N

N

Efficiency of some algorithms to compute fractal total
variation

Hanwen Li, Tom Elbaz, Stéphane Junca

» To cite this version:

Hanwen Li, Tom Elbaz, Stéphane Junca. Efficiency of some algorithms to compute fractal total
variation. Université Cote d’Azur. 2023. hal-04025611

HAL Id: hal-04025611
https://hal.science/hal-04025611v1
Submitted on 12 Mar 2023

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-04025611v1
https://hal.archives-ouvertes.fr

Efficiency of some algorithms to compute
fractal total variation

Tom Elbaz * Hanwen Li | Stéphane Junca ?
March 11, 2023

1 Introduction

The word ”fractal” was invented in 1974 by Benoit Mandelbrot who is a Franco-American
mathematician. One of the best known fractals is the Koch flake. If we look for its
etymology, “fractal” means irregular. Therefore, in mathematics, a curve or a surface
having an irregular shape is called a fractal. So even if we zoom in on this shape, it may
still have irregularities. We can also notice that the fractal aspect is present in everyday
life: we can cite for example the coast of Saint-Jean Cap Ferrat or the mountains of the
Mercantour. But these examples are far from being the only ones: we are surrounded by
fractals! The goal of this project is to measure a ”fractal total variation”, rather a ”fractal
unevenness” of the graph of a function. We define the total p-variation for a function
u: Il — R by:
o] -1
p—TV[u] = sup Z | u(z;) — ul(wi—q)?

oeSub(I) i—1
with p > 1 and where Sub designates the set of all the subdivisions of I , |o| is the cardinal
of o.

We recall that on a fixed interval I=[a,b], a subdivision o = {x¢, x1, ..., zx} of this interval
is an ordered finite sequence such that a < zg < 7 < < xn < b. If the subdivision is
regular, then the distance between each xy stays the same.

Fractal unevenness is: Dyu = (TV[U])% whereabouts p = 1 and s is the fractal dimen-
sion (0 < s < 1).We can thus write Dyu = (T'V'[u])*
Culturally, Du is also a semi-norm used for stochastic processes and also for hyperbolic
conservation laws [CJJ],[DJ]. The fractal total variation usually called p-variation p > 1
is used in probability [NorRa], in the financial applications [NorSa] and in the functional
analysis [DN].
Recently, the fractional BV spaces have been introduced for partial differential equations

*Université cote d’Azur
tUniversité cote d’Azur, Polytech’Nice
tUniversité cote d’Azur, Inria & CNRS, LJAD

[BGJ,[CJJ]. In this subject, there are more and more applications and researchs using
fractional BV spaces for hyperbolic conservation laws [GGJJ],[JR],[M].

The previous results are essentialy theoritical. In this project, we want to compute the
fractal total variation efficiently. We begin by introducing the case where p=1 which
corresponds to the non-fractal case.

The total 1-variation of a function is related to the derivative of the function. Indeed, on

b
an interval [a,b], We have 1-TV[u] = [| v/(z)| dz only if «/(z) € L .

a
For p = 1 we note that the total variation is equal to the unevenness. This quantity is
particularly well known to hikers or mountaineers... Indeed, this is used to calculate the
total difference in level (ascent + descent).

In general, when p > 1, the problem is much more complex. Indeed, we can cite the
case of the sequence: u = (ug,uy,uz,u3) = (1,4,3,7). We have for the case p = 2 for
example, we calculate |uz — ug|? + |ug — uy|? + |ug — ug|* = 26, |uz — ug|* + |us — up|* = 20,
luz — u1)? + |ug — up|* = 18 and |uz — up|*> = 36. In this case we keep only ug and ug. This
is why we cite the following theorem from the article [BN] which brings us back to the
discrete case.

