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Abstract

Given a field K , we investigate which subgroups of the group AutA2
K

of polynomial automorphisms of the plane are linear or not.

The results are contrasted. The groupAutA2
K itself is nonlinear, except

if K is finite, but it contains some large “finite-codimensional” subgroups

which are linear. This phenomenon is specific to dimension two: it is easy

to prove that any “finite-codimensional” subgroup of AutA3
K is nonlinear,

even for a finite field K .

When ch K = 0, we also look at a similar questions for f.g. subgroups,

and the results are also contrasted. Some “finite-codimensional” subgroups

are locally linear but not linear.

This paper is respectfully dedicated to the memory of Jacques Tits.
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Introduction

Let K be a field given once and for all and let AutA2
K be the group of

polynomial automorphisms of the affine plane A2
K over K.

0.1 General Introduction
A group Γ is called linear over a ring, respectively linear over a field, if there
is an embedding Γ ⊂ GL(n,R), resp. Γ ⊂ GL(n, L), for some positive integer
n and some commutative ring R, resp. some field L.

Various authors have shown that the automorphism groups of algebraic
varieties share many properties with linear groups, see e.g. [2] [21][4], e.g.
the Tits alternative holds in AutA2

K [16]. However, these groups are not
always linear [13][19] In this paper, we will investigate the following related

Question: which subgroups of AutA2
K are indeed linear or not?

Roughly speaking, the answer is that AutA2
K contains large linear subgroups

and small ones which are not.
In order to be more specific, let us consider the following subgroups

Aut0A
2
K = {φ ∈ AutA2

K | φ(0) = 0)},
Aut1A

2
K = {φ ∈ Aut0A

2
K | dφ|0 = id}, and

SAut0A
2
K = {φ ∈ Aut0A

2
K | Jac(φ) = 1},

where Jac(φ) := det dφ is the jacobian of φ. Since AutA2
K/Aut0A

2
K is

naturally isomorphic to A2
K , informally speaking Aut0 A

2
K is a subgroup of

codimension 2. Similarly, since Jac(φ) is a constant polynomial, SAut0A
2
K
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has codimension 3 and since SAut0A
2
K = SL(2, K) ⋉ Aut1A

2
K , the group

Aut1A
2
K has codimension 6. Anyhow they are viewed as large subgroups.

It was known that the Cremona group Cr2(C) and AutA2
C are not linear

over a field, see [8][9]. For the large subgroups of Aut0A
2
K , the linearity

results are much more contrasted, as it is shown by the following

Theorem A. (A.1) Whenever K is infinite, the group SAut0A
2
K is not

linear, even over a ring.
(A.2) However, there is an embedding Aut1A

2
K ⊂ SL(2, K(t).

For a finite field K, the index [AutA2
K : Aut1A

2
K ] is finite. Therefore Theo-

rem A.1 admits the following converse

Corollary. If K is finite, the group AutA2
K is linear over the field K(t).

The existence of large linear subgroups in AutAn
K is specific to the di-

mension 2. The case n = 3 is enough to show this. For a finite-codimensional
ideal m of K[x, y, z], let AutmA3

K be the group of all automorphisms
(x, y, z) 7! (x+ f, y + g, z + h),

where f, g and h belongs to m. Equivalently, φ fixes some infinitesimal
neighborhood of a finite subset in A3

K . E.g. for n = (x, y, z)2, we have
Autn A

3
K = {φ ∈ AutA3

K | φ(0) = 0 and dφ|0 = id}.
However the groups Autm A3

K are not linear, even if K is finite, as shown by

Theorem B. The group Autm A3
K is not linear, even over a ring.

We will now turn our attention to the small subgroups, namely the finitely
generated (f.g. in the sequel) subgroups of AutA2

K . Let Γ ⊂ AutA2
Q be

Γ = 〈S, T 〉, where S(x, y) = (y, 2x) and T (x, y) = (x, y + x2).
The question of the existence of nonlinear f.g. subgroups in AutA2

C, which
is explicitely raised by Y. Cornulier in [9], is answered by the following

Theorem C. Let K be a field of characteristic zero.
(C.1) The subgroup Γ ⊂ Aut0A

2
K is not linear, even over a ring.

(C.2) Any f.g. subgroup of SAut0A
2
K is linear over K(t).

It turns out that the group Γ, which is presented by
〈σ, τ | σ2τσ−2 = τ 2〉,

appears in [11] as the first example of a 1-related group which is residually
finite but not linear over a field.
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By Theorem C.1, Γ is also the first example of a 1-related group which is
not linear (even over a ring) but which is embeddable in the automorphism
group of an algebraic variety. Residual finiteness of Γ follows from general
principles [2], but the observation that Γ acts on the finite sets F2

p, for any
odd p, and faithfully on their product, provides a concrete proof.

For an infinite field K, Theorem A.2 suggests to ask which groups G ⊃
Aut1A

2
K are linear or not. Indeed, either this group contains SAutA2

K :=
{φ ∈ Aut0A

2
K | Jac(φ) = 1}, which is not linear, or it is ismorphic to

AutSA
2
K := {φ ∈ Aut0A

2
K | dφ|0 ∈ S},

for some subgroup S of GL(2, K). Therefore we ask
For a given subgroup S ⊂ GL(2, K), is the group AutSA

2
K linear?

For the subgroups S of SL(2, K), three criteria provide an almost complete
answer, see Theorem D. Some examples of application of the criteria are

Example A. Let q be a quadratic form on K2 and S = SO(q).
If q is anisotropic, AutSA

2
K is linear over a field extension of K.

Otherwise AutSA
2
K is not linear, even over a ring.

Example B. For some lattices S ⊂ SL(2,R), AutS A
2
C is linear over C.

For any lattice S ⊂ SL(2,C), AutS A
2
C is not linear, even over a ring.

Example C. Let d be a squarefree integer, let O be the ring of integers of
k := Q(

√
d). Set K = k(x)((t)) and S = SL(2,O[x, x−1, t]).

If d > 0, the group AutS A
2
K is not linear, even over a ring.

Otherwise, AutS A
2
K is linear over some field of characteristic zero.

0.2 About the main points of the paper
Since the topics are not ordered as in the general introduction, a summary
has been provided. Also note that the statements in the introduction are
often weaker than those in the main text.

For a group S, we define in Section 2 the notion of a mixed product of
S as a semi-direct product S ⋉ ∗p∈PEp, where (Ep)p∈P is a family of groups
and S acts by permuting the factors of the free product. Hence P is a S-set
such that Es

p = Es.p for any s ∈ S and p ∈ P .
In section 3, it is shown that, under a mild assumption, a mixed product

(or an amalgamated product) which is linear over a ring is automatically
linear over a field. This explains the dichotomy linear over a field/not linear,
even over a ring in our statements. Then, we can use the theory of algebraic
groups to show that some mixed products are not linear, even over a ring.
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Let S be a subgroup of SL(2, K). The main question of the paper is
to decide if AutS A

2
K is linear or not. It turns out that this group is mixed

product S⋉∗δ∈P1

K
Eδ(K). Hence, there are two obstructions for the linearity.

First, the groups Sδ ⋉ Eδ(K) have to be linear with a uniform bound
on the degree. This problem is solved by using the notion of semi-algebraic
characters for subgroups Λ ⊂ K∗. It was inspired by the famous paper of
Borel and Tits [5], proving that the abstract isomorphisms of simple alge-
braic groups are semi-algebraic. Strictly speaking, our paper only provides
a partial answer, because otherwise it would had been too long.

The second obstruction is the possibility, or not, to glue together some
representations of the groups S and Sδ ⋉ Eδ(K) to get a representation of
AutS A

2
K . Our linearity criterion is stronger in characteristic zero than in

finite characteristics. In characteristic zero, we can use for the gluing process
the following stronger version of

Theorem C.2. Assume K of characteristic 0. There is an embbeding
SAut<n

0 A2
K ⊂ SL(1 + lcm(1, 2 . . . , n), K(t)).

Here SAut<3
0 A2

K denotes the subgroup of SAut0A
2
K generated by the auto-

morphisms of degree < n, for some n ≥ 3.
The proof of the strong version of Theorem C.2 uses one idea, the ping-

pong lemma and one trick, based on the Lie superalgebra osp(1, 2). The
ping-pong lemma was originally invented by Fricke and Klein for the dynamic
of groups with respect to the metric topologies, see [12]. Later, Tits used it
in the context of the ultrametric topologies [23], and we follow the Tits idea.
Here, the ping-pong setting requires a representation of large dimension.

As a brief conclusion
• if chK = 0, then Aut0A

2
K is not even locally linear, SAut0A

2
K is locally

linear but not linear, and Aut1A
2
K is linear. Therefore, the main questions

arise for the groups G with Aut1A
2
K ⊂ G ⊂ SAut0A

2
K .

• if chK = p, SAut0A
2
K is linear iff K is finite, while Aut1A

2
K is always

linear. In particular, AutA2
Fp

is locally linear but not linear. The exis-

tence of nonlinear f.g. subgroups is an open question.
• These phenomena are specific to dimension two.

Acknowledgements J.P. Furter and R. Boutonnet informed us that they also
found a f.g. subgroup of AutA2

Q which is not linear over a field [6].
We heartily thank S. Cantat, Y. Cornulier, S. Lamy, I. Soroko and the

referee for interesting comments. Special thanks are due to Y. Benoist for his
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help in the proof of Lemma 33, T. Delzant for bringing my attention to [11]
and E. Zelmanov for an inspiring talk.

We also thank the hospitality of the Shenzhen International Center for
Mathematics at SUSTech, where this work was partly done.

1 Main Definitions and Conventions

Througout the whole paper, K will denote a given field. Its ground field is
F = Fp if ch K = p or F = Q otherwise.

1.1 Group theoretical notations
Let S be a group and let x, y ∈ S. The symbols yx and (x, y) are defined by

yx := xyx−1 and (x, y) := xyx−1y−1.
By definition, a S-set is a set P endowed with an action of S. The

stabilizer of a point p ∈ P is the subgroup Sp := {s ∈ S | s.p = p}. The core
CoreS(A) of a subgroup A of S is the kernel of the action of S on S/A.

Similarly, a S-group is a group E endowed with a homomorphism S !

Aut(E). The corresponding semi-direct product of S by E is denoted by
S⋉E. Given another S-groups E ′, a homomophism, respectively an isomor-
phism, φ : E ! E ′ is called an S-homomorphism, resp. an S-isomorphism if
it commutes with the S-action.

1.2 Commutative rings and group functors
Throughout the whole paper, a commutative ring means an associative com-
mutative unital ring.

A group functor is a functor G : R 7! G(R) from the category of com-
mutative rings R to the category of groups ( see e.g. [10] and [26] for the
functorial approach to group theory). The standard example of a group
functor is R 7! GL(n,R), where n is a given positive integer.

Given an ideal I of a commutative ring R, we denote by G(I) the kernel
of the homomorphism G(R) ! G(R/I). It is called the congruence subgroup
associated to the ideal I. For example, GL(n, I) is the subgroup of GL(n,R)
of all matrices of the form id + A, where all entries of A are in I.

In most cases, we will only define the group G(K) when K is a field and
the reader should understand that the definition over a ring is similar.

For the group AutA2
K of polynomial automorphisms of A2

K and its con-
sorts, our notation is not consistent, namely K is an index.
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1.3 The group functors Elem∗(K), Aff(2, K), and their subgroups
By definition, an elementary automorphism of A2

K is an automorphism
φ : (x, y) 7! (z1x+ t, z2y + f(x))

for some z1, z2 ∈ K∗, some t ∈ K and some f ∈ K[x]. The group of
elementary automorphisms of A2

K is denoted Elem(K). Set
Elem0(K) = Elem(K) ∩Aut0A

2
K ,

SElem0(K) = Elem(K) ∩ SAut0A
2
K , and

Elem1(K) = Elem(K) ∩Aut1A
2
K .

However, we will use the simplified notation E(K) for Elem1(K).
Let Aff(2, K) be the subgroup of affine automorphisms of A2

K . Set
BAff(K) := Aff(2, K) ∩ Elem(K),
BGL(K) := BAff(K) ∩GL(2, K), and
B(K) := BAff(K) ∩ SL(2, K).

Indeed BAff(K), BGL(K) and B(K) are the standard Borel subgroups of
Aff(2, K), GL(2, K) and SL(2, K). We have

Aff(2, K)/BAff(K) = GL(2, K)/BGL(K) = SL(2, K)/B(K) ≃ P1
K , and

Elem0(K) = BGL(K)⋉ E(K) and SElem0(K) = B(K)⋉ E(K).

