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Abstract – Four models based on convolutional neural networks were used to investigate whether image rec-
ognition techniques applied to honey bee wings could be used to discriminate among honey bee subspecies. A 
dataset consisting of 9887 wing images belonging to 7 subspecies and one hybrid was analysed with ResNet 
50, MobileNet V2, Inception Net V3, and Inception ResNet V2. Accuracy values of classification of individual 
wings were over 0.92, and all models outperformed traditional morphometric evaluation. The Inception models 
achieved the highest accuracies and higher scores of precision and recall for most classes. When wing images 
were grouped by colony, almost all wings in the colony samples were labelled with the same class. We conclude 
that automatic image recognition and machine learning applied to honey bee wings can reliably discriminate 
among the European subspecies and could thus represent a useful tool for fast classification of honey bee sub-
species for breeding and conservation aims.

Honey bee subspecies / Apis mellifera / Machine learning / Morphometry / Artificial intelligence

1. INTRODUCTION

Discrimination of honey bee subspecies is 
of critical importance for the conservation of 
honey bee biodiversity. Identification of the A. 
mellifera subspecies is also important in honey 
bee breeding because many breeders are keen 
on keeping pure stocks and often need official 
certification to attest that their bees belong to a 
given subspecies.

Knowledge of the geographical distribution 
of honey bee subspecies is the result of numer-
ous studies based primarily on morphometry. 
The most complete synthesis on this subject is 
provided by the monograph of Ruttner (1988), 

which refers to the application of numerical tax-
onomy, firstly introduced by DuPraw (1964). 
Ruttner used a total of 36 characters, including 
size of various body parts, wing venation, pilos-
ity, and pigmentation, for analysis of honey bee 
workers from a wide range of geographic regions 
(Ruttner et al. 1978; Ruttner 1988). This set of 
characters, known as “standard morphometry,” 
still constitutes the reference method more often 
used in studies of geographic variation.

Today, several morphometrical methods of 
subspecies identification are in use. They differ 
in precision and time employed for the analy-
sis (Bouga et al. 2011; Meixner et al. 2013). 
For the purpose of breeding and conservation 
programmes, rapid and less precise methods, 
based on the measurement of few characters, 
are usually preferred, although they are suitable 
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for the discrimination of a limited number of 
subspecies.

Efforts have been made to facilitate the 
morphometric identification process towards 
computerised, and even partially automated, 
methods. The most suitable body part for com-
puterised analyses is the forewing, where many 
characters can be rapidly and quite accurately 
obtained by identification of venation junctions 
which yield angles and lengths or can be used 
as landmarks for shape analyses (Bouga et al. 
2011; Meixner et  al. 2013; Nawrocka et  al. 
2017; Tofilski 2008). For these kinds of analy-
ses, a scanner, a personal computer, and specific 
software for data acquisition are required.

A new frontier in the recognition and clas-
sification of images is represented by applica-
tion of artificial intelligence through techniques 
of machine learning based on neural networks. 
These systems have recently shown impressive 
results across a variety of domains and may 
be particularly suited to solve problems in the 
field of biological sciences. Computer vision 
tools have undergone a fast evolution over the 
past 10 years with the introduction and the sub-
sequent development of Convolutional Neural 
Networks (hereon CNN) (He et al. 2016). CNNs 
are extremely flexible in terms of being able to 
solve many kinds of problems, such as classifi-
cation, regression, or anomaly detection and in 
theory are able to learn any computer vision task 
with high accuracy. Since subspecies recognition 
can be defined as an image classification problem 
(Silva et al. 2015), we claim that a CNN could 
learn to solve it from a set of labelled exam-
ples. Thus, the aim of the present study was to 
investigate whether the modern image recogni-
tion techniques could be used to efficiently dis-
criminate among honey bee subspecies through 
analysis and classification of wing images. These 
techniques are not new to the field of apidology 
and have already been employed with success in 
assessing the status of honey bee comb cells by 
Alves et al. (2020).

In this paper, we consider four CNN architec-
tures and train them to recognise the honey bee 
subspecies using a set of 9887 forewing images, 
belonging to a reference collection containing 7 

European subspecies and the Buckfast intraspe-
cific hybrid.