Theorem 1 If fis a piecewise monotone function i.e. f1is monotone on every subinterval
of the subdivision with I = [a,b] = Ul I; and I; = [a;_1,a;], then for the piecewise
constant function u such that u(z) = f(a;) on [ai—1/2, @iy1/2[, we have p-TV(f) = p-TV(u)

To start, we will therefore focus in a sequence of points (ug, u1,,uy) containing
N+1 points. As we are in the discrete case, a subdivision of {0,1,..., N} is a finite
ordered subset and we denote o = {0g,01,...,0,} with gg,...,o8 € N, 0 < 0, < m,
0<k<m< N, and o] = m + 1 is the number of points of the subdivision. We can
write the p-variation of the sequence as: sup,egu(r) Z';';l |u(o;) — u(o;_1|P where the
supremum is computed on all subdivisions.

The objective is to set up algorithms to calculate the p-variation. We then want to
estimate this p-variation on each subdivision and maximize it: we will then take the max-
imum on all subdivisions. One of missions is to find the most suitable algorithm to answer
to the problem posed. We are going to compare 4 algorithms and study their execution
time. Finally, it will be necessary to compare the efficiency of these algorithms. We will
use the following algorithms: the Exhaustive algorithm, the Eraser algorithm, the Add
One Point algorithm and the Merge algorithm which will be introduced later. We will
also introduce another algorithm: this is the Merge Eraser Initialization algorithm. The
goal will therefore be reduce this complexity by storing some variables in Memory.

2 Exhaustive Algorithm

We start by trying to code an algorithm allowing to calculate all the subdivisions and to
estimate the maximum on all the subdivisions of the sum of the variations of u to the
power p (the total p-variation). We first have the following intermediate program:

def powerset(u):
A=[[]1]
for x in u:
for y in A[:]:

z=y[:]
z.append(x)
A.append(z)

return &

In the "powerset” program, we read all the subsets of the sequence of points considered
(there are in total 2" where n+1 is the number of points). If we take for example a
sequence u such that u = (ug, uy), then powerset will return [[], [uo], [u1], [uo, u1]].

The code to implement the exhaustive algorithm is as follows :

#time start=time.clock()
AREREARESR
def exhaustive(u,p):
Al=[]
A2=[]
A3=[]
prétraitement
for x in powerset(indice(u)):
it (len(x)>1):
a =[]
for y in x:
a.append(u[y])
Al.append(a)
for t in Al:
AZ.append(listofdelta(t,p))
for z in AZ2:
A3.append(sum(z))
return max(A3)
AREREARESR
#time end=time.clock()
#time sum=time end-time start
#print(time sum)

By performing several tests to estimate the computation time, we confirm that this
algorithm is expensive, that is to say that its complexity is too great. Indeed, we see
that if the sequence has more than twenty terms, it becomes very long for the machine
to give a result. CPU time is the computer clock. The time measurement has some
fluctuations due to the background running of the laptop. It is therefore a time which is
badly measured and which is influenced by the other tasks that the computer is in the
process of solving.

As we perform the tests on each subdivision, the complexity is of the order of O(2")
i.e. the number of parts of a set with n elements. This means that if we add a term to a
considered sequence and launch the calculation, the execution time will be multiplied by
2.

This is why we carry out a few pre-processing in order to be able to reduce the calculation
time and reduce the complexity. We begin by carrying out the following preprocessing;:

3

We test the monotony of the considered sequence: if (u; — u;—1)(u;11 — u;) > 0, then the
sequence is monotone.
We will use the following inequality for preprocessing:

a’ + v < (a+b)?, 0<a,0<b, 1<np. (1)
Proof of the inequality (1): The strict convexity is the tool [JR].
a+b\\" a+b\\"
a + (b
a+b a+b
a P b P
= <a+b(a+b)) + (a+b(a+b))

(a+ b)P

bp
a+b<a+) +a+b

= (a+b)P.

Which ends the proof.

We can apply the convex inequality (1) on this sum to estimate the p-variation:

n
D ulws) = u(@io)? = lug — ol + Jua — w P+ ..
=1
oot |UZ - Ui_1|p + |ui+1 — Ui|p + ...+ |UN - UN_1|p.

