pxqq 4 where

X 2 pxq " ÿ kě2 pk ´1qκ k x k " xW 1 pxq ´W pxq , (25) 
Y 2 pxq " ÿ kě2 kpk ´1q 2 κ k x k " 1 2 x 2 W 2 pxq (26) 
V pxq "

ÿ k kκ k x k Z p0q k´1 " xW 1 pxq . (27) 
This is summarized in the following theorem.

Theorem 1. If x " xZ p0q pxq, the generating function of genus 1 partitions is given by

Z p1q pxq " X 2 pxqY 2 pxq p1 ´X2 pxqq 4 p1 ´V pxqq . (28) 
Alternatively, if we introduce X2 pxq :"

X 2 pxq p1 ´X2 pxqq Ỹ2 pxq :" Y 2 pxq p1 ´X2 pxqq 2 (29) 
we have the simple expression

Z p1q pxq " Ỹ2 pxq X2 pxqp1 `X 2 pxqq p1 ´V pxqq (30) 

Examples and applications

3.4.1 n " 2p Ñ r2 p s If all κ i vanish but κ 2 " 1, i.e., if we consider partitions of n " 2p into p doublets, which is the celebrated case considered in [START_REF] Harer | The Euler characteristic of the moduli space of curves[END_REF][START_REF] Walsh | Counting rooted maps by genus I[END_REF], we have W pxq " x 2 , hence

Z p0q px; κ 2 " 1, κ i‰2 " 0q " 1 ´?1 ´4x 2 2x 2 (31) 
as the solution of equ. (20). Then following Theorem 1, we find

Z p1q px; κ 2 " 1, κ i‰2 " 0q " x 4 p1 ´4x 2 q 5{2 , (32) 
in accordance with known results.

3.4.2 n " 3p Ñ r3 p s
In that case, we take κ 3 " 1, W pxq " x 3 , hence Z p0q satisfies the third degree equation,

pxZq 3 ´Z `1 " 0 ( 33 
)
and it is the GF of Fuss-Catalan numbers. We may write it as

Z p0q px; κ 3 " 1, κ i‰3 " 0q " 2 ? 3x 3 sin ´1 3 Arcsin `3 2 ? 3x 3 ˘¯. (34) 
Then following Theorem 1, one finds, after some algebra,

Z p1q px; κ 3 " 1, κ i‰3 " 0q " 1152 x 3 sin 6 ´1 3 Arcsin `3? 3x 3 2 ˘2 cos ´1 3 Arccos `1 ´27x 3 2 ˘¯´1 ¯´9 ? x 3 ´4? 3 sin ´1 3 Arcsin `3? 3x 3 2

˘¯¯4

(35) with a Taylor expansion 6x 6 `102x 9 `1212x 12 `12330x 15 `114888x 18 `1011486x 21 `8558712x 24 `70324884x 27 `564931230x 30 `¨¨ï n agreement with direct calculation, see [START_REF] Coquereaux | Counting partitions by genus. II. A compendium of results[END_REF]. Note that the closest singularity of Z p1q is at the vanishing point of the discriminant of (33), namely x 3 " 4{27:

Z p1q px; κ 3 " 1, κ i‰3 " 0q " const.
p 4 27 ´x3 q 5{2 , when x 3 Ñ 4{27, with the same exponent 5{2 as in (32).

Total number of partitions of genus 0 and 1

Let all κ be equal to 1, resp. all κ's but κ 1 " 0. Then the previous expressions yield the GF of the numbers of partitions of genus 0 or 1, with, resp. without singletons:

Z p0q px; κ i " 1q " 1 ´?1 ´4x 2x (36) 
Ẑp0q pxq :" Z p0q px; κ 1 " 0, κ iě2 " 1q " 1 ´b1 ´4x

1`x 2x " 1 `x ´?1 ´2x ´3x 2 2xp1 `xq no singleton Z p1q px; κ i " 1q " x 4 p1 ´4xq 5{2 (37) 
Ẑp1q pxq :" Z p1q px; κ 1 " 0, κ iě2 " 1q " x 4 p1 ´2x ´3x 2 q 5{2 no singleton (38) on which we may verify the relations (10-11) above.

Proof. If all κ i " 1, W pxq " x{p1 ´xq as a formal series, and Z p0q pxq, solution of Z p0q pxq " W pxZ p0q pxqq as a formal series, is given by (36), (the GF of the Catalan numbers). Likewise, if κ 1 " 0, the others equal to 1, W pxq " x 2 {p1 ´xq, etc. For genus 1, we then make use of Theorem 1 to derive (37-38).