1.4 An informal definition of finite-codimensional group subfunctor
Informally speaking, a group subfunctor H ⊂ G has finite codimension if
the functor R 7! G(R)/H(R) is “represented” by a scheme X of finite type.
In particular, it means that there is a natural transform G/R ! X wich
induces a bijection G(K)/H(K) ! X(K) whenever K is an algebraically
closed field. Since this notion is used only for presentation purpose, we will
not provide a formal definition.

For example, the subgroup Aut0A
2
K has codimension 2 in AutA2

K , since
the quotient AutA2

K/AutA
2
K is naturally A2

K . This fact does not require to
involve the elusive theory of ind-algebraic groups.

2 Mixed Products

Let S be a group and let (Ep)p∈P be a collection of groups indexed by some
S-set P . Since we did not found a name in the literature, we will call mixed
product of S any semi-direct product S ⋉ ∗PEp where S acts on the free
product ∗PEp by permuting its factors, i.e. we have Es

p = Es.p for any s ∈ S
and p ∈ P (see [17] ch.4 for the definition of free products).
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The connections between mixed products, amalgamated products and free
products are investigated. As a consequence of the van der Kulk Theorem,
we show that the groups AutS A

2
K are mixed products and that the groups

Aut1A
2
K and AutU(K)A

2
K are free products.

2.1 Amalgamated products
Let A, G1 and G2 be groups and let f1 : A ! G1 and f2 : A ! G2 be two
group homomorphisms. Let G1 ∗AG2 be the amalgamated product of G1 and
G2 over A, see e.g. [20], ch. I. Since the amalgamated products satisfy a
universal property, they are often free amalgamated products, see [17] ch.8.

In what follows, we will always assume that f1 and f2 are injective. Hence
the homomorphisms G1 ! G1 ∗AG2 and G2 ! G1 ∗AG2 are injective, by the
Theorem 1 of ch. 1 in [20]. Therefore, we will use a less formal terminology.
The groups G1 and G2 are viewed as subgroups of G1 ∗A G2 and we will say
that G1 and G2 share A as a common subgroup.

2.2 Reduced words
The usual definition [20] of reduced words is based on the right A-cosets. In
order to avoid a confusion between the set difference notation A \X and the
A-orbits notation A\X , we will use a definition based on the left A-cosets.

Let G1, G2 be two groups sharing a common subgroup A, and let Γ =
G1 ∗A G2. Set G∗

1 = G1 \ A, G∗
2 = G2 \ A and let T ∗

1 ⊂ G∗
1 (respectively

T ∗
2 ⊂ G∗

2) be a set of representatives of G∗
1/A (resp. of G∗

2/A).
Let Σ be the set of all finite alternating sequences ǫ = (ǫ1, . . . , ǫn) of ones

and twos. A reduced word of type ǫ is a word (x1, . . . xn, x0) where x0 is in A,
and xi ∈ T ∗

ǫi
for any 1 ≤ i ≤ n. Let R be the set of all reduced words. The

next Lemma is well-known, see e.g. [20], Theorem 1.

Lemma 1. The map
(x1, . . . xn, x0) ∈ R 7! x1 . . . xnx0 ∈ G1 ∗A G2

is bijective.

Set Γ = G1 ∗A G2. For γ ∈ Γ \ A there is some integer n ≥ 1, some
ǫ = (ǫ1, . . . , ǫn) ∈ Σ and some gi ∈ G∗

ǫi
such that γ = g1...gn. It follows from

loc. cit. that γ = x1...xnx0 for some reduced word (x1...xnx0) of type ǫ.
Since it is determined by γ, the sequence ǫ is called the type of γ.

2.3 Amalgamated product of subgroups
LetG1, G2 be two groups sharing a common subgroup A and set Γ = G1∗AG2.
Let G′

1 ⊂ G1, G
′
2 ⊂ G2 and A′ ⊂ A be subgroups such that

8



G′
1 ∩ A = G′

2 ∩ A = A′.

Lemma 2. (i) The natural map G′
1 ∗A′ G′

2 ! Γ is injective.
(ii) Let Γ′ ⊂ Γ be a subgroup such that Γ′.A = Γ. Then we have

Γ′ = G′
1 ∗A′ G′

2,
where G′

1 = G1 ∩ Γ′, G′
2 = G2 ∩ Γ′ and A′ = A ∩ Γ′.

Proof. Proof of Assertion (i). For i = 1, 2 set G∗
i = Gi \ A, G′∗

i = G′
i \ A′.

Let T ∗
i ⊂ G∗

i and T
′∗
i ⊂ G

′∗
i be a set of representatives of G∗

i /A and G
′∗
i /A

′.
Since the maps G′

i/A
′
! Gi/A are injective, it can be assumed that

T
′∗
i ⊂ T ∗

i . Let R and R′ be the set of reduced words of G1 ∗A G2, and
respectively of G′

1 ∗A′ G′
2. By definition, we have R′ ⊂ R, thus by Lemma 1

the map G′
1 ∗A′ G′

2 7! G1 ∗A G2 is injective.

Proof of Assertion (ii). We will use the notations of the previous proof. Since
Γ′.A = Γ, it follows that the maps G′

1/A
′
! G/A and G′

2/A
′
! G2/A are

bijective. Therefore R′ is the set of all reduced words (x1, . . . , xn, x0) ∈ R
such that x0 ∈ A′. It follows easily that

G1 ∗A G2/G
′
1 ∗A′ G′

2 ≃ A/A′ = Γ/Γ′,
and therefore we have Γ′ = G′

1 ∗A′ G′
2.

2.4 The group AutA2
K is an amalgamated product

Indeed, it is the classical

van der Kulk Theorem. [27] We have
AutA2

K ≃ Aff(2, K) ∗BAff (K) Elem(K).

2.5 Mixted products
Let S be a group, let P be a S-set and let Q ⊂ P be a set of representatives of
P/S. A mixed product S⋉ ∗p∈P Ep satisfies the following universal property

Lemma 3. Let Γ ⊃ S be a group. Assume given, for any q ∈ Q, a Sq-
homomorphism φq : Eq ! Γ. Then there is a unique group homomorphism

φ : S ⋉ ∗p∈P Ep ! Γ
such that φ|S = id and φ|Eq

= φq for any q ∈ Q.

Proof. Let us define, for any p ∈ P , a Sp-homomorphism φp : Ep ! Γ as
follows. Let s ∈ S such that q := s.p belongs to Q. Set

φp(u) = s−1φq(sus
−1)s,
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for any u ∈ Ep. Since φq is a Sq-homomorphism, the defined homomorphism
φp only depends on s modulo Sp. Moreover the collection of homomorphisms
(φp)p∈P induces a S-homomorphism from ∗p∈P Ep to Γ, which extends to the
required homomorphism φ : S ⋉ ∗p∈P Ep ! Γ.

It follows that a mixed product S ⋉ ∗p∈P Ep is entirely determined by S
and the the Sq-groups Eq for q ∈ Q. For the record, let’s state

Lemma 4. Let Γ = S ⋉ ∗p∈P Ep and Γ′ = S ⋉ ∗p∈P E ′
p be two mixed groups.

If for any q ∈ Q, the groups Eq and E
′
q are Sq-isomorphic, then the groups

Γ and Γ′ are isomorphic.

2.6 Mixed products with a transitive action on P
In this subsection, we show that the mixed products with a transitive action
of S on P are the amalgamated products S ∗A G where A is a retract in G.

First, let S, G be two groups sharing a common subgroup A with the
additional assumption that A is a retract inG. Therefore, we haveG = A⋉E,
for some normal subgroup E of G. Set Γ = S ∗A G and let Γ1 be the kernel
of the map Γ ! S induced by the retraction G! A ≃ G/E. It is clear that

Γ = S ⋉ Γ1.

Lemma 5. Let P be a set of representatives of S/A. We have
Γ1 ≃ ∗γ∈PEγ.

In particular S ∗A G is isomorphic to the mixed product S ⋉ ∗γ∈P Eγ.

Proof. We can assume that 1 ∈ P . By Lemma 3, there is a unique homomor-
phism φ : S⋉∗γ∈P Eγ

! Γ such that its restriction to E1 = E and to S is the
identity. Conversely, the group S ⋉ ∗γ∈P Eγ contains the subgroups S and
G ≃ A⋉E1 whose intersection is A. Hence, the universal property of amal-
gamated products provides a natural homomorphism ψ : Γ ! ⋉ ∗γ∈P Eγ .
Clearly, φ and ψ are inverses of each other, what shows the lemma.

Conversely, let Γ = S ⋉ ∗p∈PEp be a mixed product.

Lemma 6. Assume that S acts transitively on P . Then we have
S ⋉ (∗p∈PEp) ≃ S ∗Sq

(Sq ⋉ Eq),
where q is any chosen point in P .

10



The proof of the Lemma 6, based on the same use of universal properties
as the previous proof, will be skipped.

2.7 The group AutS A
2
K is a mixed product

For a subgroup S of GL(2, K), recall that
AutS A

2
K := {φ ∈ Aut0A

2
K | dφ0 ∈ S}.

As usual, a line δ ∈ P1
K has projective coordinates (a; b) if δ = K.(a, b). For

such a δ, let Eδ(K) ⊂ AutA2
K be the subgroup

Eδ(K) := {(x, y) 7! (x, y) + f(bx− ay)(a, b) | f ∈ t2K[t]}.
Let γ ∈ GL(2, K) such that γ.δ0 = δ where δ0 ∈ P1

K has coordinates (0; 1).
Then we have Eδ0(K) = E(K) and Eδ(K) = E(K)γ .

Lemma 7. We have
AutS A

2
K ≃ S ⋉ ∗δ∈P1

K
Eδ(K).

Proof. Clearly it is enough to prove the statement for S = GL(2, K). Since
BAff(K) contains the translations, we have BAff(K).Aut0A

2
K = AutA2

K .
Therefore by van der Kulk Theorem and Lemma 2, we have

Aut0A
2
K ≃ GL(2, K) ∗BGL(K) Elem0(K).

Since Elem0(K) = BGL(K)⋉ E(K), it follows from Lemma 5 that
Aut0A

2
K ≃ GL(2, K)⋉ ∗δ∈P1

K
Eδ(K).

2.8 Mixed product with an almost free transitive action on P
The action of S on a set P is called almost free transitive if P consists of a
fixed point and a free orbit under S. (It will be tacitly assumed that S 6= 1,
so the fixed point and the free orbit are well defined.) In this subsection we
show that mixed product with an almost free transitive action of S on P are
the free products G ∗G′, where S is a retract in G.

First let Γ = S ⋉ ∗p∈PEp be a mixed product.

Lemma 8. Assume that the action of S on P is almost free transitive. Then
Γ is isomorphic to the free product

(S ⋉Ep0) ∗ Ep∞,
where p0 ∈ P is the fixed point and p∞ ∈ P is any point of the free orbit.

Conversely let Γ = (S ⋉ E) ∗ F be a free product, where E is a S-group
and F is another group.

Lemma 9. The group Γ is isomorphic to the the mixed product
S ⋉ (E ∗ (∗s∈SFs)),

where Fs denotes a copy of F , for any s ∈ S.

11



The easy proofs of the previous two lemmas, which follows the same
pattern as Lemma 4, will be skipped.

2.9 The group AutU(K)A
2
K is a free product

Let U(K) be the group of linear transforms (x, y) 7! (x, y + ax) for some
a ∈ K}. Let δ0, δ∞ ∈ P1

K be the points with projective coordinates (0; 1)
and (1; 0). The group Eδ0(K) = E(K) commutes with U(K).

Lemma 10. We have
AutU(K)A

2
K ≃ (U(K)×Eδ0(K)) ∗ Eδ∞(K).

Proof. By Lemma 7, we have AutU(K)A
2
K ≃ U(K) ⋉ ∗δ∈P1

K
Eδ(K). Since

the action of U(K) on P1
K is almost free transitive, the lemma follows from

Lemma 8.

2.10 A corollary

Corollary 1. Let K, L be fields such that Card K = Card L and ch K =
ch L. We have

Aut1A
2
K ≃ Aut1A

2
L and AutU(K)A

2
K ≃ AutU(L)A

2
L.

Proof. It can be assumed that K is infinite. Let F be its prime subfield let
E be a F-vector space with dimF E = ℵ0 [K : F] = Card K.