If u; 1 < u; < ujyq then we set a = u; —u;—q >0, b =u;41 — u; > 0 and, by virtue of the
convex inequality (1) we have (u; — w;—1)P + (wjr1 — us)? < (u; — wj—1 + wir1 — uy)P that
is to say (w; — wi—1)? + (wip1 — u;)? < (ujr1 — u;—1)? and we can then delete u; to get a
subsequence with the bigger variation than the initial sequence. This first preprocessing
already makes it possible to reduce the number of terms of the sequence. We notice that
the algorithm to compute the p-variation then runs much faster.

def prétraitement(u):
for i in range(1,len(u)-1):
if (u[i]-u[i-2])*(u[i+1]-u[i])>=0:
del ul[i]
return u

Note: if the sequence is strictly monotonic, then only the first and last terms remain.
generalized convexity inequality: o} +ab+...4d%, < (a1+as+...+ay)? if a1, aq9,...,ay >0
and p > 1.

We want to know if there is uniqueness or not of the minimal optimal subdivision. We
remind that a subdivision is an ordered sequence such that zqg < z; < < xn. The
program that returns the different subdivisions given a sequence u is:

def subdivisions{u):
5=[[1]
for x in indice(u):
for y in 5[:]:

z=y[:]
z.append(x)
S.append(z)

return 5

For a sequence u = (ug,u;), the program return the list of the subdivisions [[0], [1],
[0,1]].

We then define the program below, which given a subdivision of a sequence, allows us
to calculate the values of the sequence associated with this subdivision.

def waleursuitesub{u,sigma}:

A=[]

for i in sigma:
&.append{u[i])

return A

If we take for example a sequence u = (ug, u1, us, u3) and a list [0,3], the program return
[’LL(), Ug] .
We will now present a second algorithm for testing if the sum of the variations of u to the
power p on a given subdivision (of size at least equal to 2) is equal to the value obtained
in the exhaustive program. If this is the case, then the associated subdivision is displayed.
It is therefore in this program that we test whether the minimal optimal subdivision
is unique. For the case where p=1, we can keep all the terms of the sequence for the
optimal minimal subdivision. Indeed, we add positive terms (absolute values) in order to
maximize the sum you have to take them all. Here is the code implementing the algorithm

def exhaustive2(u,p):
prétraitement
pTu=exhaustive(u,p)
print(pTu)
A2=[]
Al=subdivisions(u)
for sigma in Al:
if len(sigma)>=2:
if pTu==sum(listofdelta(valeursuitesub(u,sigma),p)):
A2 .append(sigma)
return A2

We notice that if we have a plateau defined by n points, we notice that it is necessary to
remove n-1 points to have a subdivision of minimal size. In this specific case, we therefore
have n minimal optimal subdivisions. This is why we are testing the program on multiple
suites. You have to generate sequences randomly with the random menu and observe the
results. If we obtain 2 subdivisions of minimum size associated with a given sequence,
then uniqueness is excluded. After doing multiple tests to look for uniqueness (more than

5

10000 tests), we can see that there is no more than a minimal optimal subdivision.
We then conjecture that there is uniqueness of the minimal optimal subdivi-
sion.

3 Eraser Algorithm

This algorithm was introduced in [DJ]. The Eraser algorithm is built like this : we start
from a sequence of points (ug,, un) and we begin by carrying out the tests at 3 points
then at 4 points up to n-1 points. If we erase a term from the sequence, it is necessary to
restart the tests from the point that we erased. Tests are performed in order, and terms
are evaluated in order as well. In some cases, it is necessary to delete certain terms to
obtain our optimal p-variation.

The code to implement the algorithm is as follows :

def eraser(u,p):
ue=[]
for x in u:
u@.append(x)
n=3
while n<=len(u@):
k=0
while k<=len(u@)-n:
if (abs(ue[k+n-1]-ua[k]))**p>=sum(listofdelta(ue[k:k+n],p)):
del ud[k+1l:k+n-1]
ul=ue
eraser(ul,p)
else:
k=k+1
n+=1
return ue@

Here is the graph in log-log coordinates allowing to evaluate the complexity.

This plot is obtained by taking a sequence u having a cardinality between 3 and 100.
We also perform the test 6 times on the suite and we see that the complexity is in O(N?3).
Indeed, by setting y = C'x N, we obtain log(y) = log(C * N*) = log(C) + a xlog(N). It
is therefore the equation of an affine function that will allow us to estimate the parameter
a. We can then estimate av = 3.00. We then perform the optimization of the algorithm: a
sum is stored in memory to prevent the algorithm from recalculating all the sums. Indeed,
some calculations are the same and it would therefore be useless. The calculation of the
sum is optimized to gain an order in the complexity of the algorithm.

