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ABSTRACT Egocentric vision data captures the first person perspective of a visual stimulus and helps
study the gaze behavior in more natural contexts. In this work, we propose a new dataset collected in a free
viewing style with an end-to-end data processing pipeline. A group of 25 participants provided their gaze
information wearing Tobii Pro Glasses 2 set up at a museum. The gaze stream is post-processed for handling
missing or incoherent information. The corresponding video stream is clipped into 20 videos corresponding
to 20 museum exhibits and compensated for user’s unwanted head movements. Based on the velocity of
directional shifts of the eye, the I-VT algorithm classifies the eyemovements into either fixations or saccades.
Representative scanpaths are built by generalizing multiple viewers’ gazing styles for all exhibits. Therefore,
it is a dataset with both the individual gazing styles of many viewers and the generic trend followed by
all of them towards a museum exhibit. The application of our dataset is demonstrated for characterizing
the inherent gaze dynamics using state trajectory estimator based on ancestor sampling (STEAS) model in
solving gaze data classification and retrieval problems. This dataset can also be used for addressing problems
like segmentation, summarization using both conventional machine and deep learning approaches.

INDEX TERMS Egocentric gaze dataset, museum exhibit, head movement compensation, representative
scanpath, categorization.

I. INTRODUCTION
In the last decade, mobile (wearable) eye trackers have
become a popular research tool after a few pioneering
research works [1], [2]. With the increasing popularity of
wearable tracker in recording our life experience, egocen-
tric vision [2], captured from a first-person perspective [3],
is seen an emerging field in computer vision. Although
saccadic models during visual search may demonstrate an
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influence of visual saliency [4], the effect is overwhelmed
in the presence of an assigned task. In real world applica-
tions, remote or desktop eye trackers have limited reachability
in certain aspects than that of wearable ones. Furthermore,
target motion is often restricted to two dimensions (stimuli
displayed on a screen), and sometimes viewed monocularly.
The wearable eye trackers allow movement of participants.
This helps in few studies, unlike remote eye trackers,
such as understanding human cognitive processes and the
dynamics of gaze shifts [5], classroom teaching [6] and
many more.
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Most of the eye gaze datasets [7] are acquired using remote
eye trackers with a few tasks for participants. There are a
very few datasets acquired using head mounted eye trackers,
but have not post-processed the gaze and data streams [8].
The egocentric gaze data are prone to sudden head move-
ments, missing gaze information due to eye tracker issues
(sudden illumination changes, dilated pupil, etc), eye blinks,
etc. Hence, we address these issues with a newly proposed
egocentric gaze dataset collected from multiple viewers in
a free viewing style with an end-to-end data processing
pipeline. Such handy and ready-to-use datasets are necessary
for addressing many vision related problems like semantic
segmentation, classification, summarization, etc, using both
conventional machine learning and deep neural networks
(DNNs). In this work, we aim to address the following issues
when building a new egocentric dataset:

1) Users’ distraction by the surroundings: unwanted
vision distractions may occur suddenly and capture
irrelevant information futile for interpretation,

2) Huge and unnecessary head movements: since eye
movements are identified by their velocities and dura-
tion, head movements add their part to that of eyes
misleading fixations and saccades [9],

3) Clear identification of fixations and saccades: gener-
ally, Tobii’s I-VT filters [10] are used for identifying
fixations and saccades. They are sensitive to velocity
threshold and need to be specifically tuned for an eye
tracker, stimuli or environment [10], and

4) Building a generalized viewing trend from multiple
users: the raw eye tracking data is then processed into
scanpaths [11]. A pattern that reflects the attention
synchrony of different human subjects plays an impor-
tant role in understanding how humans explore their
surroundings [11].

Subsequently, we employ a state space model (SSM) based
statistical learning approach that characterizes the gaze pat-
tern of human beings observing different category stimuli.
This is part of our previous findings introduced as the state
trajectory estimator based on ancestor sampling (STEAS)
model and described in [12]. In this work, we perform certain
parameter tuning for adapting STEAS model to EG-SNIK
dataset. Since the computations with long and raw velocity
vectors are computationally intensive, we uniformly sample
gaze velocity from the available raw velocity vectors. This is
done because the computations with the latter are intensive.
STEAS model generates multiple estimates of state velocity
vectors which are the inherent temporal gaze features associ-
ated with the category of visual stimuli. We also utilize such
features for applications like classification of gaze data and
video retrieval. It is to be noted that the main focus of this
paper is to build an EC free viewing gaze dataset and show
its diverse applications in a few studies. The adaptation of
STEAS model to this dataset is done by optimizing a few
SSM parameters and then used for classification and retrieval
problems.

II. LITERATURE REVIEW
A. GAZE DATASETS BY REMOTE AND WEARABLE EYE
TRACKERS
From literature, eye gaze datasets are grouped into two cate-
gories based on the type of the device being used:

1) USING REMOTE EYE TRACKER
Greene et al. [13] published eye-tracking data of 17 observers
performing 4 different tasks (memorize, determine when the
picture was taken, estimate if people know each other, esti-
mate their wealth) on 20 different grayscale images for 60 sec
viewing time. Greene et al. reported that replicating findings
in [14] is harder than expected. Similarly, Koehler et al. [15]
published a dataset from 158 participants on 800 natural
pictures. The effect of task differences on the ability of three
models of saliency and the performance of humans on novel
datasets have been investigated. Behavior on the popular free
viewing task was not best predicted by standard saliency
models. Instead, they accurately predicted the explicit salient
regions and eye movements made. Frame et al. published an
eye tracking dataset [16] collected in a consistently well-lit
environment using 2 display setup. The surveillance screeners
are termed analysts here. Each display has full HD resolution
and analysts were instructed to identify specific essential
elements of information (EEI) from surveillance data. This
helps in understanding problems that analysts face.