2.  METHODS

2.1.  Wing images, colony samples and 
morphometrical analyses

The wing images used in this study are stored 
at CREA-Research Centre for Agriculture and 
Environment (CREA-AA) and were collected 
from honey bee colonies over the past 40 years. 
A total number of 509 honey bee colony samples 
were used: 273 are part of the reference dataset 
used at CREA-AA for morphometric subspecies 
classification, initially validated by means of 
analysis of several characters according to stand-
ard morphometry (Ruttner, 1988); the remain-
ing colony samples were collected by CREA-AA 
from beekeepers maintaining autochthonous sub-
species in Italy and other European countries. 
These colony samples were chosen based on 
conformity with the declared subspecies, com-
paring them to the CREA reference dataset by 
means of measurement of 30 wing parameters 
according to the DAWINO (Discriminant Anal-
ysis With Numerical Output) method (Meixner 
et al. 2013), supplemented by check of the third 
tergite pigmentation, in accordance with the Ital-
ian procedure described in Bouga et al. (2011).

The considered honey bee colony samples 
belong to 7 European subspecies and to the 
intraspecific hybrid “Buckfast” (from hereon 
collectively referred to as “classes”) (Table I). 
Each sample consists of 15–25 right forewings 
dissected from bees collected from one colony, 
placed on a photographic slide sheet or a micro-
scope slide and then scanned with a 3200-dpi 
resolution to obtain digital images.

2.2.  Image processing with artificial 
intelligence

Single-wing pictures (from hereon “images”) 
were extracted from the above described dataset 
by means of object detection, performed with a 

Page 2 of 155   



Image recognition using convolutional neural networks for classification…

1 3

RetinaNet (Lin et al. 2017) model with a ResNet 
50 (He et al. 2016) backbone trained on a sam-
ple of 22 manually annotated images. Annotation 
was achieved by creating PASCAL-VOC xml 
files (Everingham et al. 2010).

Results were manually verified removing false 
positives (images that were not wings, such as 
stains on the slide — although this only occurred 
twice) and obtaining a dataset consisting of eight 
classes with 9887 images distributed as reported 
in Table I.

The images were then resized and padded 
with white pixels to match the square format 
expected by the considered neural networks 
described below.

2.3.  Recognition models and training

CNN models that are well established in the 
IT literature and in the industry were considered 
for the experiment: ResNet 50, MobileNet V2 
(Sandler et al. 2018), Inception Net V3 (Szegedy 
et al. 2016), and Inception ResNet V2 (Szegedy 
et al. 2017). Though none of these models is 
to be considered state of the art in the field of 
image classification (Tan & Le 2019), they all 
provide reasonably good overall performance 
and they have widely available implementations 
in a number of deep learning packages such as 
TensorFlow, Keras, and PyTorch.

Each one of the considered models presents a 
substantial complexity, with millions of param-
eters to be learned during training (Mobile Net 
V2 has roughly 3.4 million trainable parameters, 
and it is the smallest model considered herein); 
hence, it is of vital importance to optimise the 
training procedure to achieve good results in 
acceptable times. A stratified cross-validation 
(Zeng & Martinez, 2000) procedure was used, 
with 10 folds (Figure 1). Such a procedure is 

Table I.
Number of colony samples used in the study, per 
class (subspecies or race) and the relative number of 
wing images extracted

Class Number of colony 
samples

Number 
of wing 
images

Anatoliaca 14 311
Buckfast 35 671
Carnica 100 1971
Caucasica 23 267
Iberiensis 51 881
Ligustica 104 2246
Mellifera 42 769
Siciliana 140 2771
Total 509 9887

Figure 1.  Visual representation of the cross-validation experimental design with ten folds and a validation split
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iterative in its nature and well established in the 
Machine Learning community. The data was 
randomly partitioned in ten equal sized subsets 
(folds), each one respecting the original dataset’s 
class proportions: i.e., the most represented class 
remained the most represented class across all 
the ten folds, and the other classes represented 
proportionally. Once folds were computed, an 
iterative process began and at each iteration the 
partitions built in the previous step were assem-
bled into three larger partitions: training set, 
validation, set and test set, which are referred 
to as splits. The training set was made of 8 folds 
of the data, and the other two splits of a single 
fold each. Each one of the splits, being either a 
fold or the union of eight folds, respected the 
class proportions of the original dataset. At each 
iteration, a new model instance was trained over 
the training set and evaluated on the test set, pro-
ducing a set of class predictions for each image 
in the latter split. The procedure was repeated 
until each fold was used as test set once, which 
means that each image in the dataset received 
a model prediction by a model that was not fed 
with it during its training. We used such predic-
tions to evaluate model performance metrics over 
the whole dataset.