. k+n k+n P k+14n k+n
If we define the variable S;™" = > 50 |uj1 — wyl? then Sp™" = ST — fuy —

U1 [P+ [t — Upinta [P
The variable S,er" is updated at each iteration and stored. This is what is done in the
following program :

3.0000733863313287 x+ -16.245059725781257

—4 4

-f

logarithm of the cpu time

=10

—17 4

1.0 15 2.0 25 EXi] 35 4.0 4.5
legarithm of the cardinal of u

Figure 1: Complexity of the Eraser Algorithm

def eraser_opti(u,p):
ue=[]
for x in u:
u@.append(x)
n=3
Se=(abs(uB[@]-u[1]))**p
while n<=len(u@):
Se=S8+(abs(ud[n-1]-ud[n-2]))**p
k=0
5=5@
while k <=len{u®)-n:
if k>e:
S=S+(abs(ue[k+n-1]-ua[k+n-2]))**p-(abs(ud[k]-ud[k-11))**p
else:
5=5
if (abs(ue[k+n-1]-uB[k]))**p>=S:
del uB[k+1:k+n-1]
u=ue
eraser_opti(u,p)
else:
k=k+1
n+=1

return u@

We now perform the analysis of the computation time for a sequence having a cardi-
nality varying from 3 to 100 terms.

2.889524389153141 X+ -14.581976497872583

-2

logarithm of the cpu time

=10

-1z

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
logarithm of the cardinal of u

Figure 2: Complexity of the Eraser Optimized Algorithm

The complexity has decreased thanks to the optimization: we obtain a slope with a
leading coefficient =~ 2.09. This considerably reduces the calculation time and makes it
possible to divide it almost by N, which is considerable. We notice that Eraser can be still
improved because when we erase, we restart at the begining with tests with 3 points. We
don’t take account of many tests are done before the erasing. Thus this algorithm can be
improved. There is an elegant solution of this problem given later by the algorithm MEI
in section ”"Merge Eraser Initialisation”.

4 Add One Point Algorithm

We study in this part the algorithm AOP (Add One Point). This one was discovered and
introduced in [DJ]. It is an algorithm having the inverse process compared to the Eraser
algorithm. Indeed, we start with a sequence comprising 2 terms and add the following
terms by carrying out tests. The tests are always performed in the order. We will pay
particular attention to the computation time and the complexity of this algorithm. Add
One Point is an algorithm allowing from an optimal sequence of points (u,,uy) to
construct an optimal sequence with a new term uy1.

The sequence (ug,, uy) is then optimal and by adding this new term, the tests at 3
points and 4 more must be redone...and if there is an erasing you have to start over from
the beginning.It is therefore a recursive algorithm.

The code to implement the algorithm is as follows :

2.919885226769368 X+ -15.772833178277738

logarithm of the cpu time

- 1

—6

=10 1

-12

10 15 2.0 2.5 30 3.5 4.0 4.5

logarithm of the cardinal of u

Figure 3: Complexity of the AOP algorithm

def AOP(u,p):
k=2
u_a=[u[e],u[1]]# save test points, well optimal

while k<=len(u)-1:
u_a.append(u[k])
n=3
while n<=len(u a):
i=len(u a)-1
if(abs(u_a[i-n+1]-u_a[i]))**p>=sum(listofdelta(u_a[i-n+1l:i+1],p)):
del u a[i-n+2:1]
n=3
else:
n=n+1
k=k+1
return u_a

In this algorithm, we start from a sequence comprising 2 terms uy and u; which of
course form an optimal sequence because it is simply a question of evaluating |u; — ug|?.
Each time we add a term, we do the necessary tests in order to maximize the total p-
variation. We keep only the terms of the sequence which maximize this p-variation and
we delete the others. We then iterate the process until we have processed all the terms of

the sequence.

Here below is the graph of the complexity of the Add One Point algorithm in log-log

coordinates.