Number of partitions with a fixed number of parts, in genus 0 and 1

Let all κ be equal to y, then W pxq " xy{p1 ´xq, and Z pgq px, yq " ř n,k p pgq pn, kqx n y k is the GF of the numbers p pgq pn, kq of genus g partitions of n with k parts. Z p0q is the solution of equ. (20)

Z p0q px, yq " 1 `x ´xy ´ap1 `x ´xyq 2 ´4x 2x . ( 39 
)
which is the GF of Narayana numbers, and then we compute by (28)

Z p1q px, yq " x 4 y 2 pp1 `x ´xyq 2 ´4xq 5{2 (40) 
which is the expression given by Yip [START_REF] Yip | Genus one partitions[END_REF], and Cori and Hetyei [START_REF] Cori | Counting genus one partitions and permutations[END_REF].

If we exclude singletons, W px; κ 1 " 0q " x 2 y{p1 ´xq, and the GF read now Ẑp0q px, yq :" Z p0q px, y; κ 1 " 0q " 1 `x ´ap1 ´xq Based on this list of primitive diagrams, we may now write an equation similar to (24)

Z p2q pxq " ÿ n nκ n x n pZ p0q pxqq n´1 Z p2q pxq (42) 
`dressing of psemi´qprimitive diagrams of genus 2 as illustrated in Fig. 7.

Remark. It might seem natural to also have in the r.h.s. of (42 ) a term with two insertions of genus 1 subdiagrams. In fact such diagrams will be included in the set of primitives and their dressings. An example is given by the first diagram of Fig. 8. with, as before, x " xZ p0q pxq. (Beware that the power of p1 ´X2 pxqq in the denominator of X does not apply to " 2, compare with (29).) These functions too may also be expressed in terms of derivatives of W : for example, Y 3 pxq " 1 6 x 3 W 3 pxq, etc. Consider first a primitive diagram with a 3-vertex, like those depicted in Fig. 9. Remember that all distinct rotated diagrams must be considered and hence, the marked point 1 may be attached to the 3-vertex or to any one of the 2-lines. (i) In the case where the marked point 1 is attached to one of the 2-lines, its 2-vertex may be changed into a k vertex, k ą 2 and as in sect. 3.2, this yields a weight Y 2 pxq{p1 ´X2 pxqq 2 , while the lines emanating from the 3-vertex or parallel to it contribute X 3 pxq{p1 ´X2 pxqq 3 . And again, a final change of x into x completes the dressing. (ii) In the former case, 1 attached to the 3-vertex, this 3-vertex may be promoted to a k-vertex, k ą 3, with k ´3 lines ending on four different arcs of the circle: there are `k 3 ˘ways of distributing them, whence a weight Y 3 pxq. Then adding parallel lines may be done in 3 ways, whence a weight 1{p1 ´X2 pxqq 3 . The 2-lines, on the other hand, carry a weight X 2 pxq{p1 ´X2 pxqq, just like in sect. 3.2. Finally, again as in sect. 3.2, the variable x has to be substituted for the dressed one x " xZ p0q to take into account all possible insertions of genus 0 subdiagrams. (iii) There is, however, a case not yet accounted for by the previous dressing. When the marked point 1 is attached to a 2-line parallel to a pair of edges of the 3-vertex, that line has been erased in the reduction process and must be restored. A weight 2Y 2 pxq{p1 ´X2 pxqq is attached to that new line, with a factor 2 comes from the two ends of the 2-line, and a single factor 1{p1 ´X2 pxqq as compared with what we saw in sect. 3.2, because the counting of parallel lines between the new line and the 3-vertex has already been taken into account in the term X3 pxq. and their dressing is given by the expression (46) above. Thus Z p2q px; κ 2 " 1, κ i‰2 " 0q " Ỹ2 pxq p1 ´2x 

Total number of genus 2 partitions

Taking all κ's equal to 1 (and possibly κ 1 " 0), as in sect. 3.4.3, hence W pxq " x{p1 ´xq or x W pxq " x 2 {p1 ´xq, we compute by (7) the GF of the total number of genus 2 partitions (with or without singletons), and we recover the result of Cori and Hetyei [START_REF] Cori | Counting partitions of a fixed genus[END_REF] Z p2q px; κ i " 1q " x 6 p1 `6x ´19x 2 `21x 3 q p1 ´4xq 11{2 , and also Z p2q px; κ 1 " 0; κ ią1 " 1q " x 6 p1 `10x `5x 2 `5x 3 `9x 4 q p1 ´2x ´3x 2 q 11{2 in accordance with (10).