The above-described experimental design 
was extended with data bootstrapping and early 

stopping during training to address two criticali-
ties: overfitting and statistical bias. The imbal-
ance in the distribution of classes presents a 
significant statistical bias towards more repre-
sented subspecies, such as Siciliana; to address 
this issue, the data included in the training split 
was bootstrapped to obtain a more regular dis-
tribution, thus reducing statistical bias during 
model training. All classes in the training split 
were randomly resampled with replacement until 
each of them consisted in at least 1600 images, 
that corresponds to 0.6 times the cardinality of 
the most numerous class. Test and validation 
data were not bootstrapped to avoid tampering 
model selection and evaluation. This process is 
summarised in (Figure 2), where, for the sake of 
readability, four folds instead of ten are pictured.

Of the three splits, the bootstrapped training 
set was used to feed the model during training, 
the validation set was used to check model pro-
gress during training, and finally, the test set was 
used to perform model evaluation. The training 
procedure we used for all models was stochastic 
gradient descent (Bottou 2010) (hereon SGD) 
with triangular learning rate scheduling (Smith 
2017). This is an iterative procedure also, and 
it requires training data to be processed mul-
tiple times, each one called epoch. Due to its 
iterative nature, the training procedure could, 

Figure 2.  Visual representation of fold stratification and training data bootstrapping employed in the experimental 
design
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theoretically, go on forever and it is up to the 
data scientist to stop it when an appropriate 
fit is reached. Since it is impossible to know a 
priori the optimal number of training epochs, 
we determined it empirically by introducing 
the validation set. The training procedure was 
stopped when the performance metric applied to 
the validation set (accuracy, see the “Analysis” 
section) reached a maximum, and no further pro-
gress could be observed. Such a maximum point 
can be considered as the best fit, since it reason-
ably provides a sweet spot between underfitting 
and overfitting. Since the validation set was used 
to tune the number of training epochs, its data 
was, as a matter of fact, embedded in the trained 
model, even though not actually processed at 
training time; hence, the need for a third split to 
perform an un-biased evaluation.

All models were trained for twenty epochs 
with online data augmentation, which means 
generating multiple versions of the same image 
as it is passed to the model during training. This 
solution, with respect to a pre-computed set of 
perturbated images, had two advantages: it was 
more memory efficient (less images to be loaded 
in the GPU memory) and introduced a higher 
degree of randomisation over different epochs, 
allowing the model to achieve a higher tolerance 
towards sub-optimal images. Training images 
were augmented by means of random rotations, 
vertical flip, horizontal flip, and brightness 
adjustment to increase variability in the training 
data, with replication padding to avoid disrupt-
ing the original pixel colour distributions. The 
various transformations were applied stochas-
tically in cascade, meaning that a wing image 
could be, for instance, both flipped and rotated, 
to maximise the randomness of transformations 
and, hopefully, the model robustness against 
noisy data.

2.4.  Analysis

Three well-known classification metrics 
(Powers 2011) were used to assess model 
performance:

• Accuracy: the fraction of correctly classified 
images. It is used to evaluate overall model 
performance.

• Precision: also known as positive predictive 
value, it is the fraction of positive values that 
are true positives. It is used to evaluate model 
performance with respect to a given class. It 
represents a measure of how good the model 
is at avoiding false positives (e.g. consider-
ing A. m. ligustica as declared class, a false 
positive is a wing classified as A. m. ligustica 
which actually is A. m. carnica)

• Recall: also known as specificity, it is the 
fraction of positive samples correctly iden-
tified by the system. It is used to evaluate 
model performance with respect to a given 
class. It represents a measure of how good 
the model is at avoiding false negatives 
(e.g. considering A. m. ligustica as declared 
class, a false negative is a wing classified as 
A. m. carnica which actually is A. m. ligus-
tica).