For medical applications, Castner et al. [7] published a
dataset collected using a remote eye tracker. 57 dental stu-
dents along with 30 experts were employed for dental radio-
graph interpretation. They were capable of distinguishing
experts from novices with 93% accuracy while incorporat-
ing the image semantics. Using various categories of videos
as stimuli, Coutrot and Guyader [17] published one with
60 video sequences belonging to four visual categories: 1)
people or faces, 2) one moving object, 3) several moving
objects, and 4) landscapes. They explained the probability
distribution of eye positions across each video frame using
Expectation Maximization. Through experimental and mod-
eling results, they show that participants look more at people
talking. It is to be noted that remote eye trackers do not
have provision for unconstrained gaze data collection unlike
wearable devices.

2) USING WEARABLE DEVICES
In a task specific data, Frame et al. [16] published a dataset
consisting of 17 sequences, performed by 14 different partic-
ipants. They were asked to sit and prepare some food. They
also equip participants with markers on hands which help
in action identification. The beginning and ending time of
the actions are manually annotated. The authors proposed a
method to understand if the participant is baking, boiling,
toasting, etc. Cherto et al. [8] published EgoMon egocentric
dataset consisting of 7 videos of 34 minutes each, on average.
The videos were recorded in the city of Dublin (Ireland) in
both indoor and outdoor environments. The authors have used
these videos for evaluating the performance of a state-of-the-
art visual saliency prediction model.
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Lee et al. [18] published the Univ. of Texas at Austin
Egocentric (UT Ego) dataset with 4 videos captured using
head-mounted cameras by 4 participants. This is a first of its
kind since there is no associated gaze data for these videos.
The videos capture a variety of activities such as eating,
shopping, attending a lecture, and driving. They proposed a
method for generating a short summary of the day of camera
wearer. The summary attends the most salient objects and
people with which the human being interacts. Both UT Ego
and our dataset are collected without imposing any viewing
constraint on participants, whereas the former does not use
eye-tracking device and hence does not provide eye gaze
information unlike ours.

B. MODELING HUMAN GAZE DYNAMICS
Reported works in computational visual attention mostly
estimate gaze shifts and estimate the image scanpath [19].
A model for detecting saliency using natural (SUN ) statistics
following a Bayesian framework has been introduced in [20].
The self information of the random variable is observed
from the bottom-up saliency representing the pixel visual
feature in an image. Handerson et al. [21] proposed that eye
movements through such features help in categorizing while
performing four different tasks, namely, scene search, scene
memorization, reading, and pseudo-reading. The cognitive
states are found to get linked by the dynamic human eye
movements [22]. Building gaze-driven dynamic models has
been an important research topic for many years. Therefore,
dynamic eye movements could be exploited for extracting
features that help understand human intentions.

A few studies use hidden markov models (HMMs) to ana-
lyze eye-tracking data. In a recent study by Haji-Abolhassani
et al. [23], HMMs are used to predict the visual tasks per-
formed by participants viewing a painting. Although not
using eye-tracking data, the work proposed in [24] uses a
similar algorithm to analyze computer mouse movements in
adults. Coutrot et al. [25] also used HMMs to study patterns
of eye movements involved in face recognition. A rather
different HMM-based approach for classic multiple object
tracking paradigm is proposed by Citorik [26]. Each stimulus
object has been assigned a separate HMM where two states
represent if the object is being tracked or not.

All the above studies share several features that contrast
with our work. First, the stimuli presented were static images.
Even though Coutrot et al. [25] used conversational video
stimuli, the regions of interest, were essentially stationary
relative to the display. In contrast, our stimuli are real world
objects, and so the parameters of our model evolve over time
while studying the gaze dynamics using a statistical method.
Second, we consider free viewing style of data collection
unlike restricting head movements.

III. DATA ACQUISITION
A. DEVICE COMPONENTS
We have used Tobii Pro Glasses 2 [27] for acquiring the gaze
data of participants. Tobii Pro Glasses 2 provides information

about the user’s attention in real time while freely moving
around in indoor or outdoor environments. Mainly, it consists
of three parts: head unit (glasses), recording unit and con-
troller software

1) HEAD UNIT
Following are main parts of the head unit as shown in Fig. 3:

• HD scene camera: captures a full HD video of what is in
front of the participant with 90 degree field of view, and

• Eye tracking sensors: record eye gaze positions and gaze
directions through IR sensors. They also record head and
body orientations through accelerometer and gyroscopic
information sensors. IR sensors focus IR radiation onto
human eyes and the portion of light that is reflected from
the retina is absorbed by sensors for computing parame-
ters like gaze direction, pupil dilation, gaze position, etc.

2) RECORDING UNIT
The recording unit controls the head unit by recording and
storing the eye tracking data. It also stores the scene camera
video and sounds on a removable SD memory card.

3) CONTROLLER SOFTWARE
It manages participants, live viewing, and instant replay of
recordings.

B. TECHNICAL SPECIFICATIONS OF THE DEVICE
Head unit has a scene camera with HD video resolution at
25 frames per sec. Therefore, ideally, we get 2 gaze positions
per video frame. However, due to eye blinks, eye tracker
faults, illumination issues, etc., we may get less than 2 gaze
positions per video frame. Tobii pro glasses 2 has 4 eye
tracking sensors combined with gyroscope and accelerometer
sensors. An eye tracker with 50 Hz sampling rate captures
gaze positions which can be identified as fixations and sac-
cades only [28].

C. DETAILS OF THE EXPERIMENT
We have selected Nehru Museum of Science and Technology
(NMST), IIT Kharagpur as our study location. The viewers
can interact with the museum exhibits to understand them
better. Hence, participants do simple tasks using their hands.
We have considered two galleries: 1) Mathematics, and 2)
Basic physics galleries containing 20 exhibits as a whole, for
our work. A participant observes all the exhibits in a sequence
without any break. We have 25 students aged between 18 and
30 from IIT Kharagpur as participants. All of them are cer-
tified having a normal or corrected to normal vision by an
ophthalmologist at the local IITKharagpur hospital.We name
it Egocentric Gaze dataset of Students collected at Nehru
museum of IITKharagpur (EG-SNIK). EG-SNIK dataset will
be made publicly available after acceptance.