Genus 2 partitions into r parts

The two-variable GF of the number of genus 2 partitions into a given number of parts is obtained as in sect. 3.4.4 by setting all κ i " y. Theorem 2 leads to Z p2q px, yq "

x 6 y 2 ppx, yq pp1 `x ´xyq 2 ´4xq 11{2 (52) ppx, yq " 1 ´xp4 ´10yq `x2 p6 ´10y ´15y 2 q ´x3 p4 `10y ´39y 2 `4y 3 q `x4 p1 `10y ´15y 2 ´4y 3 `8y 4 q

The "critical exponent" 1 2 ´3g is familiar to physicists in the context of boundary loop models and Wilson loops [START_REF] Kostov | Boundary Loop Models and 2D Quantum Gravity[END_REF]. Such a connection is natural in the case of partitions into doublets, since it is known that in that case, the counting amounts to computing the expectation value of tr M n in a Gaussian matrix integral, hence for large n, of a large loop. That the same singular or asymptotic behaviour takes place in (all ?) other cases seems to indicate that an effective Gaussian theory takes place in that limit. 7 A natural question is whether the Topological Recurrence of Chekhov, Eynard and Orantin [7] is relevant for the counting of partitions and is related to or independent of the approach of this paper.

As mentioned in the introduction, the formulae derived in this paper yield an interpolation between expansions on ordinary and on free cumulants. What is the relevance of this interpolation? How does it compare with other existing interpolations ? All these questions are left for future investigation.

Figure 1 :

 1 Figure 1: The partition pt1, 3, 4, 6, 7u, t2, 5, 9u, t8u, t10uq of rr10ss. (a) and (b): two equivalent representations of the 10-vertex; (c) the four other vertices; (d) a contribution to C pgq 10,r1 2 3 5s ; (e) the double line version of (d), with three faces and thus genus g " 2; (f) the linear version of (d).

Figure 2 :

 2 Figure 2: (a) Diagram for the partition of rr10ss into pt1, 3, 4, 6, 7u, t2, 5u, t8, 9, 10uq, f " 6 hence genus

Figure 3 :

 3 Figure 3: Removing the blue parallel pair of edges and the light blue face does not affect the genus: Variations ∆n " ´2, ∆f " ´1, ∆ ř α k " ´1, hence ∆g " 0.

Figure 4 :

 4 Figure 4: The two "primitive" diagrams of genus 1. The blue figure in the middle is the weight of the diagram in (16), namely the length of its orbit.

  which reads: in a generic diagram of genus 1, the marked point 1 is attached (a) either to an edge of an n-vertex, between the non-crossing edges of which are inserted one (linear) subdiagram of genus 1 and pn ´1q subdiagrams of genus 0 4 , (b) or to an edge of a dressed primitive diagram of genus 1.Let us concentrate on the case (b) and make explicit what is meant by dressing.

Figure 6 :

 6 Figure 6: Top: A graphical representation of identity (24). Bottom: a schematic representation of the

Figure 7 :

 7 Figure 7: A graphical representation of relation (42)

Figure 9 :

 9 Figure 9: The primitive diagrams of order 7, type r2 2 3s and genus 2, with the sum of weights equal to 14

Figure 10 :Figure 11 :

 1011 Figure 10: The primitive diagrams of order 15, type r2 6 3s and genus 2, with the sum of weights equal to 175

Figure 12 :

 12 Figure 12: The primitive diagrams of order 8, type r2 3 2 s and genus 2, of total weight 20

Figure 13 :

 13 Figure 13: The 3 semi-primitive diagrams of order 10, type r2 2 3 2 s, and genus 2, with the sum of weights equal to 15

Figure 14 : 6 Figure 15 :

 14615 Figure 14: The 2 primitive diagrams of order 8, type r2 2 4s, and genus 2, with the sum of weights equal to 6

Table 1 .

 1 Ẑp1q px, yq :" Z p1q px, y; κ 1 " 0q "x 4 y 2 pp1 ´xq 2 ´4x 2 yq 5{2 .The list of primitive and semi-primitive diagrams of genus 2 is known, thanks to the work of Cori and Hetyei[START_REF] Cori | Counting partitions of a fixed genus[END_REF]. This has been confirmed independently, in the present work, by generating on the computer all partitions of genus 2 of a given type, and then eliminating all those that involve adjacent or parallel edges. By inequality (19) these primitive diagrams have at most 18 points (i.e., n ď 18), and either up to 9 2-vertices, or one or two 3-vertices, or one 4-vertex. In Table1, are listed their number for increasing total number of points n.5 Number of (semi-)primitive diagrams of genus 2.