By Lemma 7, Aut1A
2
K is a free product of CardK copies of E, from

which its follows that Aut1A
2
K only depends on the cardinality and the char-

acteristic of the field K, hence we have Aut1A
2
K ≃ Aut1A

2
L.

The proof that AutU(K)A
2
K ≃ AutU(L)A

2
L is identical.

3 Linearity over Rings vs. over Fields

In this section, we show that, under a mild assumption, a mixed product
S ⋉ ∗p∈PEp or an amalgamated product G1 ∗A G2 which is linear over a ring
is automatically linear over a field, see Corollaries 2 and 3.

3.1 Linearity Properties
For a group Γ, the strongest form of linearity is the linearity over a field.
Besides the case of prime rings, i.e. the subrings of a field, a group which
is linear over a ring R is not necessarily linear over a field. Two relevant
examples are provided in the subsection 8.6.

12



On the opposite, there are also groups Γ which contain a f.g. subgroup
which is not linear, even over a ring. These groups are nonlinear in the
strongest sense.

3.2 Minimal embeddings
Let R be a commutative ring and let Γ be a subgroup of GL(n,R) for some
n ≥ 1. The embedding Γ ⊂ GL(n,R) is called minimal if for any ideal
J 6= {0} we have Γ ∩GL(n, J) 6= {1}.

Lemma 11. Let Γ be a subgroup of GL(n,R). For some ideal J , the induced
homomorphism Γ ! GL(n,R/J) is a minimal embedding.

Proof. Since R is not necessarily noetherian, the proof requires Zorn Lemma.
Let S be the set of all ideals J of R such that Γ ∩ GL(n, J) = {1}.

With respect to the inclusion, S ∋ {0} is a nonempty poset. For any chain
C ⊂ S, the ideal ∪I∈C I belongs to S. Therefore Zorn Lemma implies that S
contains a maximal element J . It follows that the induced homomorphism
Γ ! GL(n,R/J) is a minimal embedding.

3.3 Groups with trivial normal centralizers
By definition, a group Γ has the trivial normal centralizers property if, for any
subset S 6⊂ {1}, its centralizer CΓ(S) is not normal, except if CΓ(S) is the
trivial group. Equivalently, if H1 and H2 are commuting normal subgroups
of Γ, then one of them is trivial.

Lemma 12. Let Γ be a group with the trivial normal centralizers property.
If Γ is linear over a ring, then Γ is also linear over a field.

Proof. By hypothesis and Lemma 11, there exists a minimal embedding ρ :
Γ ⊂ GL(n,R) for some commutative ring R. The case Γ = {1} can be
excluded, so we will assume that R 6= {0}.

Let I1, I2 be ideals of R with I1.I2 = 0. Since H1 := Γ ∩ GL(n, I1) and
H2 := Γ ∩ GL(n, I2) are commuting normal subgroups of Γ, one of them is
trivial. Since ρ is minimal, I1 or I2 is the zero ideal. Thus R is prime.

It follows that Γ ⊂ GL(n,K), where K is the fraction field of R.

3.4 Amalgamated products with a trivial core
LetG1, G2 be two groups sharing a common subgroup A and set Γ = G1∗AG2.

13



Let Σ be the set of all finite alternating sequences ǫ = (ǫ1, . . . , ǫn) of ones
and twos. For i, j ∈ {1, 2}, let Σi,j be be the subset of all ǫ = (ǫ1, . . . , ǫn) ∈ Σ
starting with i and ending with j and let Γi,j be the set of all γ ∈ Γ of type
ǫ for some ǫ ∈ Σi,j. Therefore we have

Γ = A ⊔ Γ1,1 ⊔ Γ2,2 ⊔ Γ1,2 ⊔ Γ2,1.
By definition, the amalgamated product G1∗A G2 is called nondegenerate

if G1 6= A and G2 6= A. It is called dihedral if G1 = G2 = Z/2Z, and A = {1},
and nondihedral otherwise.

Lemma 13. Let Γ = G1 ∗A G2 be a nondegenerate and nondihedral amalga-
mated product such that CoreΓ(A) is trivial.

For any element g 6= 1 of Γ, there are γ1, γ2 ∈ Γ such that
gγ1 ∈ Γ1,1 and gγ2 ∈ Γ2,2.

In particular Γ has the trivial normal centralizers property.

Proof. First it should be noted that A cannot be simultaneously a subgroup
of index 2 in G1 and in G2. Otherwise the core hypothesis implies that
A = {1} and Γ would be the dihedral group. Hence we can assume that
G2/A contains at least 3 elements.

Next it is clear that G∗
i .Γj,k ⊂ Γi,k and Γk,j.G

∗
i ⊂ Γk,i whenever i 6= j.

Proof that the conjugacy class of any g 6= 1 intersects both Γ1,1 and Γ2,2. Let
γ1 ∈ G∗

1 and γ2 ∈ G∗
2. We have Γγ1

2,2 ⊂ Γ1,1 and Γγ2
1,1 ⊂ Γ2,2. Therefore the

claim is proved for any g ∈ Γ1,1 ∪ Γ2,2. Moreover it is now enough to prove
that the conjugacy class of any g 6= 1 intersects Γ2,2.

Assume now g ∈ Γ2,1. We have g = u.v for some u ∈ G∗
2 and v ∈ Γ1,1.

Since [G2 : A] ≥ 3, there is γ ∈ G∗
2 such that γ.u /∈ A. It follows that γ.g

belongs to Γ2,1, and therefore gγ belongs to Γ2,2.
For g ∈ Γ1,2, the claim follows from the fact that g−1 belongs to Γ2,1.
Last, let g ∈ A \ {1}. Since CoreA(Γ) is trivial, there is γ ∈ Γ such that

gγ is not in A. Thus gγ belongs to Γi,j for some i, j. So g is conjugate to
some element in Γ2,2 by the previous considerations.

Proof that Γ has the trivial normal centralizers property. Let H1, H2 be
nontrivial normal subgroups. By the previous point, there are elements g1, g2
with

g1 ∈ H1 ∩ Γ1,1 and g2 ∈ H2 ∩ Γ2,2.
Since we have g1g2 ∈ Γ1,2 and g2g1 ∈ Γ2,1, it follows that g1g2 6= g2g1.
Therefore H1 and H2 do not commute.
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Corollary 2. Let Γ = G1 ∗A G2 be a nondegenerate amalgamated product
such that CoreΓ(A) is trivial 1.

If Γ is linear over a ring, then Γ is linear over a field.

Proof. Since the infinite dihedral group is linear over a field, we will assume
that the amalgamated product Γ = G1 ∗A G2 is also nondihedral. Thus the
result is an obvious corollary of Lemmas 12 and 13.

3.5 Mixed products with trivial core
Let S be a group, and let S ⋉ ∗p∈PEp be a mixed product of S.

Let Σ be the set of all finite sequences π = (p1, . . . , pm) of elements of P
with pi 6= pi+1, for any i < m. Set Γ1 = ∗p∈PEp and E∗

p = Ep \ {1}. Any
element u ∈ Γ1 \ {1} is uniquely written as u = u1 . . . um, where ui ∈ E∗

pi
for

some m ≥ 1 and some sequence π = (p1, . . . , pm) ∈ Σ. The decomposition
u = u1 . . . um is called the reduced decomposition of u, π is called its type
and m is called its length. For p, p′ ∈ P , let Ep,p′ be the set of all elements
u ∈ Γ1 \ {1} whose type is a sequence π starting with p and ending with p′.

By definition, the free product ∗p∈PEp, or, by extension, the mixed prod-
uct S ⋉ ∗p∈PEp, is called nondegenerate if Card P ≥ 2 and Ep 6= {1} for any
p ∈ P . For a nondegenerate mixed product S ⋉ ∗p∈PEp, we have

CoreΓ(S) = CoreΓ(∩P Sp).
The mixed product S ⋉ ∗p∈PEp is called dihedral if Card P = 2, if Ep =

Z/2Z for any p ∈ P and if
S = {1} or S ≃ Z/2Z permutes the two factors.

It is called nondihedral otherwise.

Lemma 14. Let Γ = S⋉ ∗p∈PEp be a nondegenerate and nondihedral mixed
product such that CoreΓ(∩P Sp) = {1}. Let p ∈ P .
(i) For any element γ ∈ Γ1 \{1}, there is v ∈ Γ1 such that γv belongs to Ep,p.
(ii) For any element γ ∈ Γ \ Γ1, there is v ∈ Γ1 such that (γ, v) 6= 1.

In particular Γ has the trivial normal centralizers property.

Proof. Proof of Assertion(i). By hypothesis, Γ1 is not the infinite dihedral
group Z/2Z∗Z/2Z. So the assertion follows from Lemma 13 when CardP =
2. Therefore, we will assume that CardP ≥ 3.

1As it has been noticed by the referee, this is equivalent to the faithfulness of the action
of Γ on the associated Bass-Serre tree.
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The element γ belongs to Ep1,p2 for some p1, p2 ∈ P . Let p3 ∈ P \{p1, p2}
and let v ∈ Ep,p3. Thus the element γv belongs to Ep,p.

Proof of Assertion (ii). Let γ = su, where s ∈ S \ {1} and u ∈ Γ1.
Obviously Γ/S and Γ1 are isomorphic S-sets. Since CoreΓ(S) is trivial,

there is v ∈ Γ1 such that (s, v) 6= 1. Thus, we will now assume that u 6= 1.
Let u = u1 . . . um be its reduced decomposition, let (p1, . . . , pm) be its

type and let v ∈ E∗
p′, where p

′ 6= pm. By definition, u1 . . . um.v.u
−1
m . . . u−1

1 is
a reduced decomposition of the element w = uvu−1. Hence w and ws have
lenght 2m+ 1 ≥ 2. Thus we have ws 6= v, or, equivalently vγ 6= v. Hence we
have (γ, v) 6= 1.

Proof that Γ has the trivial normal centralizers property. Let H, H ′ be two
nontrivial normal subgroups of Γ. Let p 6= p′ be elements of P . By the
Assertions (i) and (ii), there are elements g, g′ with

g ∈ H ∩ Ep,p and g′ ∈ H ′ ∩ Ep′,p′.
Since we have gg′ ∈ Ep,p′ and g

′g ∈ Ep′,p, it follows that gg
′ 6= g′g. Therefore

H and H ′ do not commute.

Corollary 3. Let Γ = S ⋉ ∗p∈PEp be a nondegenerate mixed product such
that CoreΓ(∩P Sp) = {1}.

If Γ is linear over a ring, then Γ is linear over a field.

Proof. Since the infinite dihedral group is linear over a field, we will assume
that the mixed product Γ = S⋉ ∗p∈PEp is also nondihedral. Then the result
is an obvious corollary of Lemmas 12 and 14.

4 A Nonlinear f.g. Subgroup of Aut0A
2
Q

Let Γ be the group with presentation
〈σ, τ | σ2τσ−2 = τ 2〉.

In [11], C. Drutu and M. Sapir showed that Γ is not linear over a field2. We
show that Γ is neither linear over a ring, and that Γ is isomorphic to an
explicit subgroup of Aut0A

2
Q, which proves Theorem A.2.

4.1 The amalgamated decomposition Γ = G1 ∗A G2

Let us consider the following subgroups of Γ

2In the first version of this paper that appeared in the arXiv, I was unaware of [11].
I’m grateful to T. Delzant for providing this reference.
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G1 = 〈σ〉, G2 = 〈σ2, τ〉 and A = 〈σ2〉.
The groups G2 is isomorphic to Z⋉Z[1/2] where any n ∈ Z acts over Z[1/2]
by multiplication by 2n. The group Γ is the amalgamated product

Γ ≃ G1 ∗A G2.

Lemma 15. The group Γ has the trivial normal centralizers property.

Proof. Set H = Z[1/2].τ . The A-sets G2/A and H are isomorphic, hence A
acts faithfully on G2/A. Therefore CoreΓ(A) ⊂ CoreG2

(A) is trivial, and the
assertion follows from Lemma 13.

4.2 Quasi-unipotent endomorphisms
Let V be a finite-dimensional vector space over an algebraically closed field
K. An element u ∈ GL(V ) is called quasi-unipotent if all its eigenvalues are
roots of unity. The quasi-order of a quasi-unipotent endomorphism u is the
smallest positiver integer m such that um is unipotent.

If u is unipotent and ch K = 0, set
log u = log(1− (1− u)) :=

∑

k≥1 (1− u)k/k,
which is well-defined since 1− u is nilpotent.

Lemma 16. Let h, u ∈ GL(V ). Assume that u has infinite order and
huh−1 = u2. Then u is quasi-unipotent of quasi-order m for some odd integer
m. Moreover K has characteristic zero, and

heh−1 = 2e,
where e := log um.