To record eye tracking data, the head unit must be fitted
onto the participant’s head (similar to a standard pair of
glasses). Then, we calibrate the system separately for each
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participant by asking them to look at a calibration card held
in-front for a few seconds. We then start the recording from
the controller software. After the session, we stop the record-
ing and remove head unit from the participant. All the inter-
actions with eye tracker like adding participants, initiating
calibration, starting/stopping recordings etc. are done through
the controller software. It is to be noted that, for using Tobii
Pro Glasses 2 with human subjects, we obtained the ethical
clearance1 for this study from the Institute Ethical Commit-
tee at IIT Kharagpur. We have also obtained the required
informed consent from the human subjects before their gaze
data collection.

D. RECORDED GAZE DATA
Following are the prime differences of EG-SNIK over many
other datasets:
• A free viewing style of data collection, which means,
no task is instructed on participants,

• No restrictions imposed on head or body movements,
• The museum is not sealed off for the experiment, and
other people are present in the museum, and

• Unlike other datasets, there is no imposed time limit.

1) GAZE DATA
Table 1 contains various labels of the parameters provided by
eye tracker in the gaze data (shown in Fig. 3):

2) VIDEO FRAMES
Fig. 1 shows 20 exhibits of the museumwith highlighted gaze
positions (as dark spots) of a participant. These gaze positions
are acquired over the period of time the user observes the
exhibit. All the gaze positions corresponding to a particular
exhibit are shown on a single frame for quicker reference.
However, going by the operating frequency of the eye tracker
(50 Hz) and the frame rate of the scene camera (25 frames per
second), the number of gaze points available per video frame
would be 2. Gaze position values obtained as normalized
gaze coordinates are scaled up to HD resolution. We consider
the gaze positions occurring for the whole duration of a
participant watching an exhibit. Every exhibit is shown as
a video frame where gaze positions are accumulated around
the object of interest and its corresponding description. Also,
some outliers occur due to distractions from surroundings in
the form of sounds, people, illumination changes, etc,.

IV. DATA PRE-PROCESSING
A. FILTERING THE GAZE DATA STREAM
1) SYNCHRONIZATION OF THE VIDEO AND GAZE DATA
STREAMS
When we start the data recording, the eye tracker clock starts
ticking and capture the pupil. But, the scene camera switches
on a bit later. Hence, practically, in any eye tracker, there
exists some delay in between the eye tracker clock and the

1Ethical clearance reference no: IIT/SRIC/DR/2019, dated November 6,
2019.

scene camera clock [10]. This results in asynchronous gaze
and video data streamswith some redundant gaze information
before the scene camera is turned on. It is important to filter
that unnecessary information to make the gaze and video data
synchronous with each other.

From Fig. 2, the offset between ts and vts is used to
synchronize the video and gaze data streams. The portion
highlighted in red shows the occurrence of vts as 0 from
where the video recording actually starts and video stream is
available. We subtract this particular value of ts from all the
ts values for synchronization. From this time stamp, a video
frame changes after every 40 µs since the frame rate of video
stream is 25 fps. Whereas, a 20 µs step size is for identifying
a new gaze position. Within 40 µs, all the occurring gaze
positions (ideally two) correspond to the same frame.

2) FILTERING THE MISSING GAZE DATA STREAM
One may notice that there are a few status indicators (s) with
non-zero values mentioning that there is some problem with
gaze acquisition at that particular ts. The non-zero s value
also happens when one (or both) of the eyes are not tracked.
Hence, we do not consider the corresponding ts data for
further processing. However, we do interpolate these missing
data points one by one [10]. This is done in three steps: 1) a
scaling factor (sf) is computed as follows:

sf =
ttSR − ttFSG
ttLSG − ttFSG

(1)

where ttSR, ttFSG, ttLSG, and ttFSG represent time stamp of
first sample to be replaced, time stamp of first sample after
gap, time stamp of last sample before gap, time stamp of
first sample after gap, respectively. 2) sf is multiplied with
the position data of the first valid sample of the gap, and
3) the result is added to the position data of the last valid
sample before the gap. In this process, we cannot interpo-
late samples with large separation in time. Based on [29],
we consider 75 ms as the maximum separation as it is shorter
than a normal blink (150 ± 107 ms). It might prolong or
shorten the duration of fixations and saccades due to the linear
interpolation of samples. And, themeasured velocity between
two samples within the gap will be identical. If velocity is
below threshold, all samples within the gap will be classified
as fixation samples or otherwise.

B. FILTERING THE VIDEO STREAM
In this step, we initially separate out video clips depending on
the museum object and then compensate the head movements
using the sensory data from gyroscope and accelerometer.

1) EXHIBIT-BASED VIDEO CLIPPING
Since we have 20 exhibits in the museum, every participant
provides gaze and video data streams for those 20 objects at
a stretch. However, our STEAS model learns the gaze pattern
for different video clips containing different exhibits. Hence,
initially, we separate the whole video stream into 20 different
clips for all the participants using the egocentric sub-shot
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TABLE 1. Labels with their descriptions of the parameters in gaze data.

representation technique detailed in [30]. It tailors a sub-shot
segmentation approach to egocentric data and detects generic
categories of ego-activity. Specifically, it predicts whether
the camera wearer is watching an exhibit without undergoing
significant body or headmotion, observing various parts of an
exhibit by slightly moving physically, or in transition while
shifting attention from one exhibit to the other. We manu-
ally label the parts of 5 videos as belonging to 20 exhibits.
We also label the rest of the video frames of those 5 videos
as other two categories from the three above mentioned
categories.

Each frame is represented by features extracted from the
optical flow and blurriness for characterizing 20 museum
exhibits, especially dense optical flow [31]. Then, the flow
angles and their magnitudes are computed and organized
into 8 bins. Then, a histogram of flow angles weighed by
their magnitude is formed, concatenated with a histogram of
magnitudes. A frame is divided into a 3 × 3 grid and each
cell is given a score based on its blurriness for computing
blur features [32]. We train one-vs.-rest SVM classifier for
identifying 20 exhibits. For a given input video, class likeli-
hoods for each frame are estimated using the classifier. Each
frame is connected to its neighbors with a temporal window
of 11 frames by smoothing labesl using a markov random
field (MRF). Depending on the similarity of color histograms,
consecutive frames receiving different labels are penalized.
The resulting smoothed labels define sub-shots: a sequence
of consecutive labels with same label belong to the same sub-
shot. This results in identified shots for all the 20 exhibits of
an egocentric video. Our EG-SNIK dataset is challenging for
the following reasons:

1) Two successive exhibits can be divided into two
categories: 1) nonadjacent exhibits: exhibit-irrelevant

frames existed between two events, and 2) adjacent
exhibits: two exhibits appear seamlessly.