Using the graph we can estimate as before a ~ 2.92.
Our goal is now to be able to improve this algorithm: we seek to optimize it by storing
variables in memory, in particular the variable sum.
The optimized algorithm obtained is the following :
def AOP opti(u,p):
k=2
u a=[u[@],u[1]]# save test points, well optimal

while k<=len(u)-1:
u_a.append(u[k])
n=3
1=len(u_a)-1
S=sum(listofdelta([u a[l-2],u a[l-1],u a[l]ll,p))
while n<=len(u_a):
i=len(u _a)-1
if n>3:
S=S+(abs(u_a[i-n+1]-u_a[i-n]))**p
else:
5=5
#i=len(u_a)-1
if(abs(u_a[i-n+1]-u_a[i]))**p>=5:
del u_a[i-n+2:1]
n=3
S=sum(listofdelta([u_a[len(u_a)-3],u_a[len(u_a)-2],u_a[len(u_a)-1]11,p))
else:
n=n+1
k=k+1
return u_a
This then reduces the complexity and reduces the computation time as we can see it below.

We observe that the directing coefficient of the line is approximately equal to 1.96.
By doing many tests and averaging the results, we can surmise that « is approximately
equal to 2.

This is an approximation as before but this time in a quadratic way. A least squares
approach is used. We get some marginally placed points because the computation time
fluctuates depending on the tasks performed by the computer. We see that we interpolate
a greater number of points: this is just an interpolation but does not tell us anything about

the calculation time.

5 Merge Algorithm

Merge algorithm comes from [BN] (2018) and [DJ] (2022). It is an idea based on the
quick sort algorithm : ”Divide and Conquer”.

For the Merge algorithm, it involves merging 2 lists of sequences at the optimal origin. Let
u and v denote the sequences : let u = (ug,, uy) and v = (vp, ..., vy). These 2 sequences
are therefore optimal and we start by performing the 3-point tests. There are two: the
test with (ux,vo,v1) and the test with (uy_1,un,vp). You must then do the 3 tests at 4
points with (uny,vo, v1,v2), (Uun_1,un, Vo, v1) and (uy_o, un—_1,un, V). We then continue
the tests until min(f(u), f(v)) where § designates the cardinality (number of elements) of
the sequence considered. This algorithm is a generalization of the AOP algorithm (AOP

10

1.957775622607952 x+ -14.333756601884412

logarithm of the cpu time

—a -

—6

—10 4

=12 1

1.0

15 2.0 2.5 30 35 4.0 4.5
legarithm of the cardinal of u

Figure 4: Complexity of the optimized AOP algorithm

3.4256695473802096e-07 x 2+ 3.0004916420217635e-06 X+ 6.950423120544951e-05

cpu time

0.005 1

0.004 1

0.003 1

0.002 4

0.001 -

0.000 1

0 20 40 60 80 100
number of terms of u

Figure 5: Quadratic interpolation of the CPU time

11

is a special case of Merge).
The code to implement the algorithm is as follows:

def twotwo(u,p):
A=[]
it len(u)%2==0:
for k in range((len(u))//2):
A.append([u[2%k],u[2%k+1]])
else:
for k in range((len{u)-1)//2):
A.append([u[2%k],u[2%k+1]])

A.append([u[len(u)-1]])
return A

In this code, we test if the length of the sequence is even: indeed, if the length of the
sequence is odd, there will remain a single term because we must merge two lists This
program divide the whole list with lists containing only two terms.

Then, the goal of the 2nd part of the program is to merge the 2 lists. Below is the
corresponding program.

def test2list({ul,u2,p):
n=3
if len(ul)+len(u2)==3:
u_test=ul+u2
if{abs{u_test[2]-u_test[8]))})**p»=sum{listofdelta(u_test,p)):
del u_test[1]
return u_test
else:
while n<=len{ul)+len{u2)-1:
kl=1
while kil<n and kl<=len{ul):
k2=n-kl
11=1en{ul}
12=1en{u2}
if 11==1 and 12 != 1:
kl=1
k2=n-1
if 12==1 and 11 != 1:
k2=1
kl=n-1
if 11==1 and 12 ==1:
kl=1
k2=1
u_test=ul[l1-ki:11]+u2[B:k2]
#print(u_test)
#print(kl)
#print(ul,u2)
if len{u_test)>»2:
if(abs(u_test[len(u_test)-1]-u_test[8])})**pr=sum(listofdelta(u_test,p)):
del ul[ll-k1+1:11]
del u2[8:k2-1]
test2list(ul,u2,p)
else:
kl+=1
else:
return u_test
n=n+1
return ul+u2

We then write an improved version of the program with sum storage.