Proof. Let Spec u be the spectrum of u. By hypothesis the map λ ∈ Spec u 7!

λ2 ∈ Spec u is bijective. Hence all eigenvalues of u are odd roots of unity,
what proves that u is quasi-unipotent of odd quasi-order m.

Over any field of finite characteristic, the unipotent endomorphisms have
finite order. Hence we have ch K = 0. Moreover, we have

heh−1 = h(log um)h−1 = log(humh−1) = log(u2m) = 2e.

4.3 Nonlinearity of Γ

Drutu-Sapir Lemma. The group Γ is not linear over a field.

The result is a particular case of Corollary 4 in [11]. Since their proof is
based on an earlier result of [28], we shall provide a direct proof.
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Proof. Assume otherwise and let ρ′ : Γ ! GL(V ) be an embedding, where
V is a finite-dimensional vector space over an algebraically closed field K.
Since τ has infinite order and σ2τσ−2 = τ 2, it follows from Lemma 16 that
K has characteristic zero, ρ′(τ) is quasi-unipotent of odd quasi-order m.

Step 1: there is another embedding ρ : Γ ! GL(V ) such that ρ(τ) is unipo-
tent. Let ψ : Γ ! Γ be the group homomorphism defined by ψ(σ) = σ, and
ψ(τ) = τm. Since ψ(G1) ∩ ψ(G2) = A, it follows from Lemma 2 that the
natural homomorphism ψ(G1)∗Aψ(G2) ! Γ is injective. Hence ψ is injective
and ρ := ρ′ ◦ ψ is an embedding such that ρ(τ) = ρ′(τ)m is unipotent.

Step 2: the unipotent subgroup U ⊂ GL(V ). Set h = ρ(σ2), set Π = Spec h
be its spectrum, and for each λ ∈ Π, let V(λ) be the corresponding generalized
eigenspace. An eigenvalue λ ∈ Π is called minimal if 2−nλ /∈ Π for any integer
n > 0. Let Πmin be the set of minimal eigenvalues and set

Π≥k = {λ ∈ Π | λ ∈ 2l Πmin for some l ≥ k},
for k ≥ 0. The filtration Π = Π≥0 ⊃ Π≥1 ⊃ . . . of the set Π induces the
following filtration of V

V = V≥0 ⊃ V≥1 ⊃ . . . ,
where V≥k = ⊕λ∈Π≥k

V(λ). Let U be the group of all g ∈ GL(V ) such that
(g − id)V≥k ⊂ V≥k+1 for all k ≥ 0. For some suitable basis, U is a group of
upper triangular matrices. Therefore U is nilpotent.

Step 3: ρ(Γ) is nilpotent by commutative. Since ρ(G1) commutes with h, we
have ρ(G1).V≥k = V≥k for any integer k. Therefore ρ(G1) normalizes U .

Set u = ρ(τ) and e = log u. By Lemma 16, we have heh−1 = 2e and
therefore we have e.V≥k ⊂ V≥k+1. It follows that u = exp e belongs to U .
Since ρ(Γ) = 〈ρ(G1), u〉 we have

ρ(Γ) ⊂ ρ(G1)⋉ U ,
and therefore ρ(Γ) is nilpotent by commutative. Hence ρ(Γ) contains a non-
trivial normal abelian subgroup. This contradicts Lemma 15, which states
that Γ has the trivial normal centralizers property.

Lemma 17. The group Γ is not linear, even over a ring.

Proof. By Lemma 15 the group Γ has the trivial normal centralizers property.
It follows from Lemmas 12 and 4 that Γ is not linear, even over a ring.

4.4 Proof of Theorem C.1

Theorem C.1. The subgroup 〈S, T 〉 of Aut0A
2
Q is not linear, even over a

ring, where
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S(x, y) = (y, 2x) and T (x, y) = (x, y + x2).

Proof. Set H1 = 〈S〉, H2 = 〈S2, T 〉, C = 〈S2〉.
We have S2 = 2.id, therefore we have H1 ∩BAff(K) = C. Moreover H2 is

the group of automorphisms of the form
(x, y) 7! (2kx, 2ky + rx2),

for k ∈ Z and r ∈ Z[1/2], thereforeH2∩BAff(K) = C. It follows from Lemma
2 and van der Kulk Theorem that the natural homomorphism H1 ∗C H2 !

Aut0A
2
Q is injective.

There is a group isomorphism Γ ! H1 ∗C H2 sending σ to S−1 and τ to
T . Thus, by Lemma 17, the subgroup of Aut0 A

2
K generated by S and T is

not linear, even over a ring.

5 The Linear Representation of Aut1A
2
K

In this section and the next one, we will use a ping-pong lemma. It will
be convenient to define the highest component of any nonzero vector valued
polynomial f(t) =

∑

k fkt
k by hc(f) := fm, where m is the degree of f .

5.1 A ping-pong lemma
Let S be a group, let P be a S-set and let Γ = S ⋉ ∗p∈P Fp be a mixed
product of S.

Lemma 18. Let Ω be a Γ-set, and let (Ωp)p∈P be a collection of subsets in
Ω. Assume

(i) the free product ∗p∈P Fp is nondegenerate and nondihedral,
(ii) CoreΓ(∩P Sp) is trivial,
(iii) the subsets Ωp are nonempty and disjoint, and
(iv) we have F ∗

p .Ωq ⊂ Ωp whenever p 6= q,
where F ∗

p denotes Fp \ {1}.
Then the action of Γ on Ω is faithful.

Proof. Let p 6= p′ be two elements in P . By Lemma 14, Assertion (i) any
nontrivial normal subgroup H ⊂ Γ contains to some γ ∈ Ep,p. We have
γ.Ωp′ ⊂ Ωp, therefore γ acts nontrivially on Ω. Since any nontrivial normal
subgroup H acts nontrivially, the action of Γ on Ω is faithful.

5.2 The group SL(2, tK[t]) is generated by its transvections
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It is well known that SL(2, K[t]) is generated by its transvections, but this
property does not extend to most congruence subgroups. It is nevertheless
the case for the congruence subgroup associated with the ideal tK[t].

More precisely, for any δ ∈ P1
K , let eδ ∈ End(K2) be a nilpotent element

with Im eδ = δ. Set
Uδ(tK[t]) := {id + f(t)eδ | f ∈ tK[t]},

which is a subgroup of SL(2, tK[t]). Let γ ∈ GL(2, K) such that γ.δ0 = δ
where δ0 ∈ P1

K has coordinates (0; 1). Then we have
Uδ0(tK[t]) = U(tK[t]) and Uδ(tK[t]) = U(tK[t])γ .

The elements of ∪δ∈P1

K
Uδ(tK[t]) are called the transvections of SL(2, tK[t]).

Lemma 19. The group SL(2, tK[t]) is generated by its transvections.

Proof. Any element G(t) ∈ SL(2, tK[t]) is a polynomial G(t) =
∑

n≥0 Ant
n

where An belong to End(K2) and A0 = id. The proof that G(t) is a product
of transvections runs by induction on the degree of G(t).

We can assume thatM := degG(t) is positive. Since det G(t) is constant,
we have detAM = 0, i.e. AM has rank one. Set δ = ImAM , δ′ = KerAM

and let (u, v) be a basis of K2 with v ∈ δ′. The equation detG(t) = 1 means
∑

n,m≤N An.u ∧ Am.v t
n+m = u ∧ v.

There exists an integer N such that
ImAN 6⊂ δ, but ImAm ⊂ δ, for any m > N .

The previous identity implies that
∑

n+m=M+N An.u ∧ Am.v = 0.
We have An.u ∧Am.v = 0, whenever n,m are bigger than N and AM .v = 0.
Hence we get AM .u ∧ AN .v = 0, or, equivalently AN .δ

′ ⊂ δ. Therefore we
have AM = ceδ.AN for some c ∈ K. Set

H(t) = (1− ceδ t
M−N).G(t).

Since eδ.Am = 0 for any m > N , it follows that H(t) has degree ≤ M .
Moreover, its degree M component is AM − ceγ .AN = 0. Therefore H(t) has
degree < N , what proves the lemma by induction.

5.3 The groups SL(2, tK[t]) and SLU(K)(2, K[t]) are free products
Let δ0, δ∞ be the points in P1

K with coordinates (0; 1) and (1; 0). Set
SLU(K)(2, K[t]) = {G(t) ∈ SL(2, K[t] | G(0) ∈ U(K)}.

Lemma 20. We have
SL(2, tK[t]) = ∗δ∈P1

K
Uδ(tK[t] and SLU(K)(2, K[t]) = U([K[t]) ∗ Uδ∞(tK[t]).
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Proof. The elements of Ω := K[t]2 \ {0} are nonzero K2-valued polynomials.
For δ ∈ P1

K , set
Ωδ = {v ∈ Ω | hc(v) ∈ δ}.

For any δ 6= δ′ in P1
K , the restriction of eδ to δ′ is injective, hence
hc(H(t).v) = hc(H(t).hc(v),

for any H(t) ∈ Uδ(tK[t]) \ {1} and any v ∈ Ωδ′ . It follows that
(Uδ(tK[t]) \ {1}).Ωδ′ ⊂ Ωδ.

Hence by Lemma 18, the free product ∗δ∈P1

K
Uδ(tK[t]) embeds in SL(2, tK[t]),

and by Lemma 19, we have
∗δ∈P1

K
Uδ(tK[t]) = SL(2, tK[t]),

what proves the first assertion. Moreover, we have
SLU(K)(2, K[t]) ≃ U(K)⋉ ∗δ∈P1

K
Uδ(tK[t]).

Since U(K) acts freely and transitively on P1
K \ {δ0} and since U(K[t]) =

U(K)× Uδ0(tK[t]), it follows from Lemma 8 that
SLU(K)(2, K[t]) = U([K[t]) ∗ Uδ∞(tK[t]).

Remark. The group SLU(K)(2, K[t]) is the “lower nilradical” of the affine
Kac-Moody group SL(2, K[t, t−1]). In [24], Tits defined the “lower nilradical”
of any Kac-Moody group in term of an inductive limit, which is essentialy
equivalent to the previous lemma for SLU(K)(2, K[t]).

Since the notes [24] are not widely distributed, let us mention that an
equivalent result is stated in [26], Section 3.2 and 3.2, see also [25].

5.4 Proof of Theorem A.2

Lemma 21. There are isomorphisms
Aut1A

2
K ≃ SL(2, tK[t]) and AutU(K)A

2
K ≃ SLU(K)(2, K[t]).

Proof. By Lemmas 7 and 20, Aut1A
2
K and SL(2, tK[t]) are free products of

CardP1
K copies of a K-vector space of dimension ℵ0. Therefore these two

groups are isomorphic.
The proof of the isomorphism AutU(K)A

2
K ≃ SLU(K)(2, K[t]) follows sim-

ilarly from Lemmas 10 and 20.

Theorem A.2. The groups Aut1A
2
K and AutU(K)A

2
K are linear over K(t).

Moreover if K ⊃ k(t) for some infinite field k, then there exists an em-
bedding Aut1A

2
K ⊂ AutU(K)A

2
K ⊂ SL(2, K).

Proof. It follows from Lemma 21 that Aut1A
2
K and AutU(K)A

2
K are sub-

groups of SL(2, K(t), and therefore they are linear over K(t).
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Assume now that K ⊃ k(t) for some infinite field k. We claim that there
exists a field L with L(t) ⊂ K and Card L = Card K. If Card K = ℵ0,
then the subfield k satisfies the claim. Otherwise, we have trdeg K > ℵ0 and
there is an embedding L(t) ⊂ K for some subfield L with trdeg L = trdeg K.
Since trdeg L = CardL = CardK, the claim is proved.

It follows from Corollary 1 that
AutU(K)A

2
K ≃ AutU(K)A

2
L ⊂ SL(2, L(t)) ⊂ SL(2, K),

therefore Aut1A
2
K and AutU(K)A

2
K are subgroups of SL(2, K).

5.5 A Corollary
For a a finite field K, Aut1A

2
K has finite index in AutA2

K , hence

Corollary 4. For a a finite field K, the group AutA2
K is linear over K(t).

6 The Linear Representation of SAut<n0 A2
K

For n ≥ 3, let SAut<n
0 A2

K be the subgroup of SAut0A
2
K generated by all

automorphisms φ ∈ SAut0A
2
K of degree < n. In this section, we will assume

that K has characteristic zero, in order to show that the group SAut<n
0 A2

K

is linear, what proves Theorem C.2. Unfortunately, our approach does not
extend to fields of finite characteristics.