Precision and recall, being complementary 
with each other, are frequently accompanied by 
their harmonic mean, called F1 score, which is 
useful when a balance between precision and 
recall is required.

3.  RESULTS

3.1.  Model evaluation

The accuracy results for all the four consid-
ered models are shown in Table II. Values were 
calculated for each test split considered in the 
cross-validation procedure and then averaged. 
The Inception ResNet and Inception Net archi-
tectures appeared to perform better than the 
ResNet and MobileNet ones, with higher average 
accuracy and lower accuracy variance.

Due to our experimental design, our cross-
validation procedure was built on pre-computed 
stratified partitions of the data set; hence, we 
can state that each image was present in the test 
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partition of the data exactly once, allowing us to 
make a union of the test splits predictions and 
evaluate global metrics over the 10 replicas of 
all models considered. By performing this aggre-
gation, we lost some distributional information; 
however, as shown in Table II, the accuracy vari-
ance among different folds was < 0.01 for Incep-
tion Net V3 and Inception ResNet V2 and < 0.02 
for MobileNet and < 0.04 for ResNet, implying 
that all models achieved rather homogenous per-
formance over different folds, and more impor-
tantly, since classes were not evenly represented 
in our data, it allowed us to evaluate metrics on 
a relevant-sized sample for all the considered 
classes.

To better understand the performance dif-
ference between the former two high-accuracy 
models, we evaluated, for each considered class, 
the precision, recall, and F1 values over the 
union of test splits (Table III). The Inception 

ResNet model appeared to achieve slightly 
higher scores in most classes; however, the per-
formance of these two models appeared to be 
consistent across classes. Most scores were over 
0.99, and with both models, the classes Cauca-
sica, Iberiensis, and Anatoliaca were classified 
with the highest precision and recall.

To further analyse classification errors, we 
arranged the predictions made by the tested 
models into confusion matrices, i.e. matrices 
where rows represent ground truth values and 
columns model predictions. As suggested by the 
precision and recall metrics, the confusion matri-
ces (Figure 3) were sparse and almost diagonal, 
with few non-zero elements outside the diago-
nals. Looking at the non-diagonal cells, we can 
observe how the two models were consistent 
in the errors, both most frequently mistaking 
Siciliana and Carnica for Ligustica. In addition, 
the Inception Net V3 model was more likely to 

Table II.
Accuracy scores achieved by each model on cross-validation folds (mean ± std) and accuracy over the union of 
test folds

Inception ResNet V2 Inception Net V3 Mobile Net V2 ResNet 50

10-folds 
average 
accuracy 
(std)

0.991486 (0.004424) 0.989102 (0.003876) 0.927793 (0.015739) 0.941071 (0.034410)

Accuracy on 
union set

0.991503 0.989077 0.927379 0.940933

Table III.
Precision, recall, and F1 values over the union of test partitions for each considered class, for Inception ResNet 
V2 and Inception Net V3, the two models with higher accuracy

Anatoliaca Buckfast Carnica Caucasica Iberiensis Ligustica Mellifera Siciliana

Inception ResNet V2
Precision 0.996795 0.992560 0.991300 1.000000 1.000000 0.981116 0.992258 0.995636
Recall 1.000000 0.994039 0.982750 1.000000 0.998865 0.994657 1.000000 0.988091
F1 score 0.998395 0.993299 0.987006 1.000000 0.999432 0.987840 0.996114 0.991849
Inception Net V3
Precision 0.993610 0.973490 0.986308 1.000000 0.997722 0.982230 0.993498 0.994924
Recall 1.000000 0.985097 0.986809 1.000000 0.994325 0.984417 0.993498 0.990256
F1 score 0.996795 0.979259 0.986558 1.000000 0.996020 0.983322 0.993498 0.992585
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mistake Ligustica for Buckfast or Carnica, while 
the Inception ResNet V2 model appeared to be 
less prone to this type of error.