12

def test2listiul,u2,.p):
n=1
if len{ul)+lenfu2)==3:
u_test=ul+uZ
if{abs(u_test[2]-u_test[d]))**pe=sum{ listofdeltalu_test, p)):
del u_test[l]
return u_test

elig:
Se={abs(ul[lenful)-1]-uZ[@])) **p
while rd=len{ul}+lenf{u2)-1:
kl=1
S=58
I len{u2)>=n-1:fpour initializer, on prend Doujours le dernier element de ul
i Jueur de ul n"est pas suffisant,
de ul

-u21r-2]]f‘“p

an wa initializer en ajoutant elemernt
S=5+sum(1istofdeltau]]) j{abs(u2[n-3]
elae:
S=5+(aba(ul[len{ul)-n+1]-ul[len{ul }-n+2])) **p
fiile klen and kld=len{ul):
k2=n-kl
11=len{ul)
12=len{uZ)
if kK1==1:

ot
5=5

elig
S=S+{abs(ul[11-k1]-ul[12-K1+1]) }=*p- (absfu2 (k2] -uZ[k2-1]) }**p
print((abs(ul[11-k1]-ul[11-K1+1]})1**g)
print{{abs(u2[k2]-u2[k2-1])}**p)

if I11==1 and 1Z != 1

kil=n-1

if 11==1 and 1Z ==1:
ki=1
k2=1
u_test=ul[ll-k1:11]+ul[B:k1)
Uguand K1=2, k2=1, on annule Le dernier de 5_Int et on ajoute celul J4'avant
print{s)
grint{sunf{listofdelta(u_test,pi))
print{u_test)

(u_test)>2:

i u_test{lenfu_test)-1]-u_test[@]))**p>=5:
jel wi11-ki+1:11]

1 uZ[@:k2-1)

vest2list(ul,u2,p)

elie:
kl+=1
elig
relurn u_test
n=n+l
return ul+ud

We then assemble the two previous programs (”twotwo” and ”Test2Lists”) to form
the program of the Merge algorithm.

def merged(A,p):

while len(a)»>=2:
Ad=[]
it len(A)%2==0:
for i in range(len(A)//2):
Ap.append(test2list(A[2%1],A[2*%i+1],p))

else:
for i in range((len{a)-1)//2):
Ap.append(test2list(A[2%1],A[2*%i+1],p))
4g.append(A[len(Aa)-1])
A=AB
return A

Below, we have the graph of the complexity of the Merge Algorithm

The directing coefficient of the line is approximately equal to 3.18 we can here estimate
a =~ 3.

13

3.176225232927821 X+ -16.142389186155814

-4 4
]
E
z
i -6
W
1]
=
=
=
[=]
£
£ -81
T
[=
8
-10 4

121

1.0 L5 2.0 25 3.0 35 4.0 4.5
logarithm of the cardinal of u

Figure 6: Complexity of the Merge algorithm

3.4129261549475793e-06 X 2+ -0.00018296582279319252 X+ ©.0009441962355169324

L
0.05 4

0.04

0.03 4

cpu time

0.02 4

0.01 4

0.00 4

0 20 0 &0 80 100
number of terms of u

Figure 7: Quadratic interpolation of the CPU time

14

This last algorithm is therefore the most time-consuming: it is less suitable for solving
our problem.

The choice of the optimal algorithm must therefore be made among Eraser and AOP...
the goal is to know which one has the smallest constant.

6 Merge by Eraser Initialisation Algorithm

This algorithm is a prospect for future works. It improves both Eraser and Merge algo-
rithms. It improves Merge algorithm with less merging to do and it solves the useless
tests done by the Eraser algorithm.