6.1 The group SAut<n
0 A2

K is a mixed product with trivial core
Let δ ∈ P1 with projective coordinates (a; b). Let E<n

δ (K) ⊂ Eδ(K) be the
subgroup of all automorphisms of the form (x, y) 7! (x, y) + f(bx− ay)(a, b)
where f(t) ∈ t2K[t] and deg f(t) < n.

Lemma 22. For any n ≥ 3, the group SAut<n
0 A2

K is isomorphic to the
nondegenerate mixed product

Γ := SL(2, K)⋉ ∗δ∈P1

K
E<n

δ (K).
Moreover CoreΓ(SL(2, K)) is trivial.

Proof. By induction over n, one easily prove that any reduced decomposition
u = u1 . . . un in the free product ∗δ∈P1

K
Eδ(K), where ui ∈ Eδi(K), has degree

N :=
∏

deg ui and its highest degree component is of the form (x, y) 7!

(bx− ay)N(c, d), where (c; d) and (a; b) are the coordinates of δ1 and δn.
By Lemma 7, SAut0A

2
K is isomorphic to the mixed product
SL(2, K)⋉ ∗δ∈P1

K
Eδ(K).
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Hence SAut<n
0 is generated by SL(2, K) and the subgroups E<n

δ (K). It
follows that

SAut<n
0 A2

K ≃ SL(2, K)⋉ ∗δ∈P1

K
E<n

δ (K).

It has been noticed that CoreΓ(SL(2, K)) acts trivially on P1
K , hence it is

included in {±1}. Set τ(x, y) := (x, y + x2). Since τ−id(x, y) = (x, y − x2) 6=
τ(x, y) or ch K = 2, it follows that CoreΓ(SL(2, K)) is trivial.

6.2 The square root η of e
Let ǫ be an odd variable. For an integer N ≥ 1, let L(N) ⊂ K[x, y] and
L̂(N) ⊂ K[x, y, ǫ] be the subspaces of homogenous polynomials of degree N .
Let (e, h, f) be the usual basis of sl(2, K). As an SL(2, K)-module, we have
L̂(N) = L(N)⊕ L(N − 1) and e acts as the derivation x ∂

∂y
. Set

η = x ∂
∂ǫ

+ ǫ ∂
∂y
.

It is clear that η2 = e. Indeed L̂(N) is a representation of the Lie superalgebra
osp(1, 2), and η ∈ osp(1, 2) is an odd element such that η2 = e.

For any δ ∈ P1
K with projective coordinates (a; b), set Lδ := K.(ax+ by)N

and L∗
δ = Lδ \ {0}. Let δ0 ∈ P1

K be the point with projective coordinate
(0; 1). Since (x ∂

∂y
)N(ax+ by)N = N ! (bx)N , it follows that

Lemma 23. Let δ 6= δ0 be another point in P1
K. Then for any v ∈ L∗

δ, the
element η2N .v = eN .v belongs to L∗

δ0
.

6.3 The representation ρN of SAut0A
2
K on L̂(N)⊗K[t]

We will extend the natural representation of of SL(2, K) on L̂(N)⊗K[t] to
SAut0A

2
K as follows. For any automorphism τ ∈ E(K), set

ρN (τ) = exp(tηf(η)),
if τ(x, y) = (x, y+f(x)), where f(x) ∈ x2K[x]. Since [e, η] = 0 and [h, η] = η,
the homomorphism ρN is B(K)-equivariant. By Lemma 3, ρN extends to a
K[t]-linear action of SAut0A

2
K .

Lemma 24. Assume that 2N is divisible by lcm(1, 2, . . . , n).
Then the restriction of ρN to SAut<n

0 A2
K is faithful.

Proof. For any δ ∈ P1
K , set

Ωδ = {v(t) ∈ L̂(N)⊗K[t] \ {0} | hc(v(t)) ∈ L∗
δ}.

First step. We claim that
(E<n

δ0
(K) \ {1}).Ωδ ⊂ Ωδ0 ,
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for any for any δ ∈ P1
K with δ 6= δ0. Let τ(x, y) = (x, y + f(x)) be in

E<n
δ0

(K) \ {1}. We have f(x) = axk+ higher terms, for some a ∈ K∗ and
some k with 2 ≤ k < n. By definition, we have

ρN (τ) = exp tηf(η) =
∑

m≥0
ηmf(η)m

m!
tm.

Since ηf(η) is divisible by ηk+1 and η2N+1 = 0, it follows that ηmf(η)m = 0
for m > 2N/(k+1). Since k+1 divides 2N , ρN(τ) is a polynomial of degree
exactly d := 2N/(k + 1) and we have

hc(ρN (τ)) =
ad

d!
η2N .

Let v(t) ∈ Ωδ. By Lemma 23, hc(ρN(τ)).hc(v(t)) is nonzero and belongs to
Lδ0 . It follows that ρN(τ).Ωδ ⊂ Ωδ0 , what proves the claim.

Second step: use of the ping-pong lemma. Using the previous result and the
fact that the groups E<n

δ (K) are conjugate under SL(2, K), it follows that
(E<n

δ (K) \ {1}).Ωδ′ ⊂ Ωδ, for any distinct δ, δ′ ∈ P1
K .

Therefore, the restriction of ρN to SAut<n
0 A2

K is faithful by Lemma 18.

6.4 Proof of Theorem C.2
Since dim L̂(N) = 2N + 1, Lemma 24 implies that

Theorem C.2. For any n ≥ 3, there is an embedding
SAut<n

0 A2
K ⊂ SL(1 + lcm(1, 2, . . . , n), K(t)).

In particular, any f.g. subgroup of SAut0A
2
K is linear over K(t).

7 Semi-algebraic Characters

Let Λ ⊂ K∗ be a subgroup. For any n ≥ 1, let Kn ⊂ K be the subfield
generated by Λn. Let L be an algebraically closed field, which contains at
least one subfield isomorphic to K1.

For n ≥ 1, a group homomorphism χ : Λ ! L∗ is called a semi-algebraic
character of degree n if χ(z) = µ(zn) for some field embedding µ : Kn ! L.
Let Xn(Λ) be the set of all semi-algebraic characters of Λ of degree n. The
degree of a semi-algebraic character is not uniquely defined. Given n 6= m,
we will show a criterion for the disjointness of Xn(Λ) and Xm(Λ).

7.1 The invariant In(Λ)
Let F[Λ] be the group algebra of Λ over the ground field F of K. For a
field E ⊃ F, any group homomorphism χ : Λ ! E∗ extends to an algebra
homomorphism χ̂ : F[Λ] ! E. One should not confuse Kerχ with
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Ker χ̂ := {∑λ aλλ ∈ F[Λ] | ∑λ aλχ(λ) = 0}.
For n ≥ 1, let χn be the homomorphism χn : λ ∈ Λ 7! λn ∈ K∗

n. Set
In(Λ) = Ker χ̂n.

Lemma 25. A group homomorphism χ : Λ ! L∗ is a semi-algebraic char-
acter of degree n iff Ker χ̂ = In(Λ).

In particular, we have Xn(Λ) = Xm(Λ) or Xn(Λ) ∩ Xm(Λ) = ∅, for any
positive integers n 6= m.

Proof. By definition the fraction field of the prime ring F[Λ]/In(Λ) is Kn.
Hence χ̂ factors through Kn, i.e. χ̂ = µ ◦ χ̂n for some field embedding
µ : Kn ! L. The first point follows, as well as the second.

7.2 Minimal subgroups of K∗

Let Λ ⊂ K∗ be a subgroup. By definition, the transcendental degree of Λ is
trdeg Λ := trdegK1 and its rank is rkΛ := dim Λ ⊗ Q. Both are cardinals,
and we have trdeg Λ ≤ rkΛ. We say that Λ is a good subgroup of K∗ if
trdeg Λ′ = rkΛ′, for any f.g. subgroup Λ′ of Λ and a bad subgroup otherwise.

Assume now that Λ is a free abelian group of rank r < ∞, with basis
x1, . . . , xr. The ring F[Λ] is isomorphic to the ring F[x±1

1 , . . . x±1
r ] of Laurent

polynomials. For α = (α1, . . . , αr) ∈ Zr, set xα = xα1

1 , . . . x
αr
r . The support

of a Laurent polynomial P =
∑

α∈Zr aαx
α is the set

Supp P := {α ∈ Zr | aα 6= 0}.
Assume now that trdeg Λ = r−1. Since F[x±1

1 , . . . x±1
r ] is a unique factoriza-

tion domain, I1(Λ) is a principal ideal, and let P be one its generator. The
other generators are the polynomials axγP , for a ∈ F∗ and γ ∈ Zr. Hence
the subgroup X(Λ) ⊂ Zr generated by α−β for α, β ∈ Supp P only depends
on Λ. Moreover, if 0 ∈ Supp P , then we have X(Λ) = 〈Supp P 〉.

A subgroup Λ ⊂ K∗ is called minimally bad if
(i) Λ is a f.g. free group, and
(ii) we have r := rkΛ = 1 + trdeg Λ, and X(Λ) = Zr.

Lemma 26. Let Λ ⊂ K∗ be a bad subgroup of K∗.
Then Λ contains a minimally bad subgroup Λ′.

Proof. By definition, Λ contains a f.g. bad subgroup Λ0. Moreover, we can
assume that Λ0 is torsion free.

Let C be the set of all subgroups Π ⊂ Λ0 such that rkΠ > trdeg Π. Let
us pick one element of C, say Π′, of minimal rank. It is clear that r := rkΠ′ =
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1 + trdeg Π′. Let x1, . . . xr be a basis of Π′ and let P =
∑

x∈Zr aαx
α be a

generator of the ideal I1(Π
′) of F[Π′] ≃ F[x±1

1 , . . . x±1
r ] such that a0 6= 0.

It is clear that Λ′ := 〈xα | α ∈ Supp P 〉 is a minimally bad subgroup.

7.3 Newton polygones of Pn

Let r ≥ 1 be an integer. Let P be one generator of a principal ideal I of
F[x±1

1 , . . . x±1
r ]. The Newton polygone Newton(P ) of P is the convex closure

of Supp P in R ⊗ Zr, and let Ext(P ) be its set of extremal points. Up to
translation by Zr, Ext(P ) is an invariant of I. Hence the largest integer e(P )
such that α− β ∈ e(P ).Zr for any α, β ∈ Ext(P ) only depends on I.

It will convenient to choose an ordering of Zr. A Laurent polynomial P ∈
F[x±1

1 , . . . x±1
r ] is normalized if a0 = 1 and any α ∈ Supp P is nonnegative.

Any principal ideal I of F[x±1
1 , . . . x±1

r ] has a unique normalized generator P .
Since 0 belongs to Ext(P ), we have Ext(P ) ⊂ e(P ).Zr.

Let Λ ⊂ K∗ be a minimal subgroup and let x1, . . . , xr be a basis of Λ.
For any n ≥ 1, let Pn be the normalized generator of In(Λ).

Lemma 27. Assume that n ≥ 1 is not divisible by ch K. Then we have
Newton(Pn) =

nr−1

fn
Newton(P1),

for some integer fn dividing e(P1).

Proof. In F[x±1
1 , . . . x±1

r ] the polynomial P1 decomposes uniquely as
P1 = Q1 . . . Qk

where Q1, Q2, . . . are normalized irreducible polynomials in F[x±1
1 , . . . x±1

r ].
Since they are permuted by Gal(F), we have SuppQ1 = SuppQ2..., hence

(i) SuppQ1 generates Zr, and
(ii) Newton(Q1) =

1
k
Newton(P1) and k divides e(P1).

Let µn ⊂ F
∗
be the group of all nth root of one. For various (ζ1, . . . ζr) ∈

µr
n, the normalized polynomials Q1(ζ1x1, . . . , ζrxr) are pairwise distinct by

the assertion (i). Thus the polynomial R =
∏

ζ1,...,ζr∈µr
n
Q1(ζ1x1, . . . , ζrxr) is

irreducible in F[x±n
1 , . . . x±n

r ].
Set G1 = {σ ∈ Gal(F) | Qσ

1 = Q1} and G = {σ ∈ Gal(F) | Rσ = R}.
Since R is normalized, the polynomials Rσ for σ ∈ Gal(F)/G are pairwise
distinct, and therefore S =

∏

σ∈Gal(F)/G Rσ is a normalized irreducible poly-

nomial in F[x±n
1 , . . . x±n

r ]. It follows that
Pn(x

n
1 , . . . , x

n
r ) = S(x1, . . . , xr).