2) Exhibits numbered (5) and (6) (see Fig. 1) contain a
knob to rotate which need similar head and hand move-
ments. Also, exhibits with numbers (15), (19), and (20)
contain a button to be pressed for their operation.

3) Exhibit numbered (8) just needs human attention with-
out any considerable movement.

With all the above mentioned details and complexities,
the approach of sub-shot representation technique is seen
to provide desired results for video clipping. Red bounding
boxes (in Fig. 4) surrounding a set of frames notify that those
frames correspond to a clip from the same event. In Figs. 4
(a), (b), and (c), video clips of exhibits numbered as (20), (15),
and (19) in Fig. 1, respectively, are shown. Though they share
a common action, they are successfully identified as different
events because of two reasons: 1) they are not observed one
after the other, and 2) participant’s gaze pattern is different
because of different objects in them. Fig. 4 (d) shows video
frames with two exhibits ((2) and (3)) occurring seamlessly
andmiddle frame shows the presence of the next exhibit with-
out any break. Those two exhibits are successfully identified
as different events where frames occurring in between them
belong to exhibit (3). Fig. 4 (e) shows video frames with
two exhibits ((5) and (6)) occurring with exhibit-irrelevant
frames between them. The middle frame shows a switch
board and bio-data of a scientist which are not in the list of
20 objects. Those two exhibits are identified as two different
events successfully.

Fig. 4 (f) shows two different exhibits occurring with a
similar action being identified as a single clip. The algo-
rithm in [30] handles the first and third challenges mentioned
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FIGURE 1. Exhibits viewed by participants with highlighted gaze points given in black dots: 1) elliptical carrom board, 2) area of a circle, 3) probability
curve, 4) convergent series, 5) differentiation, 6) height and distance, 7) pythagoras theorem, 8) acrobatic stick, 9) traingle and polygons, 10) zeotrope,
11) wave motion, 12) newton’s crade, 13) color subtraction, 14) musical pipes, 15) mechanical hologram, 16) mirror, prism, and lens, 17) music in the air,
18) nodes and anti-nodes, 19) stroboscope, and 20) reverse optics.

FIGURE 2. Gaze data stream showing vts as 0 and its corresponding ts
highlighted in red box.

above. However, when two different exhibits with similar
motion occur seamlessly, it considers them as the one. Fig. 4
(f) shows frames of objects numbered (5) and (6) in Fig. 1,
respectively. We find that detecting those two as two different
events is a difficult task for the algorithm reported in [33].
This happens primarily for three reasons: 1) while operating
the knobs for two exhibits, objects in them appear to move
in a similar fashion, 2) action done by the participant’s hand,
is also similar for both the exhibits, and 3) since both of them
are placed next to each other in the museum, continuity in
participant’s gaze pattern and action look similar for both
the exhibits. This arises only when the participant watches
exhibits (5) and (6) one after the other. Out of 25 participants,
16 have followed that order and hence, the clips correspond-
ing to 20 exhibits are successfully extracted. However, the
issue is with the other 9 clips which identify only 19 clips cor-
responding to 20 exhibits rather than 20 clips. Video frames
corresponding to exhibits (5) and (6) are detected as a single
clip which is then manually separated into two clips (Fig. 4
(f)). Since we obtain different video clips for 20 museum
exhibits, we also partition the corresponding gaze data stream
into 20 substreams for further processing.

FIGURE 3. Reference coordinate system of Tobii pro glasses 2 [27].

2) COMPENSATION FOR HEAD MOVEMENTS
For head-mounted eye tracker (Tobii pro glasses 2), the eye
movements are not just because of eyes but also due to
head movements (shifts and rotations) [9]. The eye move-
ment velocity or acceleration combined with that of the head
movement results in a much higher value. This may mislead
the correct identification of fixations and saccades. Hence,
we compensate for the unwanted head movements for each
of the video clips separated for 20 exhibits in the previous
step.

a: USING GYROSCOPE SENSOR DATA [34]
Tobii pro glasses 2 gaze data stream also contains gyro-
scopic information along X, Y, and Z axes. The gyroscope
records the head rotational velocities along the three axes.
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FIGURE 4. Results of exhbit based clipping using [33] for a few exhibits. Video frames of clips for exhibits a) (20), b) (15), c) (19) requiring similar action,
d) two exhibits appear seamlessly, e) exhibit irrelevant frames between two events, f) exhibits (5) and (6) are in a single video clip.

The rotational velocities at time instant t found in the vectors
GyroX (t),GyroY (t), andGyroZ (t) are integrated over time to
result in the corresponding Euler angles

φ(t) =
∫ t

t−δt
GyroX (t) dt (2)

β(t) =
∫ t

t−δt
GyroY (t) dt (3)

γ (t) =
∫ t

t−δt
GyroZ (t) dt (4)

where φ, β, and γ corresponds to pitch, yaw and roll rota-
tions, respectively and t − δt is the previous time instant.
GyroX (t), GyroY (t), and GyroZ (t) represent the gyroscopic
sensor data (orientation) along X , Y , and Z axes, respectively.
With the computed φ, β, and γ , a rotation matrix, R is
calculated as:

RG = RG(φ)RG(β)RG(γ ) (5)

where

RG(φ) =

1 0 0
0 cos(φ) −sin(φ)
0 sin(φ) cos(φ)

 ,
RG(β) =

 cos(β) 0 sin(β)
0 1 0

−sin(β) 0 cos(β)