	2 ´4x 2 y 2xp1 `xyq	(41)

  The dressing of primitive diagrams with only 2-lines (Column 2 of Table1) involves the same functions X2 and Ỹ2 defined above in sect. 3.3: Ỹ2 is assigned to the line attached to point 1, while the other lines carry the weight X2 . Hence their contribution to the r.h.s. of equ.(42) reads For the dressing of primitive diagrams with 3-or 4-vertices, we must introduce new functions that generalize X 2 and Y 2 defined in (25-26)

	4.2 Dressing of primitive diagrams of genus 2		
	z 2 " Ỹ2 pxq ´21 X3 2 pxq `168 X4 2 pxq `483 X5 2 pxq `651 X6 2 pxq `420 X7 2 pxq `105 X8 2 pxq with
	the notations of (29).						
			X pxq "	ÿ kě	ˆk ´1 ´1˙κ k x k	(43)
			Y pxq "	ÿ	ˆk ˙κk x k
					kě		
	ą 2	X pxq :"	X pxq p1 ´X2 pxqq	;	Ỹ pxq :"	Y pxq p1 ´X2 pxqq	.

  2 Z p0q pxqq ´21 X3 2 pxq `168 X4 2 pxq `483 X5 2 pxq `651 X6 2 pxq `420 X7 2 pxq `105 X8 2 pxq with the notations of (29). After some substantial algebra (carried out by Mathematica), one finds Z p2q px; κ 2 " 1, κ i‰2 " 0q " Genus 2 partitions of n " 3p into p triplets We now assume as in sect. 3.4.2 that only κ 3 ‰ 0 (and equals 1 with no loss of generality). Let s :" sin `1 3 sin ´1 `3 2 ? 3x 3{2 ˘˘. Then, following (45), Z p2q takes the fairly cumbersome form Z p2q px; κ 3 " 1; κ i‰3 " 0q " 192s 6 x 6 `8s 3 `128 `11264s 9 `8676 ? 3s 6 x 3{2 `3105s 3 x 3 ˘`9315 ? 3x 9{2 ˘`729x 6 2 (compare with the denominator of Z p1q in (35). The first terms of the series expansion read x 6 `144x 9 `6046x 12 `149674x 15 `2771028x 18 `42679084x 21 `¨¨Ö ne finds again a singular behaviour of the form Z p2q px; κ 3 " 1; κ i‰3 " 0q " const.

		21x 8 p1 `x2 q p1 ´4x 2 q 11{2		(51)
	in agreement with the results of [8].			
	4.4.2 cos ´1 3 Arccos `1 ´27x 3 2 ˘¯´1 ¯´9 ?	x 3 ´4? 3 sin ´1 3 Arcsin	2 `3? 3x 3	˘¯¯1 0
		p 4 27	´x3 q 11{2 .	

Remember that α are the multiplicities introduced in (2)

Recall this relation is equivalent to the functional identity P ˝G " id, where Gpuq :" u ´1Z p0q pu ´1q and P pzq :" z ´1W pzq, and Rpzq " P pzq ´1 z is the celebrated Voiculescu R function[START_REF] Speicher | Multiplicative functions on the lattice of non-crossing partitions and free convolution[END_REF][START_REF] Voiculescu | Addition of non-commuting random variables[END_REF].

Remember that by convention, Z p0q pxq starts with 1, hence these subdiagrams of genus 0 may be trivial

In Table1of[START_REF] Cori | Counting partitions of a fixed genus[END_REF] there is the unfortunate omission of the 175 primitive diagrams with one 3-vertex (a 3-cycle in their terminology), while those diagrams are properly taken into account in the ensuing formulae. These missing diagrams are listed in Fig.10.

All genus 2 primitive and semi-primitive diagrams may be found on https://www.lpthe.jussieu.fr/ ~zuber/Z_UnpubPart.html
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Now each of the previous contributions must be weighted by its number of occurrences when the diagram is rotated. For example, each of the two diagrams of Fig. 9 contributes `4 Ỹ2 X2 X3 (since marked point 1 may be at any of the four end-points of the 2-lines) + 3 Ỹ3 X2 2 (3 ways of attaching point 1 to the 3-vertex) `3 X3 X2 2 p2Y 2 pxq{p1 ´X2 pxqq (when 1 lies on a line parallel to two edges of the 3-vertex). More generally, for a primitive diagram of an orbit of symmetry order s, with one 3-vertex and p 2-lines, n " 3 `2p, the weight is

where we write X and Ỹ in short for X pxq and Ỹ pxq. Thus the orbits of partitions of rrnss with a primitive diagram with a single 3-vertex contribute

But as we saw in [START_REF] Walsh | Counting rooted maps by genus II[END_REF], for a given n, ř orbits 1 s " N n , where N is the number listed in Table 1, column 3, row n. In total the diagrams with a single 3-vertex contribute to the r.h.s. of (42) the amount z 3 listed below in (47).