The analysis presented so far are relative to 
the performance of models on a single-wing 
image basis; however, bee wings are usually con-
tained in samples that contain multiple wings (in 
our data set usually 18) coming from different 
individuals of a same colony. To assess how the 
computer vision models would perform in a real 
world scenario, in post-processing we grouped 
the single images by colony, and considered the 
mode class of the individual wing predictions 
for assignment of the colony to one of the eight 
classes. This process resulted in a colony-wise 
accuracy ranging from 0.9921 to 1, as shown 
in Table IV. These values suggest that the error 
observed when classifying a single wing image is 
distributed over different colony samples and that 
all the four considered models could correctly 
classify the majority of the wings belonging to 

a same colony. To further illustrate this fact, we 
evaluated for each colony a confidence value 
defined as the fraction of wings of the colony 
sample belonging to the mode class. In Figure 4,  
we show, for each tested model, the distribu-
tion of these confidence values among our con-
sidered colony samples. For all four models,  
the most common scenario was the one wherein  
all wings were labelled with the same class; how-
ever, a clear difference between the top scoring 
networks (Inception ResNet V2 and Inception  
Net V3) and the lower scoring ones could be 

Figure 3.  Confusion matrices showing the predictions made by the models Inception ResNet V2 and Inception Net 
V3. Rows represent ground truth values and columns model predictions

Table IV.
Accuracy achieved by the tested models when 
images were grouped by colony sample

Inception 
ResNet V2

Inception 
Net V3

Mobile 
Net V2

ResNet 
50

Sample 
accuracy

0.9980 1.0000 0.9941 0.9921
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Figure 4.  Distribution of confidence values, defined as the fraction of wings on the colony sample belonging to the 
mode class, among a subset of 242 colony samples, for the four considered models
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noticed: the top scoring networks had a much 
shorter tail of low confidence samples, while the 
lower scoring networks had longer tails going 
down to 0.4 confidence and below, and included 
a non-negligible number of colony samples.

3.2.  Comparison with morphometric 
method

To exactly compare the morphometric 
approach used at CREA and the computer 
vision models, a subset of 242 colony samples 
was extracted from the considered dataset and 
all individual wings were labelled with the mor-
phometric approach based on measurement of 
30 characters according to DAWINO method 
(Meixner et al, 2013), with respect to the con-
sidered eight classes reported in Table I. At col-
ony level, i.e. by considering the mode class of 
bee wings for each colony sample (as described 
above), both the morphometric procedure and 
the computer vision models produced accurate 
predictions, with the morphometric approach 
achieving a 0.979 accuracy, with only five mis-
classified colonies, and all four Computer Vision 
models, a 1.0 accuracy, meaning that all the 242 
colony samples were correctly labelled. The con-
fusion matrixes produced by the morphometric 
method and Inception ResNet V2 at the colony 
level are shown in (Figure 5a, b).

To gain additional insights on the compared 
performance, the individual wing labelling task 
was also considered. The bee wings in the colony 
samples were classified individually with the 
morphometric method, resulting in the confusion 
matrix shown in (Figure 5c), and an accuracy of 
0.8607 (Table V). On the same set of 242 colony 
samples, the computer vision approaches were 
evaluated and produced accuracy results rang-
ing from 0.9289 (MobileNet) to 0.9915 (Incep-
tion Net) (Table V). The confusion matrix pro-
duced by the Inception Net V3 model is shown 
in (Figure 5d). Looking at the accuracy values 
scored by the various models in our benchmark, 

we can see that Inception Net and Inception 
ResNet show virtually identical performances, 
while ResNet and MobileNet appeared to be 
substantially inferior in terms of accuracy. The 
considerations on accuracy can be extended to 
class-wise metrics as well, with computer vision 
models achieving substantially higher scores for 
every class, as shown in Table VI. 

Another notable aspect is that the computer 
vision pipeline considered significantly more 
images for almost all classes (Table VII).