The Eraser algorithm is not optimal because there are too many repetitions of the
same calculation. Using Merge with two-point lists sums for the initialisation is worse
than the AOP algorithm and also than Eraser proposed in this project. It is bad because
we know that Eraser algorithm can be optimized. MEI is a way to improve both Eraser
and Merge.

The principle is the following: we take a sequence u = (ug, ..., uy) and we start with the
Eraser algoritm. We use Eraser algorithm to do all the tests but after an erasing we do not
restart at the begining. We obtain two sublists and we aplly the tests independently on
the two sublists. So it is a recursive algorithm, cutting the initial list in many independent
lists. At some points the sublists obtained are optimal. It is a question of carrying out
tests on each part and after each part will be well optimized. If we do an n-point test and
the length of the studied list is less than or equal to n, then the list will be well optimized.

Now, we have many sublists optimized and less points that initially. We can then use
the Merge algorithm to merge the list.

This algorithm MEI is more complicated than Merge but we expect that it is more
efficient than Merge.

7 Conclusions and prospects

In this project, we have programmed, simulated, compared and improved several algo-
rithms of [BN,DJ] to calculate the p-variation: AOP, Eraser and Merge. In addition, a
new MEI algorithm is proposed.

We can conclude that AOP is the simplest and the fastest algorithm used in the
optimization problem to compute the p-variation. So it is the best algorithm of this
project. Note that the comparisons of AOP with Eraser and Merge are done without
improving the way to calculate the p-sums. Improving the computation of p-sums is easy
for AOP but less so for Eraser and more complicated for Merge.

On the other hand, Eraser algorithm can be further optimized. The question of
whether Eraser is more efficient than AOP remains open.

Merge is the slowest algorithm tested in the project. It is strange at the first sight
since it is based on a very efficient algorithm to sort lists. Indeed, quick sort algorithm is

15

based on the fact that the merging of two lists with N/2 termes is of order N. But, for
the p-variation the cost is N® (or N? if the computations of the p-sums are optimised).
That means that the last merging in the algorithm Merge seems to have the same order
(a little less) as AOP. Maybe that’s why AOP is better than Merge. This question needs
to be explored in further studies.

MEI is a very promising algorithm discovered by Hanwen Li at the end of this project.
It hasn’t been programmed but it looks significantly better than Merge. Indeed, it is both
better than Merge and Eraser and seems to be AOP’s best challenger.

Additionally, Merge and Merge Eraser Initialization (MEI) can be used on a parallel
computing computer. AOP cannot be improved on a parallel computing computer. On
a parallel computing computer, Merge and MEI become the best algorithms proposed in
this project.

CPU time is a difficult quantity to measure in Python because it fluctuates so much.
It is better to use programming languages like C++, Julia or Matlab. Below is a link
that illustrates the CPU time issue with Python:

https://colab.research.google.com/drive/19KLmhggNx-wE7814Cbj_96jyYfodnf717usp
=sharing

A Appendix: basic programms

def listofdelta(u,p):
=[]

for 1 in range(len(u)-1):
C.append((abs(u[i+1]-u[1i]))**p)
return(C)

In the "listofdelta” program, we define the total p-variation by calculating the absolute
value of 2 consecutive terms to the power p.

For example, for a sequence (uy,...,uy), the program calculates and stores |u; —
Upl?, ooy Jun — un—1P.

def indice{u):
R=[]
for 1 in range(lenfu)):
R.append(i)
return R

The ”index” program allows to assign to each term of the sequence of points an
index allowing to count the number of terms (the index starts at 0). For example, for
a sequence comprising 5 terms (ug, u1, ug, Uz, u4), the program returns [0,1,2,3,4]. For a
sequence (ug,, uy) there are therefore n+1 terms in all.