The dressing of primitive diagrams with two 3-vertices or one 4-vertex (columns 4 and 6 of Table 1) is done along similar lines. Thus for an orbit of primitive diagram with two 3-vertices and p 2-lines, with now n " 2p `6, we get

and the total contribution z 33 of such diagrams is given in (48).

For a primitive diagram with one 4-vertex and p 2-lines, (and n " 2p `4), likewise, we get

2Y 2 pxq p1 ´X2 pxqq ¯ȧnd the total contribution z 4 is given in (50).

Finally, the dressing of semi-primitive diagrams (see a sample in Fig. 13) requires special care to avoid double counting. Consider such a semi-primitive diagram, thus with two 3-vertices and p 2-lines, n " 2p `6. First, when the point 1 is attached to one of the 2-lines or one of the two 3-vertices, we have a contribution like the first two terms in (44), but multiplied by p1 ´X2 pxqq not to count twice the set of lines between the two parallel lines. Moreover, when the point 1 is attached to an added line parallel to one of the branches of the two 3-vertices, there are 5 locations for that line, whence a contribution 5 s X2 3 Xp 2 ˆ2Y 2 pxq, with no further factor 1{p1 ´X2 pxqq. In total, a semi-primitive diagram contributes

ānd the total from semi-primitive diagrams appears as z 33s in (49).

Remark. As noticed by Cori and Hetyei [START_REF] Cori | Counting partitions of a fixed genus[END_REF], the semi-primitive diagrams may be obtained from the primitive ones by "splitting" a vertex of valency larger than 3. For example the three diagrams of Fig. 13 may be obtained from those of Fig. 14 by splitting their 4-vertex as in Fig. 15. One might thus consider only primitive diagrams and include the splitting operation in the dressing procedure. The benefit is that primitive diagrams are easy to characterize: they are such that the permutation τ has no 1-cycle and σ ˝τ ´1 no 2-cycle. 

where V pxq has been given in (27) and z 2 , ¨¨¨, z 4 are the contributions of dressing the (semi-)primitive diagrams listed in Table 1.

and we recall that X and Ỹ stand for X pxq and Ỹ pxq defined in (43). The resulting expressions for the numbers C p2q n,rαs have been tested up to n " 15 and all rαs against direct enumeration using formulae ( 16) or [START_REF] Walsh | Counting rooted maps by genus II[END_REF], and for some higher values of n for a few particular cases.

Particular cases

Genus 2 partitions of n " 2p into p doublets

In the simplest case where only κ 2 ‰ 0 (and set equal to 1 with no loss of generality), the primitive diagrams are of order n ď 18 -a sample of which is shown in Fig. 8 6 . They involve only 2-lines as first derived by Cori-Hetyei [START_REF] Cori | Counting partitions of a fixed genus[END_REF].

The counting of genus 2 partitions into r parts is then obtained by identifying the coefficient of y r in (52). For example, for r " 2 (partitions into two parts with or without singleton)

in agreement with a general result for r " 2 and arbitrary genus [START_REF] Coquereaux | Counting partitions by genus. II. A compendium of results[END_REF]. For r " 3 (partitions into three parts without singleton) Z p2q px; r " 3q " 14x 7 p1 `2xq p1 ´xq 9 " 14 ÿ ně7 ˆn 7 ˙3n ´13 8

x n

Conclusion and perspectives

In principle the method could be extended to higher genus, but at the price of an increasing number of (semi-)primitive diagrams, whose set remains to be listed, with an Ansatz of the form

For instance, in genus 3, primitive diagrams may occur up to n " 30 and they start at order n " 12.

An Ansatz for partitions into doublets (i.e., of type r2 p s), for g " 3 is thus

in which the numerical coefficients a j count the primitives of type r2 j`6 s and may be determined against the known result of [8] ¯.

We end this paper with a few remarks on some intriguing issues. There is some evidence of a universal singular behaviour of all generating functions, Z pgq pxq " px 0 ´xq n 3g´1 2 as n, rαs grow large .