4.  DISCUSSION

Beekeepers and breeders are ever more 
conscious of the importance of the genetic 
origin of their honey bees, due to a more 
widespread environmentally sensitive aware-
ness, and partly due to the phenomenon of 
colony losses which hit honey bees in the last 
decade (Brodschneider et al., 2016; Neumann 
& Carreck, 2010; Ratnieks & Carreck, 2010; 
Zee et al., 2014). The main culprits of these 
losses have been universally acknowledged as 
a combination of factors, including pesticides 
(Goulson et al., 2015), parasites (Di Prisco 
et al., 2016), poor nutrition (Brodschneider & 
Crailsheim, 2010; Di Pasquale et al., 2016), 
and genetic origin (Büchler et al., 2014). For 
these reasons, many beekeepers across Europe 
are interested in checking whether the bees 
they are managing correspond to the autoch-
thonous subspecies. In some cases, a certi-
fication of the subspecies will enable them 
to receive subsidies according to local or 
European legislation; in other cases, it may 
enable access to conservation areas, or it may 
increase the market value of their stock. A fast 
and cheap method would, therefore, be a use-
ful tool for the apicultural sector.

With the results of this study, we confirmed our 
hypothesis that image recognition by Convolutional 
Neural Networks applied to honey bee wings can 
be used to discriminate between subspecies, even 
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more successfully than the morphometrical analy-
sis. Notably, by analysing 9887 wing images, rep-
resenting seven Apis mellifera subspecies and one 
intraspecific hybrid, we obtained discrimination 

with an accuracy ranging between 0.92 and 0.99, 
with the four considered network architectures: 
ResNet50,  MobileNet  V2,  Inception Net  V3 
and Inception ResNet V2. The latter model was the 

Figure 5.  Confusion matrices relative to a subset of 242 colony samples which were classified with the morpho-
metric approach (baseline) and with the best preforming computer vision model (Inception ResNet V2), with respect 
to the considered eight classes. a Morphometric classification at colony level. b Inception ResNet V2 classification 
at colony level. c morphometric classification at individual wing level. d Inception ResNet V2 classification at indi-
vidual wing level
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one with the best performance, achieving scores 
of precision, recall, and F1 higher than 0.98 for 
all classes.

It is interesting to notice that the misclassi-
fications were mostly within evolutionary line-
age and between geographically close subspe-
cies. Similar misclassifications were found in 
a recent study using genetic markers (Momeni 
et al., 2021).

When the morphometric method was applied 
to classify individual wings which were also 
classified by the CNN models, we found that 
its accuracy was notably lower, confirming the 
discriminatory power of the computer vision 

Table V.
Accuracy achieved by the morphometric approach 
(baseline) and by the 4 considered computer vision 
models on classification of a subset of 242 colony 
samples

Technique Accuracy

Baseline 0.8607
MobileNet V2 0.9289
ResNet 50 0.9608
Inception ResNet V2 0.9912
Inception Net V3 0.9915

Table VI.
Precision, recall, and F1 score for all considered classes with the morphometric approach (“Baseline”) and 
Inception ResNet V2 model (“InceptionRN”)

Anatoliaca Buckfast Carnica Caucasica Iberiensis Ligustica Mellifera Siciliana

Precision Baseline 0.919037 0.771084 0.781337 0.847458 0.854167 0.791889 0.914141 0.938072
Incep-

tionRN
0.996795 0.996753 0.996591 1.000000 1.000000 0.972397 0.981203 0.999439

Recall Baseline 0.833333 0.813559 0.777008 0.806452 0.745455 0.828125 0.918782 0.948080
Incep-

tionRN
1.000000 0.995138 0.972284 1.000000 0.985714 0.998381 1.000000 0.991096

F1 Score Baseline 0.874089 0.791753 0.779167 0.826446 0.796117 0.809602 0.916456 0.943049
Incep-

tionRN
0.998395 0.995945 0.984287 1.000000 0.992806 0.985218 0.990512 0.995250

Table VII.
Number of considered individual wing images for each class, from the subset of 242 colony samples, accord-
ing to the different analytical technique