Since [Gal(F) : G] = k, the integer fn := [G : G1] divides e(P1), and
Newton(Pn) =

nr−1

fn
Newton(P1).
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7.4 The criterion for disjointness of Xn(Λ) and Xm(Λ)

Lemma 28. Let Λ ⊂ K∗ be a bad subgroup of K∗. Then there is an integer
e ≥ 1 such that

Xn(Λ) ∩ Xm(Λ) = ∅,
whenever the integers n 6= m are coprime to e.

Proof. By Lemma 26, Λ contains a minimal subgroup Λ′. Moreover by
Lemma 25, it is enough to show the lemma for Λ′. Therefore we can as-
sume that Λ itself is minimal. For any n ≥ 1, let Pn be the normalized
generator of In(Λ), relative to some order of Λ.

Proof when rkΛ = 1. Thus F = Q and a generator x of Λ is an algebraic
number of infinite order. Let n, m ≥ 1 be two integers such that Pn = Pm.
Since Pn(λ

m) = 0, there is σ ∈ Gal(Q) such that λm = σ(λn). Let k ≥ 1 be
an integer such that σk(λ) = λ. Therefore, we have

λn
k

= σk(λn
k

) = λm
k

.
Since λ has infinite order, it follows that n = m. In this case, the lemma is
proved for e = 1.

Proof when r := rkΛ ≥ 2. Set e = pe(P1) if ch K = p and e = e(P1)
ortherwise. Let n, m ≥ 1 be two integers prime to e such that Pn = Pm. By
Lemma 27, we have nr−1

fn
= mr−1

fm
for some integers fn and fm dividing e. It

follows that n = m.

8 A Nonlinearity Criterion for AutS A
2
K

Given a subgroup S0 of B(K), we first investigate a necessary condition for
the existence of a given embedding

ρ : S0 ⋉ E(K) ! GL(V ),
where V is a finite-dimensional vector space over an algebraically closed field
L. Let W (ρ) ⊂ EndV be the linear subspace generated by ρ(E(K)).

The commutative group structure on E(K) will be denoted additively.
Indeed E(K) has a natural structure of a graded vector space over K, namely
E(K) = ⊕n≥3K.Tn where Tn(x, y) = (x, y + xn−1).

For any g ∈ B(K), set χB(g) = λ if g(x, y) = (λ−1x, λy + tx), for some
λ ∈ K∗ and t ∈ K. The set of all eigenvalues of elements in S0 is the group
Λ := χB(S0) ⊂ K∗. We have gTng

−1 = χB(g)
nTn. Since the action of S0 on

E(K) factors through Λ, it follows that E(K) and W (ρ) are Λ-modules.
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8.1 An obvious estimate
A integer n ≥ 1 is called a divisor of Λ if Λ contains a primitive nth root of
one. Let d(Λ) be the number, finite or infinite, of divisors of Λ.

Lemma 29. We have d(Λ) ≤ 2 + (dimV )2.

Proof. For each divisor n with n ≥ 3, set tn = ρ(Tn). Since gtng
−1 = tn iff

χ(g)n = 1, it follows that the elements tn are linearly independant. Thus we
have dimEndV ≥ d(Λ)− 2, from which the assertion follows.

8.2 Unipotent representations

Lemma 30. (i) Assume that chK = 0 and rkΛ ≥ 1. Then chL = 0 and
ρ(E(K)) is a unipotent group.

(ii) Assume that chK = p. Then chL = p and ρ(E(K)) is a unipotent
group.

Proof. First let us prove Assertion (i). Let V = ⊕χ∈Ω V(χ) be the generalized
weight decomposition of the E(K)-module V , where Ω is the set of group
homomorphisms χ : E(K) ! L∗ such that V(χ) 6= 0.

Let χ ∈ Ω. Since Ω is finite, the group S ′
0 = {s ∈ S0 | χs = χ} has finite

index in S0. There is some s ∈ S ′
0 such that χB(g) has infinite order. It

follows that the map e ∈ E(K) 7! e− ses−1 ∈ E(K) is invertible. Therefore
χ is trivial and ρ(E(K)) is a unipotent group.

Since E(K) is torsion-free, L has characteristic 0.

The proof of Assertion (ii) follows from the fact that E(K) is an elemen-
tary p-group of infinite rank.

8.3 A linearity criterion for S0 ⋉ E(K)

Lemma 31. Assume again that ρ is a faithful representation of S0 ⋉E(K).
Then Λ is a good subgroup of K∗.

Proof. By Lemma 30, K and F have the same ground field F. Moreover, for
any n ≥ 3, ρ(En) is a unipotent group, where En = K.Tn.

We claim that, for any n ≥ 3, there is a L[Λ]-submodule W ′ ⊂ W (ρ)
such that W (ρ)/W ′ contains a F[Λ]-submodule X isomorphic to F[Λ]/In(Λ).

Proof for F = Q. In that case W ′ = {0} and X := log ρ(Q[Λ].Tn) is a
Q[Λ]-submodule of W (ρ) isomorphic to Q[Λ]/In(Λ).
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Proof for F = Fp. As a substitute for the log, set θ(a) = 1 − ρ(a) for any
a ∈ En. Let M ⊂W (ρ) be the linear space generated by θ(En). Since

θ(a)θ(b) = θ(a) + θ(b)− θ(a + b),
M is a nonunital algebra and Mp = {0}. Since ρ is injective, we have
θ−1(Mp) = {0}. Thus there exists a unique integer m < p such that

Y := θ−1(Mm) 6= {0} but θ−1(Mm+1) = {0}.
Set W ′ = Mm+1. It follows from the previous formula that Y is a sub-

group of En and the induced map θ : Y ! W (ρ)/W ′ is additive. Thus θ is
a homomorphism of Fp[Λ]-modules. Since Ker θ is trivial, θ is injective. Any
cyclic Fp[Λ]-sumodule of Y is isomorphic to Fp[Λ]/In(Λ), therefore W (ρ)/W ′

contains a Fp[Λ]-submodule X isomorphic to Fp[Λ]/In(Λ).

We claim now that, for any n ≥ 3, W (ρ)(χ) 6= 0 for some χ ∈ Xn(Λ).
Let Z be the L-vector space generated by X , and let Z = ⊕χ∈ΩZ

Z(χ) be the
decomposition of the L[Λ]-module Z into generalized weight spaces, where
ΩZ is the set of group homomorphisms χ : Λ ! L∗ such that Z(χ) 6= 0. For
each χ ∈ ΩZ , let Iχ be the annihilator in F[Λ] of Z(χ). It follows that

In(Λ) = ∩χ∈ΩZ
Iχ.

Since ΩZ is finite and In(Λ) is a prime ideal, we have In(Λ) = Iχ, for some
χ ∈ ΩZ . Moreover the radical of Iχ is Kerχ̂, hence In(Λ) = Kerχ̂. Thus by
Lemma 25, χ is a semi-algebraic character of degree n. Moreover we have
W (ρ)(χ) 6= 0, what proves the claim.

End of the proof. Assume otherwise, namely that Λ is bad subgroup of K∗.
Then by Lemma 28, there is an infinite set T of integers n ≥ 3 such that the
family (Xn(Λ))n∈T consists of mutually disjoint sets. This would contradict
that the finite set of generalized weights ofW (ρ) intersects each of them.

8.4 Proof of the Nonlinearity Criterion
Let S be a subgroup of SL(2, K). For δ ∈ P1

K , let Λδ ⊂ K∗ be the subgroup
of all eigenvalues of elements g ∈ Sδ.

Nonlinearity Criterion. Assume one of the following two hypotheses
(i) Λδ is a bad subgroup of K∗ for some δ ∈ P1

K, or
(ii) the function δ ∈ P1

K ! d(Λδ) is unbounded.
Then the group AutS A

2
K is not linear, even over a ring.

Proof. By contraposition, we will assume that AutS A
2
K is linear over a ring,

and we will show that neither Assertion (i) nor Assertion (ii) holds.
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By Lemma 7, AutS A
2
K is the mixed product Γ := S⋉ ∗δ∈P1

K
Eδ(K). Since

∩δ∈δ Sδ ⊂ {±1} and T−id
3 = −T3, it follows that CoreΓ(∩δ∈δ Sδ) is trivial.

Hence by Corollary 3, AutS A
2
K is linear over a field. Let ρ : AutS A

2
K !

GL(n, L) be an injective homomorphism, for some algebraically closed field
L and some positive integer n.

Since ρ provides a faithful representation of Bδ ⋉ Eδ(K), it follows from
Lemma 31 that Λδ is a good subgroup of K∗. Moreover by Lemma 29, we
have d(Λδ) ≤ 2 + n2.

Therefore neither Assertion (i) nor Assertion (ii) holds.

8.5 Proof of the Theorem A.1 of the introduction.

Theorem A.1. For any infinite field, SAut0A
2
K is not linear, even over a

field.

Proof. With the previous notations, we have Aut0A
2
K = AutSL(2,K)A

2
K , and

Λδ = K∗, for any δ ∈ P1
K . Therefore it is enough to check that K∗ satifies

one of the two assertions of the Nonlinearity Criterion.
If K is an infinite subfield of Fp, then d(K∗) is infinite. Otherwise K

contains Q or a transcendental element t. For the subgroup Λ := 〈2〉 in the
first case or Λ := 〈t, t+1〉 in the second case, it is clear that rkΛ > trdeg Λ.
Hence K∗ itself is a bad group.

8.6 Comparison with Cornulier’s Theorem
Let GCor be the group of all automorphisms of Q2 of the form

(x, y) 7! (x+ u, y + f(x)), for some u ∈ K and f(t) ∈ Q[t].
The group GCor is locally nilpotent but not nilpotent, hence [9]

Cornulier Theorem. Neither GCor nor AutA2
Q is linear over a field.

Set R := Q[[t]]⊕ I, where I := Q((t))/Q[[t]] is a square-zero ideal. Let Γ be
the subgroup of SL(2, R) generated by the matrices

(

1 + t 0
0 (1 + t)−1

)

and

(

1 0
a 1

)

when a runs over I.

The group Γ is isomorphic to GCor ≃ Q⋉Q[x], where Q acts by translation
on Q[x], hence GCor is linear over R. Similarly, the subgroup SElem0(K) is
isomorphic toK∗⋉x2K[x], where K∗ acts on x2K[x] by multiplication. Since
SElem0(K) embeds into

∏

n≥2 (K
∗ ⋉Kxn), it is a subgroup of GL(2, K∞).

Therefore both GCor and SElem0(K) (for K infinite) are linear over some
rings but not over a field. This explains the motivation of section 3.
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9 Two Linearity Criteria for AutS A
2
K

For a subgroup S of SL(2, K), there are two linearity criteria for AutS A
2
K .

The second one, stronger, is only proved for a field of characteristic zero.
Let Λ ⊂ K∗ be a subgroup. For any F[Λ]-module M and any n ≥ 1, set

M (n) = (ρn)∗M , where ρn is the group homomorphism x ∈ Λ 7! xn ∈ Λ.

9.1 The standard module for torsion-free good subgroups of K∗

Assume now that Λ is a torsion-free good subgroup of K∗. By definition, the
standard F[Λ]-module is K1, and it is denoted by St(Λ).

Given a K-vector space V and an integer n ≥ 1, it is clear that V (n) is a
direct sum of standard modules, and its multiplicity is the cardinal

[V (n) : St(Λ)] = [Λ : Λn] dimK1
V = dimKn

V .

9.2 The First Linearity Criterion
Let S be a subgroup of SLS(2, K) and let Λδ be the set of all eigenvalues of
Sδ, for any δ ∈ P1

K . Set SLS(2, K[t]) := {G ∈ SL(2, K[t]) | G(1) ∈ S}.

Linearity Criterion 1. Assume that Λδ is a torsion-free good subgroup of
K∗, for any δ ∈ P1

K . Then, for some field extension L of K, there is an
embedding

AutS A
2
K ⊂ SL(2, L(t)).

Moreover if rkΛδ ≤ ℵ0 for any δ ∈ P1
K, then we have

AutS A
2
K ≃ SLS(2, K[t]) ⊂ SL(2, K(t)).

Proof. Set M = Sup rkΛδ, where δ runs over P
1
K . There exists a field exten-

sion L ⊃ K, which satisfies one of the following two hypotheses
(I1) [L : K] ≥M if M > ℵ0, or
(I2) L = K if M ≤ ℵ0

It follows from Lemmas 7 and Lemma 20 that
AutS A

2
K = S ⋉ ∗δ∈P1

K
Eδ(K), and

SLS(2, L[t]) = S ⋉ ∗δ∈P1

L
Uδ(zL[z]) ⊃ S ⋉ ∗δ∈P1

K
Uδ(zL[z]).