 , and
RG(γ ) =

cos(γ ) −sin(γ ) 0sin(γ ) cos(γ ) 0
0 0 1

 .
b: USING ACCELEROMETER SENSOR DATA [35]
Tobii pro glasses 2 data stream also contains accelerometer
information along X, Y, and Z axes. It records the head
acceleration along the three axes. It is be noted that the
accelerometers are affected by the linear acceleration and
local gravitational field. Theymeasure the difference between

any linear acceleration in the accelerometer’s reference frame
and the earth’s gravitational field vector [35]. The accelerom-
eter measures the rotated gravitational field vector which
can be used to determine the Euler angles, pitch and roll
orientation, as follows:

φ(t) = tan−1
AccY (t)
AccZ (t)

(6)

γ (t) = tan−1
−AccX (t)√

(AccY (t))2 + (AccZ (t))2
(7)

where Acc(X (t)), Acc(Y (t)), and Acc(Z (t)) represent the
accelerometer sensor data along X , Y , and Z axes, respec-
tively. The rotation matrix evaluated using the accelerometer
is calculated as

RA = RA(φ)RA(γ ) (8)

where RA(φ) =

1 0 0
0 cos(φ) −sin(φ)
0 sin(φ) cos(φ)

, and

RA(γ ) =

cos(γ ) −sin(γ ) 0sin(γ ) cos(γ ) 0
0 0 1


Furthermore, accelerometer signals do not contain infor-

mation about the rotation around the vertical axis (yaw angle)
and hence do not provide orientation information [36]. Hence,
we need to fuse both sensor readings for compensating the
head movements in egocentric videos.

c: FUSING GYROSCOPE AND ACCELEROMETER SENSOR
DATA [37]
Accelerometer and gyroscope orientations are achieved by
using rotational matrices. Since accelerometer and gyroscope
sensors offer advantages by providing the motion and angular
velocities respectively, a single estimate through the fusion of
both sensors is estimated as follows:

R = RARG (9)
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The 3D gaze information (gaze and eye positions) a(t) at
time instant t is multiplied with R to compensate for head
movements. The resultant head compensated gaze position
ahc(t) is given as

ahc(t) = Rx(t)T (10)

We use bi-cubic interpolation to compute the output pixel
value as a weighted average of pixels in the nearest 4-by-4
neighborhood in the input. These compensated gaze posi-
tions are subsequently used for computing the velocity of
eye movements. Fig. 5 shows the results of head move-
ment compensation using gyroscope information of Tobii pro
glasses 2 data stream. Figs. 5 (a) and (c) are the input video
clips with their corresponding head movement compensated
videos being shown in (b) and (d) for two different exhibits.
From Figs. 5 (a) and (b), we see that initial frames are com-
pensated for clockwise head movements as all the selected
human beings are right-handed [38]. They observe or perform
actions from left to right which makes their heads turn clock-
wise while observing the museum exhibits also. Therefore,
initial video frames undergo anti-clockwise rotation around
the frame center (left zoomed portions in (b) and (d)). This
gradually reduces in the middle frames since the participant
observes the exhibit with a comparatively still head. This is
because the initial and end frames focus on shifting their
attention towards next exhibits. In the same way, we see
that end frames are compensated for anti-clockwise head
movements. This happens when the participant moves head
towards an object placed on his right side. Therefore, end
video frames undergo clockwise rotation around the frame
center (right zoomed portions in (b) and (d)) for compensa-
tion. Hence, we successfully get all the 20 filtered and head
movement compensated video clips corresponding to 20 dif-
ferent exhibits for all the participants. At the end, we obtain
25 × 20 (500) video clips and their corresponding gaze data
streams.

C. IDENTIFICATION OF FIXATIONS AND SACCADES
After the data filtering, we use the I-VT filter [10] to calculate
the visual angle and velocity using the 3D gaze and eye
positions. The angular velocity calculation is done using the
law of cosines [39]. For a sample at time instant t , the angle is
calculated between it and the ones before and after at time t ,
t1 and t2 (t1 < t < t2). The velocity is calculated by dividing
the angle between the sample at time t1 and t2 with the time
between the two samples. To do this, we compute the vectors
a, b, and c as

Ea(t) = gp3(t1)− pc(t1) (11)
Eb(t) = gp3(t2)− pc(t2) (12)

Ec(t) = gp3(t2)− gp3(t1) (13)

The vectors Ea, Eb, and Ec are visualized in Fig. 6. As mentioned
earlier, pupil centers for both eyes are available for every time
instant which gives two gaze vectors for a single gaze sample.
Hence, to obtain a single gaze vector considering both the

eyes, we use a common mid-point for both the pupil centers
pcl(t1) and pcr (t1) as pc(t1) which is given as

pcx(t1) =
pcl,x(t1)+ pcr,x(t1)

2
, (14)

pcy(t1) =
pcl,y(t1)+ pcr,y(t1)

2
, (15)

pcz(t1) =
pcl,z(t1)+ pcr,z(t1)

2
, (16)

where pc(l/r,x/y/z)(t1) represents the 3D pupil center (left or
right) for x, y, or z axis. Then, we use the law of cosines to
compute angle α using

c2 = a2 + b2 − 2 ∗ a ∗ b ∗ cos(α) (17)

where Ea, Eb, and Ec are directional vectors as shown in Fig. 6.
When the angle is known, we calculate the angular velocity
Ev(t)=

(
vx(t), vy(t), vz(t)

)
using the sampling time as follows:

Ev(t) =
|Eα(t)|
|t2 − t1|

. (18)

where Eα(t)=
(
αx(t), αy(t), αz(t)

)
. After velocity calculation,

each eye movement is categorized as an event (saccade or
fixation) by a velocity threshold value and shown as

Event(t) = A(Ev(t)), (19)

where A is the I-VT classification function [10], and Event
contains 1 or 2 for fixation or saccade, respectively. The
exception is for samples in the trailing or beginning of a
recording where it has not been possible to calculate the
velocity. Empirically, a velocity threshold of 90 degree per
second [34] is found to achieve the best results for identifying
fixations and saccades using Tobii pro glasses 2.