Anatoliaca Buckfast Carnica Caucasica Iberiensis Ligustica Mellifera Siciliana

Human-selected 504 236 722 248 55 896 197 1406
Identified by 

the RetinaNet 
model

311 617 902 267 70 1235 261 1797
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method. In a previous study involving 5 Euro-
pean subspecies and populations, the classical 
morphometric method performed with a maxi-
mum accuracy of 0.94 and as low 0.33 for some 
classes, including Ligustica, although it must 
be noted that the samples had not been chosen 
based on conformity to race standards as in our 
case (Francis et al., 2014). It is also worth notic-
ing how the number of considered single wing 
images varied between the morphometric method 
and the computer vision one, with differences in 
class numerosity ranging from 7 to 60%. This is 
an effect of the two different processing pipelines 
involved: in the morphometric approach, images 
were manually inspected by a human expert that 
handpicked a set of representative wings and pro-
ceeded to classify them, while in the computer 
vision pipeline, the images were processed by the 
RetinaNet model that passed to the classification 
model whatever it identified as a bee wing, with-
out excluding blurred, noisy, or damaged images.

In characterisation studies following publi-
cation of Ruttner (1988) (Meixner, et al., 2011, 
1994; Miguel et al., 2011; Sheppard et al., 1997; 
Sheppard & Meixner, 2003), standard morpho-
metry parameters were considered as the chief 
method or the baseline which accompanies other 
methods, because the statistical method using 
morphometrical measures was the one used for 
classification of the genus Apis at the specific  
and subspecific level. Also, as shown by  
(Henriques et al., 2020), morphometry can identify  
even complex genetic patterns, offering a reli-
able and low-cost alternative for preliminary 
estimation of population structure. The method 
we developed here can effectively differenti-
ate several subspecies as described by Ruttner 
(1988), and is validated with a unique dataset 
of reference samples stored at CREA-AA and 
collected in the last 40 years. Moreover, with 
regard  to  methods  based on wing venation 
measurement proposed so far,  although soft-
ware programs have been developed to sim-
plify the procedure for classical and geometric 
morphometry, the operator still plays a certain 
role in identifying and checking vein intersec-
tions. On the contrary, the fast method proposed 
here excludes any operator intervention in the 

analytical process and the wing recognition and 
classification relies totally on a system of com-
puter vision joined with an artificial intelligence 
software, avoiding any processing of a prede-
fined geometric pattern.

Molecular techniques are developing fast but 
are not yet easily available for beekeepers. Fur-
thermore, methods based on honey bee maternal 
lines through the mtDNA sequencing, resulting 
in the production of different patterns of mito-
types, although interesting in terms of phyloge-
netic studies (Ilyasov et al., 2019) are not exhaus-
tive in terms of subspecies recognition (Meixner 
et  al., 2013). Only the newest techniques of 
gDNA sequencing and SNPs analysis (Momeni 
et al., 2021; Spötter et al., 2012; Whitfield et al., 
2006) have shown to be able to discriminate 
almost all subspecies. Recently, a molecular 
tool based on SNPs having as a reference almost 
4000 individual honey bees, originating from 
samples where the subspecies assignment was 
also confirmed with the morphometric analysis, 
has been developed, and is commercially avail-
able (Momeni et al., 2021). Although this tool 
marks a breakthrough, the cost per representa-
tive colony sample (10–20 bees) is still expen-
sive for the average beekeeper. For this reason, 
our innovative approach based on wing image 
analysis could represent a fast and cheap alterna-
tive to molecular tools, and could even be seen 
as a complementary method, in which many 
individuals per colony are considered, while the 
molecular tool could be based on a single indi-
vidual per colony.

Image recognition technology is advancing at 
a fast pace, and machine learning has enabled 
continuous training of models on high numbers 
of samples. Production-grade models such as the 
ones we tested in this study appear to be power-
ful enough to achieve a satisfactory accuracy and 
are available in several widespread software 
packages available on the market. In conclusion, 
the analyses performed in this study show that 
automatic image recognition and machine learn-
ing, applied to honey bee wings, can discriminate 
subspecies. More specifically, the most promis-
ing CNN model applied to wing samples was 
Inception Resnet V2.
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Our results underscore the role that image 
recognition applied to the biological systems 
can play. We hereby show that image recogni-
tion can represent a cutting edge and useful tool 
to provide breeders and beekeepers with a fast 
and cheap classification of their honey bees, 
setting the basis for future development of a 
hands-on application for conventional infor-
matic devices.
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