Let δ ∈ P1
K . The F[Λδ]-modules Eδ(K) and Uδ(zL[z]) are copies of standard

F[Λ]-module. Since Eδ(K) ≃ ⊕n≥3K
(n), we have

[Eδ(K) : St(Λ)] =
∑

n≥3 [Λ : Λn][K : K1].

On the other hand, Uδ(zL[z]) is isomorphic to ℵ0 copies of L
(2), therefore we

have
[Uδ(zL[z]) : St(Λ)] = ℵ0 [Λ : Λ2][L : K][K : K1].

Hence (I1) implies the existence of a Sδ-equivariant embedding
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ψδ : Uδ(zL[z]) ! Eδ(K),
and (I2) implies the existence a Sδ-equivariant isomorphism

ψδ : Uδ(zK[z]) ! Eδ(K).
Therefore by Lemma 3, (I1) implies the existence of a an embedding

AutS A
2
K ⊂ S ⋉ ∗δ∈P1

K
Uδ(zL[z]) ⊂ SLS(2, L[t]) ⊂ SL(2, L(t)),

and (I2) implies the existence an isomorphism
AutS A

2
K ≃ S ⋉ ∗δ∈P1

K
Uδ(zK[z]) ≃ SLS(2, K[t]) ⊂ SL(2, L(t)).

Theorem D. Let R be a f.g. subring of K and let S ⊂ SL(2, R).
If rkΛδ = trdeg Λδ for any δ ∈ P1

K, then AutS A
2
K is linear over K(t).

Otherwise, AutS A
2
K is not linear, even over a ring.

Proof. The second assertion follows from the Nonlinearity Criterion.
In order to prove the first one, assume now that rkΛδ = trdeg Λδ for any

δ ∈ P1
K . Let L be the field of fraction of R and set F = F ∩ L. Since R is

a f.g. ring, F is a finite extension of F. Therefore the set µ ⊂ K of roots of
unity in F or in a quadratic extension of F is finite.

Let m be a maximal ideal of R such that p := ch R/m is coprime to
Card µ. Indeed if F = Q the characteristic of R/m is arbitrarily large, while
in the opposite case, ch R/m is automatically coprime to Card µ.

Set S ′ = {g ∈ S | g ≡ idmodm}. For any δ ∈ P 1
K let Λ′

δ be the
eigenvalues of S ′

δ. Since S ′ is residually p-group, Λ′
δ is torsion-free. Since

[S : S ′] <∞, we can assume that S = S ′.
We claim that Λδ is f.g. for any δ ∈ P1

K . If δ is defined over a field F ′,
where F ′ = F or F ′ is a quadratic extension of F , then Λδ ⊂ R

∗
, where R

is the integral closure of R in F ′. Since R
∗
is f.g., so is Λδ. Otherwise, Λδ is

trivial. Hence Λδ is a torsion-free good subgroup of K∗ for any δ ∈ P1
K .

The Linearity Criterion 1 implies that AutS A
2
K is linear over K(t).

9.3 The standard modules for finite-torsion good subgroups of K∗

From now on, K is a field of characteristic zero. Let Λ be a good subgroup
of K∗, such that Card Λ ∩ µ∞ = n for some n <∞.

The Q[Λ]-module Std(Λ) := Kd, where d is a divisor of n, are called the
standard Q[Λ]-modules. By Baer Theorem [1], Λ is isomorphic to µn × Λ,

where Λ = Λ/µn is torsion-free. It follows that Std(Λ) ≃ Q(µn/d)⊗Q(Λ
d
).

Given a K-vector space V and an integer m ≥ 1, it is clear that V (m) is
a direct sum of the standard module Stgcd(n,m)(Λ), and its multiplicity is the
cardinal
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[V (m) : Stgcd(n,m)(Λ)] = [Λ : Λ
n
]φ(n)/φ(gcd(n,m)) dimK1

V .

Lemma 32. Let S0 be a subgroup of B such that χB(S0) = Λ is a good
subgroup of K∗ such that n := Card Λ ∩ µ∞ is finite. Let l > n be a prime
number and let L ⊃ K be a field such that [L : K] ≥ ℵ0rk(Λ).

Then there is a S0-equivariant embedding E(K) ⊂ E<2l(L).

Proof. Let D be the set of divisors of n. The Q[Λ]-module E(K) and E<2l(L)
are direct sums of standard modules, therefore we have

E(K) = ⊕d∈D Std(Λ)
md, and

E<2l(L) = ⊕d∈D Std(Λ)
nd,

where the multiplicities md and nd are cardinals. Therefore it is enough to
prove that nd ≥ md for any d ∈ D.

Since E(K) = ⊕m≥3K.Tm, it is clear that
md := [E(K)(d) : Std(Λ)] ≤ ℵ0rk(Λ)[K : K1].

Similarly, we have E<2l(L) = ⊕3≤m≤2l L.Tm. Let d ∈ D. If d ≥ 3,
L.Td is a direct sum of standard modules Std(Λ) and it is clear that [L.Td :
Std(Λ)] ≥ [L : K][K : K1] ≥ ℵ0rk(Λ)[K : K1], and therefore nd ≥ md. Since
l is coprime to n, then L.Tl is a direct sum of standard modules St1(Λ), and
we have n1 ≥ m1.

If n is odd, the assertion is proved. Otherwise, L.T2l is a direct sum of
standard modules St2(Λ), and similarly we have n2 ≥ m2.

9.4 The Second Linearity Criterion

Linearity Criterion 2. Let K be a field of characteristic zero. Assume that
(i) Λδ is a good subgroup of K∗, for any δ ∈ P1

K , and
(ii) the function δ 7! Card Λ ∩ µ∞ is bounded.
Then AutS A

2
K is a linear group over some field extension L of K.

Proof. Let L ⊃ K be a field such that [L : K] ≥ ℵ0M , where M = Sup rkΛδ,
and let Q ⊂ P1

K be a set of representatives of P1
K/S0. By Lemma 32 there

is a Sδ-embedding ψδ : Eδ(K) ! E<2l
δ (L) where l > MaxCard Λ ∩ µ∞ is a

prime number. Therefore we get some embeddings
AutSA

2
K ≃ S ⋉ ∗δ∈P1

K
Eδ(K) ⊂ S ⋉ ∗δ∈P1

K
E<2l

δ (L) ⊂ Aut<2l
0 A2

L.

So, the stong version of Theorem C.2 implies that AutSA
2
K is linear.
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10 Examples of Linear or Nonlinear AutS A
2
K

We provide three examples using the Linearity/Nonlinearity Criteria.

9.1 Example A, with S = SO(q) and K infinite

Example A. Let q be a quadratic form on K2 and S = SO(q).
If q is anisotropic, AutSA

2
K is linear over a field extension of K.

Otherwise AutSA
2
K is not linear, even over a ring.

As we will see, the proofs in characteristic p and characteristic 0 are very
different. E.g. the group S = SO(2,R) has no subgroups of finite index.
Therefore the proof cannot be reduced to the Linearity Criterion 1.

Proof. If q is isotropic or degenerate, we have Λδ = K∗ for some δ ∈ P1
K . The

proof of Theorem A.1 shows that K∗ itself is bad. Hence by the Nonlinearity
Criterion, AutSA

2
K is not linear, even over a ring.

Assume now that q is anisotropic. Let L ⊃ K be the quadratic extension
splitting q. Then SO(q) is isomorphic to S := {z ∈ L∗ | NL/K(z) = 1}. Let
S∞ be the subgroup of all s ∈ S of order a power of 2.

1. Proof for chK = p. We claim that S∞ is finite. So we can assume
that CardS∞ ≥ 4. Since

√
−1 ∈ S and S ∩ K∗ = {±1}, it follows that

L = K(
√
−1). Therefore p ≡ −1mod 4, and L = K.Fp2. Let s ∈ S∞ of

order > 2. There is an integer n ≥ 1 such that s ∈ Fp2n where Fpn ⊂ K.
Since Fp2 6⊂ K, the integer n is odd. Since CardF∗

p2n/F
∗
p2 is odd, s belongs

to F∗
p2. Hence S

∞ ⊂ F∗
p2 is finite.

By Baer’s theorem [1], we have S = S∞ × S ′ for some subgroup S ′ ⊂ S.
Since S ′

δ = {1} for any δ ∈ P1
K , the group AutS′ A2

K embeds into SL(2, K(t))
by the Linearity Criterion 1. Since

[AutSO(q)A
2
K : AutS′ A2

K ] <∞,
the group AutSO(q)A

2
K is also linear over K(t).

2. Proof for chK = 0. Since SO(q)δ = {±1} for any δ ∈ P1
K , the group

AutSO(q) is linear over a field extension of K by the Linearity Criterion 2

9.2 A preparatory lemma for the example B
We did not found a reference for the next well-known result. The proof that
l(γa) is arbitrarily large is due to Y. Benoist.
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Lemma 33. There are lattices S ⊂ SL(2,R) such that Tr γ is a transcen-
dental number for any infinite order element γ ∈ S.

Proof. Let g ≥ 2. Let Σg be the oriented Riemann surface of genus g, let
T (Σg) be its Teichmüller space and let Πg be the group presented by

〈α1, β1 . . . αg, βg |
∏

1≤k≤g (αk, βk) = 1〉.
Let γ be a conjugacy class in Πg. Any point a ∈ T (Σg) determines a

group homorphism ρa : Πg ! π1(Σg) and an hyperbolic metric ga on Σg, up
to some equivalence [15], ch.5. Hence ρa(γ) is represented by a unique closed
ga-geodesic γa : S

1
! Σg, i.e. a geodesic relative to the metric ga.

In elementary terms, γ is represented, modulo PSL(2,R)-conjugacy, by a
hyperbolic element ha ∈ PSL(2,R). The complete geodesic Γ ⊂ H whose the
extreme points in ∂H are the fixed points of ha, is the locus of minima for the
function z ∈ H 7! dH(z, ha.z). The ga-geodesic γa, up to reparametrization,
is the image in Σg of any segment [z, ha.z] of Γ.

We claim that the length function a 7! l(γa) is not constant. Let us
pick another conjugacy class δ in Πg such that ρa(δ) is represented by a
simple geodesic δa which meets γa transversally (since T (Σg) is connected,
this condition is independent of a). By a corollary of the collar theorem,

sh l(γa)
2

sh l(δa)
2

> 1,
see 4.1.2 in [7]. Since l(δa) can be arbitrarily small, l(γa) is arbitrarily large.

Each a ∈ T (Σg) determines an homomorphism π1(Σg) ! PSL(2,R) up
to some equivalence, which induces a homomorphism

ρ̃a : Πg ! PSL(2,R)
defined up to conjugacy by PSL(2,R).

For g ∈ PSL(2,R), Tr g2 is well-defined. We have
Tr ρ̃a(γ)

2 = 2 ch l(γa).
Let I be the set of irreducible polynomials in Q[t]. For P ∈ I, set

Ω(γ, P ) = {a ∈ T (Σg) | P (Tr ρ̃a(γ)2) 6= 0}.
Since the function a 7! P (Tr ρ̃a(γ)

2) is nonconstant and analytic, Ω(γ, P ) is
a dense open subset of T (Σg). By the Baire Theorem

Ω := ∩γ 6=1,P∈I Ω(γ, P )
is dense. For any a ∈ Ω, the lattice

S := {s ∈ SL(2,R) | smod±1 belongs to ρ̃a(Πg)}
satisfies the required condition.

9.3 Example B, where S is a lattice
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Example B. For some lattices S ⊂ SL(2,R), AutS A
2
C is linear over C.

For any lattice S ⊂ SL(2,C), AutS A
2
C is not linear, even over a ring.

Proof. Let S ⊂ SL(2,R) be a lattice as in Lemma 33. Then for any δ ∈ P1
C,

it is clear that Λδ has rank one and contains a transcendental element, or it
is finite. Hence AutS A

2
C is linear over C by Theorem E.

Let S be a lattice of SL(2,C), let g ∈ S be of infinite order and let δ ∈ P1
C

be a fixed point of g. By the Garland-Raghunathan rigidity theorem 0.11
of [14], the eigenvalues of g are algebraic numbers. Since rkΛδ > trdeg Λδ,
Theorem E implies that AutS A

2
C is not linear, even over a ring.

9.4 A preparatory lemma for example C

Lemma 34. Let R be a prime normal ring with fraction field k and let
m ≥ 1. Let B be the integral closure of R[t1, . . . , tm] in some quadratic
extension L1 ⊂ k((t1, . . . , tm)) of k(t1, . . . , tm).