Then, we merge fixations located close to each other in
space and time [10]. If a fixation does not belong to a set
of consecutive fixation points with the minimum length of
60 ms, we discard that fixation. 60 ms is used because a
fixation of that short duration is not meaningful for studying
the user behavior due to the processing time of visual stimuli
in the visual pathway and brain [10].

Figs. 7 and 9 show the scanpaths of only five participants
for visualization. Different colored scanpaths correspond to
different participants. Each circle corresponds to a fixation
and its radius is proportional to the duration and the number of
sample gaze points in it [11]. Larger the fixation duration, the
higher the participant’s attention towards that region. It can
be seen that the parts of an exhibit touched by participants
like knobs of exhibit (5 and 6), adjustable parts (2 and 13),
and moving parts of an exhibit (11 and 19), obviously grab
human attention for longer duration. Also, we observe that
there is a similar pattern in viewing style of participants. For
example, for exhibit 19 (stroboscope), participant reads the
description first to operate it. Then, the light and fan of the
stroboscope turns on to grab user’s attention which forms a
trend in viewing that exhibit. Hence, we categorize all the
20 exhibits into four different categories and a few scanpaths
are shown in Figs. 7 and 9:
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FIGURE 5. Results of head movement compensation using gyroscope information. (a), (c) input, and (b), (d) corresponding output video frames. The
zoomed portions show the type of rotations happened after compensation.

1) Order of operation or observation may slightly vary
from one to another: exhibits 2, 3, 4, 7, 9, and 13.

2) Observing or operating using a knob and viewing pat-
tern remains almost similar: exhibits 5, and 6.

3) Observing and operating using buttons and viewing
pattern remains almost similar: exhibits 11, 15, 16, 18,
19, and 20.

4) Observing and operating without any knob or button
and viewing pattern remains almost similar: exhibits 1,
8, 10, 12, 14, and 17.

Out of these four categories, second, third and fourth cate-
gories are found to have similar scanpaths for all the partici-
pants. Whereas, the first category contains multiple objects to
operate which makes participants follow different sequences.
Thereby, the corresponding order of fixations vary slightly
from a participant to the other.

D. REPRESENTATIVE SCANPATH IDENTIFICATION
We identified the gaze samples as either fixation or sac-
cades and evaluated their scanpaths. At this stage, we iden-
tify a pattern in scanpaths considering all the participants
gaze data for all museum exhibits separately. We call this
generalized viewing pattern (GVP) of an exhibit as the
representative scanpath. We follow a procedure similar to
the one detailed in [11]. Though there are a few other
works for this operation, we consider this since others have
not discussed representative scanpaths using gaze duration
analysis.

This procedure consists of three parts: 1) preprocessing of
eye gaze data, 2) scanpath aggregation, and 3) gaze duration
analysis. In order to identify the viewing pattern, we aim to
exploit the fixation order, duration and position. The first
step is divided into three substeps: 1) outlier removal, 2)
area of interest (AOI ) extraction, and 3) AOI center iden-
tification. The second step addresses the shape of scanpath

FIGURE 6. Angle calculation for α(t) between sample points, gp3(t1) and
gp3(t2).

by aggregating multiple scanpaths into one. In the last step,
we analyze such pattern in terms of gaze duration for obtain-
ing the representative scanpath.

1) GAZE DATA PRE-PROCESSING
Following are the steps of gaze data pre-processing.

a: OUTLIER REMOVAL
The sequence of fixations, which reflect the actual viewing
process, varies with different individuals even if the fixation
distributions are similar. Hence, the position and order of
the fixations cause inconsistency in scanpath. Dynamic time
warping (DTW) [40] with boxplot is used to eliminate the
influence of scanpaths on both the temporal order and spatial
distribution.

b: AOI EXTRACTION
The fixations points are clustered by an algorithm in [41]
by considering two point properties: local density ρ, and
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FIGURE 7. (a) Scanpaths of a few participants. Each color corresponds to a participant with a fixation radius proportional to its duration and number of
gaze points in it, (b) The corresponding representative scanpath considering all the 25 participants’ scanpaths. Red circles represent fixations with arrows
as saccades and numbers indicate the order of their occurrence.

distance from points with higher density δ. In order to deter-
mine the number of clusters, γ=ρ × δ is computed and then
sorted. Fixations with γ higher than the set threshold stick out
with corresponding cluster number. A weighted geometric
mean is computed for using it as threshold as follows:

threshold =
∑n
k=1 αk

√√√√ n∏
k=1

γ
αk
k (20)

αk = 2logn−logk+1 − 1 (21)

where γ1, γ2, γ3,. . . ,γn have been sorted in decreasing order
and n represents the number of clusters. Compared to the
geometric mean, the weighted one emphasis more on the
larger γ leading to fewer and lesser overlapped clusters.

c: CENTER IDENTIFICATION
A random walk based method [42] is employed to identify
AOI centers rather than simply averaging coordinates with
large γ . The former method aims to generate a coefficient
f for each fixation in the AOI, and computes the weighted
center as the final AOI one. The following equation is used
for updating the coefficient f :

ft+1(i) =
1
η
(
n∑
j=1

(1− (1− α))ft (j)r(j, i))+ (1− α)ft (i)u(i)

(22)

where u(i) is the initial coefficient of fixation i defined by
ρ, η is the normalizing parameter, r(j, i) is the transition
probability from fixation i to j.

r(j, i) =
e−σ×D(j,i)∑n
k=1 e

−σ×D(j,i) (23)

where D(j, i) is the Euclidean distance from fixation j to
i, σ subtly influences the distribution of the center. AOI
centers are also regarded as indicators of AOI distribution.
Later, in the aggregation stage, candidate components of the
representative scanpath are the AOIs with identified centers.

FIGURE 8. Distibutions of scanpath lengths.