16

def loglog(n,min,max,algo,p):

i=1

Z_0=0

z 1=0

while i<=n:
X,y=plottime2(min,max,algo,p)
x1=np.log(x)
yl=np.log(y)
plt.xlabel('logarithm of the cardinal of u")
plt.ylabel('logarithm of the cpu time")
plt.scatter(xl,yl,color="b")
z=np.polyfit(x1i,y1,1)
Z 9=z _0+z[@]
z 1=7 1+z[1]
i=1+41

z0=z_0/n

z1=z 1/n

y2=70%x1+z1

plt.plot(x1,y2, 'r',label="Fitted line")
plt.show

print(ze,"x+",z1)

This program allows the representation in logarithmic coordinates of the complexity
of the different algorithms. We choose the number of tests n to perform, the algorithm
used and the minimum /maximum size of the sequence tested. The scatter plot allows the
construction of the cloud of points and a line is fitted by approximation.

while i<=n:
X,y=plottimel(min,max,algo,p)
z=np.polyfit(x,y,2)
Z 9=z _0+z[@]
z 1=7 1+z[1]
zZ_2=7 2+z[2]
plt.scatter(x,y,color="b")
plt.xlabel(' number of terms of u')
plt.ylabel('cpu time')
i=1+41

z0=z_0/n

z1=z 1/n

z2=z 2/n

Y2=70%X**2471%x+22

plt.plot(x,y2, 'r',label="Fitted line")

plt.show

print(ze,"x"2+",z1,"x+",z2)

Program allowing the approximation by a parabola based on the least squares method.

17

References

[BCGJ] C. Bourdarias, A. P. Choudhury, B. Guelmame and S. Junca. ” Entropy solutions

[BGJ]

in BV for a class of triangular systems involving a transport equation”. SIAM J.
Math. Anal. 54 (2022), no. 1, 791-817.

C. Bourdarias, M. Gisclon and S. Junca. "Fractional BV spaces and first appli-
cations to scalar conservation laws”. Journal of Hyperbolic Differential Equations,
2014, 11 (4), pp.655-677.

Computation of p-variation, Vygantas Buktus and Rimas Norvaisa, Lituanian
Mathematical Journal, Vol. 58, No. 4, 2018, pp. 360-378.

M. Bruneau. La variation totale d’une fonction. (French). Lecture Notes in Math-
ematics. 413. Springer-Verlag. XIV, 332 p., 1974.

P. Castelli, P.-E. Jabin, S. Junca. Fractional spaces and conservation laws. Theory,
numerics and applications of hyperbolic problems I, Aachen, Germany, August
2016. Springer Proceedings in Mathematics & Statistics 236, 285-293 (2018).

Algorithms for fractional BV norm, Aimen Daoudi and Stéphane Junca, Master
Thesis, Université Cote d’Azur, 49 pages, 2022

R. M. Dudley and R. Norvaisa. Differentiability of Siz Operators on Nonsmooth
Functions and p-Variation. Lecture Notes in Mathematics, 1703. Springer-Verlag,
Berlin, 1999. viii4+-277 pp.

[GGJJ] S. S. Ghoshal, B. Guelmame, A. Jana and S. Junca. "Optimal regularity for

[JR]

[M]

all time for entropy solutions of conservation laws in Bv®*”. NoDEA Nonlinear
Differential Equations Appl. 27 (2020), no. 5, Paper No. 46, 30 pp.

H. Jenssen and J. Ridder. ”On ¢-variation for 1-d scalar conservation laws”. Jour-
nal of Hyperbolic Differential Equations Vol. 17, No. 4 (2020) 843-861.

E. Marconi. ”Regularity estimates for scalar conservation laws in one space di-
mension”. J. Hyperbolic Differ. Equ. 15 (2018), no. 4, 623-691.

[NorRa] R. Norvaisa and A. Ra”ckauskas. ”Convergence in law of partial sum processes

in p-variation norm”. Lithuanian Math. J. 48 (2008), no. 2, 212-227.

[NorSa] R. Norvaisa and D.M. Salopek. ”Estimating the p-variation index of a sample

function: An application to financial data set”. Methodol. Comput. Appl. Probab.
4 (2002), no. 1, 27-53.

Recently the p-variation space was called fractional BV space for applications of
hyperbolic PDEs such as conservation laws.

J. Qian. "The p-variation of partial sum processes and the empirical process”.
Ann. Probab. 26 (1998), no. 3, 1370-1383.

18