Then B∗/R∗ is isomorphic to {1} or Z.

Proof. Since R is normal, we have B ∩ k = R, hence the map B∗/R∗
!

(k ⊗ B)∗/k∗ is one to one. So we can assume that R = k. Set C = Spec B.
There is a unique normal compactification C of C such that the finite map
C ! Am

k = Spec k[t1, . . . tm] extends to a finite map π : C ! Pm
k .

Set Z := π−1(Pm−1
k ), where Pm−1

k := Pm
k \Am

k . For any irreducible divisor
D in C, let vD be the corresponding valuation.

If Z is irreducible, then vZ(f) ≤ 0 for any f ∈ B. Hence vZ(f) = 0 for
any f ∈ B∗, and therefore B∗ = k∗.

Otherwise, Z is the union of two divisors Z1 and Z2. For any f ∈ B∗ \k∗,
either vZ1

(f) < 0 or vZ2
(f) < 0. Hence the homomorphism f ∈ B∗

7!

(vZ1
(f), vZ2

(f)) ∈ Z2 embeds B∗/k∗ in a free Z-module of rank ≤ 1.

9.5 Example 1, where rkΛδ is not constant
Let A be a torsion-free additive group of any rank, let d,m > 0 be integers
with d square-free and let O be the ring of integers of k := Q(

√
d). Set

K = k(A)((t1, . . . , tm)) where k(A) is the field of fractions of k[A], and
S := SL(2,O[A][t1, . . . , tm]).

The Example C of the introduction is the case A = Z and m = 1.

Example C. If d < 0, then AutS A
2
K is linear over a field extension of K.

Otherwise, AutS A
2
K is not linear, even over a ring.
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Proof. Set L0 := k(A)(t1, . . . , tm).

Proof if d > 0. Then Q(
√
d) is a real field, we have rkO∗ = 1 > trdeg O∗ = 0.

For δ ∈ P1
L0
, the group Λδ = O∗ × A is a bad subgroup of K∗. So, by the

Nonlinearity Criterion, AutS A
2
K is not linear, even over a ring.

Proof if d < 0. Let δ ∈ P1
L.

If δ belongs to P1
L0
, we have Λδ = O∗ × A. Since Q(

√
d) is an imaginary

field, Λδ = O∗ ×A is a good subgroup of K∗ and Card Λδ ∩ µ∞ ≤ 6.
Assume now that δ belongs to P1

L1
\P1

L0
, where L1 is a quadratic extension

of L0. Let B be the algebraic closure of O[A][t1, . . . , tm] in L1 and let N :=
{z ∈ L1 | NL1/L0

(z) = 1} be the norm group. It is clear that
Λδ = N ∩ B∗.

By Lemma 34, we have Λδ = {±1} or Λδ = {±1} × Z. Since O is
algebraically closed in L, it should be noted that when rkΛδ = 1, we also
have trdeg Λδ = 1. Thus Λδ is a good subgroup of K∗ and Card Λδ∩µ∞ = 2.

Otherwise, we have Λδ = {±1} and the same conclusion holds.
Therefore, by the Linearity Criterion 2, AutS A

2
K is linear over some field

extension of K.

11 Nonlinearity of Finite-Codimensional

Subgroups of AutA3
K

The Theorem A.2 shows that AutA2
K contains some finite-codimensional

subgroups, which are linear as abstract groups. However, this result does
not extend to An

K , for n ≥ 3, as it will be shown in this section.
For our purpose, the case n = 3 is enough. Unlike in the introduction,

it will be convenient to use the coordinates (z, x, y) for A3
K . Let TAutA

3
K be

the the subgroup of tame automorphisms of A3
K , see 10.5 for the definition.

By the famous result of Shestakov and Urmibaev [22], TAutA3
K is a proper

subgroup of AutA3
K .

Let m be a finite-codimensional ideal in K[z, x, y]. Let AutmA3
K be the

group of all polynomial automorphisms φ of the form
(z, x, y) 7! (z + f, x+ g, y + h),

where f, h and g belongs to m. Set
TAutm A3

K = TAutA3
K ∩ AutmA3

K .
The nonlinearity result for n = 3, valid even if K is finite, is unrelated

with the existence of wild automorphisms in A3
K , as shown by
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Theorem B. For any finite-codimensional ideal m of K[z, x, y], the groups
Autm A3

K and TAutmA3
K are not linear, even over a ring.

The proof uses the folklore embedding Φ, likely known by Nagata, and
used in [22]. The simplest obstruction for linearity is due to a nonnilpotent
locally nilpotent subgroup. In characteristic zero, the proof is easy, and it
follows the line of [9] together with Corollary 2. In characteristic p, the proof
involves the strange formula of Lemma 37.

11.1 Nilpotency class of some p-groups
The nilpotency class of a nilpotent group is the lenght of its ascending central
series. Let p be a prime integer, and let E be an elementary p-group of rank
r. Note that E acts by translation on Fp[E] and set G(r) = E ⋉ Fp[E].

Set E = D1 × · · · × Dr, where each Di has rank 1. For each i, the
socle filtration of the Di-module Fp[Di] has length p and we have Fp[E] =
Fp[D1]⊗ · · · ⊗ Fp[Dn]. Hence the socle filtration of the E-module Fp[E] has
lenght 1 + (p− 1)r. It follows that

Lemma 35. The nilpotency class of the nilpotent group G(r) is 1+ (p−1)r.

Let M be a cyclic Fp[E]-module generated by some f ∈M .

Lemma 36. If
∑

u∈E u.f 6= 0, then the Fp[E]-module M is free of rank one.

Proof. Set N =
∑

u∈E eu, where (eu)u∈E is the usual basis of Fp[E]. Note
that Fp.N = H0(E,Fp[E], hence any nonzero ideal of Fp[E] contains N .
Since N.f 6= 0, M is freely generated by f .

11.2 A formula

Lemma 37. Let A be a commutative Fp-algebra and let E ⊂ A be a linear
subspace of dimension r. Then we have

∑

u∈E up
r−1 =

∏

u∈E\{0} u.

Proof. It is enough to prove the claim forA = Fp[x1, . . . , xr] and E = ⊕iFp.xi.
Set P (x1, . . . , xn) :=

∑

u∈E up
r−1, set H = Fp.x2 ⊕ Fp.x3 · · · ⊕ Fp.xr and for

v ∈ H , set Qv :=
∑

λ∈Fp
(λx1 + v)p

r−1. For any integer n ≥ 0, we have
∑

λ∈Fp
λn = 0 except if n is a positive multiple of p− 1. Hence

Qv =
∑

n>0 cnx
n(p−1)
1 vp

r−1−n(p−1),
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for some cn ∈ Fp and the polynomial Qv is divisible by xp−1
1 . Since

P (x1, . . . , xn) =
∑

v∈H Qv,

the polynomial P (x1, . . . , xn) is divisible by xp−1
1 . By GL(r,Fp)-invariance,

P (x1, . . . , xn) is divisible by up−1
1 for all u ∈ E \ {0}. Hence it is divisible by

∏

u∈E\{0} u. Since both polynomials have degree pr − 1, it follows that

P (x1, . . . , xn) = c
∏

u∈E\{0} u,
for some c ∈ Fp.

As it is a universal constant, we can compute c for A = E = Fpr . Since
∑

λ∈Fr
p
λp

r−1 = −1, and
∏

λ∈Fr
p
λ = −1,

it follows that c = 1.

11.3 The locally nilpotent group G(I)
Let F be a prime field. For any ideal I of a commutative F-algebra A, let us
consider the semi-direct product G(I) := I⋉I[t], where I acts by translation
on the space I[t] of polynomials with coefficients in I.

Let E ⊂ I be an additive subgroup, let f(t) ∈ I[t] \ {0} and let M be the
additive subgoup generated by all polynomials f(t+ u) when u runs over E.
The group E ⋉M , which is a subgroup of G(I), is obvioulsly nilpotent.

Lemma 38. Assume that the algebra A is prime.
(i) If F = Q, the nilpotency class of E ⋉M is 1 + deg f .
(ii) Assume that F = Fp, that dimFp

E = r and that f(t) = axp
r−1 for

some a ∈ I \ {0}. Then the group E ⋉M has nilpotency class 1 + r(p− 1).
(iii) If dimFp

I = ∞, the group G(I) is locally nilpotent but not nilpotent.

Proof. For F = Q the proof is obvious. From now on, we will assume that
F = Fp and we will prove the second assertion.

Set g(t) =
∑

u∈E f(t+ u). We have g(0) =
∑

u∈E aup
r−1 = a

∏

u∈E\{0} u

by Lemma 37. Since g(0) 6= 0, it follows from Lemma 36 that the Fp[E]-
module M is free of rank one, and E ⋉M is isomorphic to G(r). Thus its
nilpotency class is 1 + r(p− 1) by Lemma 35.

11.4 The amalgamated product Aff(2, I) ∗BAff (I) Elem(I)
From now on, let I be a proper nonzero ideal in K[z].

Lemma 39. The group Elem(I) is not linear over a field.
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Proof. Since I is a proper ideal, Elem(I) is the group of all automorphisms
φ : (x, y) 7! (x+ u, y + f(x)),

for some u ∈ I and f ∈ I[x]. It follows that Elem(I) is isomorphic to the
group G(I), and therefore Elem(I) contains subgroups of abitrarily large
nilpotency class by Lemma 38. Hence Elem(I) is not linear over a field.

Lemma 40. The group Aff(2, I) ∗BAff (I) Elem(I) is not linear, even over a
ring.

Proof. By Lemma 39, the group Elem(I) is not linear over a field. Therefore
by Corollary 1, it is enough to show that the amalgamated product Γ :=
Aff(2, I) ∗BAff (I) Elem(I) satisfies

CoreΓ(BAff(I)) = {1}.
In order to do so, we first define two specific automorphisms γ and φ as

follows. Let r ∈ I \ {0} and let n ≥ 3 be an integer coprime to ch K. Let
γ ∈ Aff(2, I) be the linear map (x, y) 7! (x + ry, y) and let φ ∈ Elem(I) be
the polynomial automorphisms (x, y) 7! (x, y + rxn).

Let g be an arbitrary element of BAff(I) \ {1}. By definition, g is an
affine map (x, y) 7! (x+ u, y + v + wx) for some u, v. w ∈ I.

If w 6= 0, the linear part of gγ is not lower triangular, therefore gγ is
not in BAff (I). If w = 0 but u 6= 0, then the leading term gφ, which is
(x, y) 7! (0, nruxn−1), has degree ≥ 2. Therefore gφ is not in BAff (I). Last
if u = w = 0, then v is not equal to zero. It follows that the leading term of
gγφ, which is (x, y) 7! (0, nr2vxn−1), has degree ≥ 2. Therefore gγφ is not in
BAff(I).

Hence, for any g ∈ BAff (I) \ {1} at least one of the three elements gγ, gφ

or gγφ is not in BAff(I). Therefore CoreΓ(BAff(I)) is trivial.

11.5 Proof of Theorem B
The group TAutA3

K ⊂ AutA3
K of tame automorphisms of A3

K is
TAutA3

K = 〈Aff(3, K), T (3, K)〉,
where Aff(3, K) is the group of affine automorphisms of A3

K and T (3, K) is
the group of all triangular automorphisms

(z, x, y) 7! (z, x+ f(z), y + g(z, x)),
where f and g are polynomials. Note that AutA2

K[z] = AutK[z]K[z, x, y] is

obvioulsly the subgroup of AutA3
K = AutK K[z, x, y] of all automorphisms

of the form
(z, x, y) 7! (z, f(z, x, y, z), g(z, x, z)),
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where f and g are polynomials.
It is easy to see that the groups Elem(K[z]) and Aff(2, K[z]) are sub-

groups of TAutA3
K . Therefore using the van der Kulk Theorem applied to

the field K(z) and Lemma 2, one obtains the folklore embedding [22]
Φ : Aff(2, K[z]) ∗B(K[z] Elem(K[z]) ! AutA2

K[z] ∩ TAutA3
K ,

which was likely known by Nagata. The hard and beautiful result of [22]
states that Φ is onto, a result which is not needed here.

Now, we prove the Theorem B.

Proof. Without loss of generality, we can assume that the ideal m is also a
proper ideal. Hence the ideal I := m ∩K[z] is nonzero and proper.

The previously defined morphism Φ induces an embedding
Aff(2, I) ∗BAff (I) Elem(I) ! Autm A3

K .
Hence by Lemma 40, the group TAutm A3

K is not linear, even over a ring.
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