2) SCANPATH AGGREGATION
At this stage, we compute the barycenter [43] of all the
available scanpaths, to assemble multiple scanpaths into a
single one. That means, one that is closest to the individual
scanpaths based on DTW distance is the representative scan-
path. This is represented as follows:

r = argmin
s′

∑
s∈sps

Dist(s′, s) (24)

where r is the representative scanpath, s′ is the one to become
the representative scanpath, s is an individual scanpath in
the given set sps, and Dist is a function calculating the
distance or dissimilarity between two scanpaths. Basically,
scanpaths are sequences of components with coordinates.
Consider two scanpaths, P = Pm = 〈p1, p2, p3, .., pm〉,
and Q = Qn = 〈q1, q2, q3, .., qn〉, DTW is recursively
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computed as:

DTW (Pi,Qj) = δ(pi, qj)+ min


DTW (Pi−1,Qj−1)
DTW (Pi−1,Qj)
DTW (Pi,Qj−1)

(25)

where Pi, Qj are subsequences of P and Q, pi and qj are
components of scanpaths P and Q, respectively and δ() is
the Euclidean distance function. The dissimilarity or distance
between scanpath P and Q is:

Dist(P,Q) = DTW (Pm,Qn) (26)

In this work, Candidate-constrained DTW Barycenter Aver-
aging (CDBA) algorithm is used for scanpath aggregation.

a: CDBA ALGORITHM
Initially, CDBA algorithm builds a set of candidate AOIs
for each AOI. For a certain AOI, this set contains all the
valid subsequent AOIs. In other words, candidate set AOIs
of AOIi is supposed to follow AOIi in one individual scanpath
at minimum. We extend scanpaths of 1 fixation to scanpaths
of n fixations and enumerate all the scanpaths. A scanpath
is extended by choosing an AOI from the candidate set of
the last AOI on the scanpath and adding it to the end. If a
certain AOI occurs maximum in the individual scanpaths,
we remove that AOI and do not consider in later enumerated
scanpaths. Then it defines an initial average scanpath as the
reference scanpath and then updates the reference scanpath
iteratively. Each iteration of CDBA contains two steps: (1)
DTW between the reference scanpath and every individual
scanpath is computed, and (2) reference scanpath components
are updated. We repeat these steps until the reference scan-
path stays without any changes.

3) GAZE DURATION ANALYSIS
The aggregated scanpath tells us both the areas drawing our
attention and also their priority of attraction. Each scanpath
of fixations is transformed into an AOI sequence of clusters to
notify the attention duration of an AOI. Then, we statistically
analyze the gaze duration of each AOI for all the individ-
ual scanpaths. In the aggregated scanpath, gaze duration of
each AOI is obtained by averaging that of the same AOI in
the individual scanpaths. Note that while analyzing the AOI
duration, one and the same AOI appearing more than once
in a sequence is regarded as different AOIs. Then, they are
distinguished by their appearing order in the sequence.

Fig. 9 shows representative scanpaths for a few exhibits
in second and fourth columns. The red circles, connecting
arrows, and their numbers indicate fixations, directions of eye
movements, and the order of fixations, respectively. Figs. 9
(b) and (d) containmultiple objects in an exhibit and hence the
scanpaths are dispersed while viewing. Also, the participant
may start with any object in the exhibit and thereby the
scanpath contains fixations with multiple visits for a few
fixations back and forth. The exhibits in Figs. 9 (f), (h),
(i) and (l) contain objects to operate and participants go for

them without much effort and thought. For these exhibits,
going by the order of fixations, participants are found to go
through the description first, then operate the object. Also,
we find that a few outlier fixations are eliminated which
occur due to participant’s vision distraction because of ambi-
ence disturbances. In order to verify the effectiveness of this
approach of scanpath aggregation, we compare and analyse
the distribution of the fixation based scanpaths with that of
the representative scanpath in the subsequent section.

a: ANALYSIS OF SCANPATH LENGTH
It is observed that the frequency of attention shift is reflected
by the scanpath length. Fig. 8a shows that the normal dis-
tribution is followed by the length distributions of individual
scanpaths. Thus, the representative scanpaths are supposed to
follow the bell-shaped property, which we observe happening
from Fig. 8b. Though the absolute values of those two scan-
path lengths may be different, their bell-shaped property of
length distribution is preserved for our data. Therefore, the
representative scanpath pattern reflects the group trend and is
visually consistent with individual scanpaths.

V. STATE TRAJECTORY ESTIMATOR BASED ON
ANCESTOR SAMPLING (STEAS)
In this section, we demonstrate the application of EG-SNIK
dataset on a statistical learning model for characterizing the
inherent gaze dynamics of human beings. We have reported
this model in [12] as STEAS. First, from EG-SNIK dataset,
we plot the velocity distribution of a random viewer observ-
ing an exhibit in Fig. 10. It is observed that the fixations
(in red) and saccades (in green) are identified with a thresh-
old of 90 degree per sec (as explained earlier). We use a
Gaussian Mixture Model (GMM ) on this distribution and use
the corresponding model parameters for approximating the
gaze transitions empirically. A scanpath is shown in Fig. 11
corresponding to the data shown in Fig. 10.

A. VELOCITY DISTRIBUTION ANALYSIS USING N-WAY
ANOVA
Fig.10 shows the velocity distribution for the gaze data of
a random viewer watching a museum exhibit. We would
like to observe whether the velocity distributions of sac-
cades and fixations follow a typical pattern for any viewer’s
gaze information watching any exhibit. Hence, we randomly
choose gaze data of 20 viewers and analyse their gaze velocity
variations using N -way analysis of variance (ANOVA). It also
ensures the velocity variations of fixations and saccades are
the same for all the 20 viewers. A p-value greater than
0.05 indicates no significant difference between variations in
three state velocities between velocity vectors of 4 groups.
Table 2 shows the variations in their parameters. Table 3
shows the ANOVA results for the data in Table 2. We see
that p-values are 0.75 and 0.79 for fixations and saccades,
respectively. Hence, we understand that the velocity distribu-
tions of fixations and saccades remain intact irrespective of
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FIGURE 9. A few more examples of the representative scanpaths. First
column: scanpaths of a few participants, second column: corresponding
representative scanpaths. Notation are similar to that of Fig. 7.

the museum exhibit (or stimulus) as shown in Fig. 10. This
set of observations corroborates our earlier findings in [12].

B. SAMPLING FOR TRAINING, TEST AND GROUND TRUTH
DATA
For an exhibit, we have 25 video clips of 25 participants
and its corresponding velocity vector. Consider that the raw
gaze velocity vector of a vth participant for a cth video clip
is represented by a vector, Evelv,c, where v = 1..V and c =
1..C . Each element of Evelv,c is the overall gaze velocity at a
particular time instant which is calculated as

velv,c,i =
√
vel2v,c,i,x + vel

2
v,c,i,y + vel

2
v,c,i,z, i = 1..L, (27)

where L varies depending on the time spent by a participant
in observing an exhibit.

FIGURE 10. Velocity distribution of fixations and saccades of a random
viewer watching an exhibit.

FIGURE 11. Scanpath corresponding to an exhibit.

TABLE 2. Means (µ) and standard deviations (σ ) for 4 groups of gaze
velocity vectors.

TABLE 3. ANOVA results for the data provided in Table 2.

1) TRAINING SET
For training, we randomly select 20 clips for each exhibit
out of 25 clips. As there are 20 exhibits, there are 400 clips
chosen for training themodel. A training vector is represented
as Evelm,n, where m = 1..20 clips and n = 1..20 view-
ers. For a vector Evelm,n, we uniformly sample it K times
(K = 10) with each sampling length from the set S (here,
S = {1000, 2000, 3000, 4000, 50000, 6000}). We choose the
sampling lengths of S empirically.

2) TEST SET
From each participant, the rest of the 5 clips and their gaze
data are considered for the purpose of testing. Since there
are 25 participants, there are 100 clips chosen for testing.
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We evaluate our statistical model performance for gaze data
classification and video retrieval on these test vectors.

3) SAMPLED GROUND TRUTH FOR TRAINING
We sample the velocity and label vectors of the clips corre-
sponding to those sampled for building the training set. Those
are 20 clips represented as EVGTm,s and EEGTm,s , respectively for
m = 1..20.

4) SAMPLED GROUND TRUTH FOR TESTING
After training, we obtain an evaluated parameter for sample
length. We use this while sampling the ground truth for
testing. We represent the sampled velocity and label vectors
for 20 clips associated with 20 exhibits as EVGTg and EEGTg
g = 1..20, respectively.

C. STEAS MODEL
STEAS model is a statistical learning model which charac-
terizes the human temporal gaze pattern for different kinds
of stimuli using SSMs. We build it by studying the various
parameters of the human gaze data. We employ the same set
of state and observation equations as detailed in [12] with
a few alterations to their parameters. We design state and
observation equations for STEAS model and fit aGMM to the
training vector Evelm,n. This gives us parameters correspond-
ing to GMM, mean (µe) and standard deviation (σe), where
e ∈ [fixation, saccade]. The state equation is given as

Eθt = Eθt−1 + Eηt , (28)

where Eθt and Eηt are velocity vectors of the same length at time
instant t , while the latter is a randomly sampled vector from
a normal distribution with parameters µt and σt . We empiri-
cally set σt = 1 [44] and found to be experimentally effective,
and µt is the varying parameter. The observation equation is
given as

Evt = INC(Eθt ,CI , µe, σe)+ Eνt , (29)

where INC(Eθt ,CI , µe, σe) is the inverse normal cumulative
distribution function. µt , at , and bt are varied within [1, 10]
with an incremental step of 1 considering the noise variability
in eye movements [45]. From Fig. 10, we observe that there
are chances of a state being identified as another one since
their velocity distributions are found to overlap. Hence, every
element of Eθt belongs to two states with certain probabilities
based on (µt , σt ). Then, a state with themaximum probability
of belonging level is selected, and a velocity is sampled
within 90% confidence interval. This ensures the sampled
velocity value lies in certain state with a considerably good
probability. Then, EwT is the weight vector evaluated at T th

time instant as

wT ,i = e−
(vT ,i−VGTm,s,i

)2

2 ,T = 1000, i = 1..s (30)

Then, we normalize EwT to unit norm. Eνt has two parameters
in it, at and bt . Number of iterations and burn-in (BI ) period
for (28) and (29) are N = 500 and BI = 100, respectively.

FIGURE 12. DKL + DIC + LD for varying sample lengths.

BI period refers to the number of iterations STEAS model
requires to reach the a state of equilibrium. Usually, themodel
output is discarded until it finished BI period [46]. This
process is repeated for empirically varying the parametersµt ,
at and bt over their defined ranges.

STEAS model parameters are optimized to find the
best fit of them. We use Deviance Information Criteria
(DIC) [47], KL divergence (DKL) [48] and Levenshtein Dis-
tance (LD) [49] to find out the best suitable parameters. Con-
sidering the linear combination of these metrics, the objective
function [50] constrained by the varying parameters is given
as:

minimize
µ,a,b,s

DICs + DKLs + LDs

subjectto 1 ≤ µ, a, b ≤ 10, s ∈ S, (31)

The set of state and observation equations fitted with the
optimized parameters are used for gaze data classification and
retrieval on the test set. During the classification, we consider
a K = 31 in K -NN. Since we have 25 participants, we empir-
ically consider K as 31 to make sure that K is greater than the
number of participants. We also perform the video retrieval
on the test set using Mean Reciprocal Rank (MRR) over
DKL and LD metrics separately. For a particular test velocity
vector, the inverse of the position of its DKL evaluated with
its corresponding ground truth in a sorted array of 60 values
is considered as the rank.
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VI. RESULTS AND DISCUSSION
A. OPTIMIZED STEAS MODEL PARAMETERS
Fig. 12 shows the variations in the objective function over the
empirically varying parameters. Figs. 12a and 12b are plotted
for different ranges of sampling lengths in the discretized
parametric space. They are shown in two different figures to
have visual palatability. We see that STEAS model performs
comparatively much better for sample lenghts in the range of
1000 till 3000 than for the other lengths. More particularly,
we observe that the global minima of the objective function
happens to be 14.87 for sample length s = 3000 with
parametersµ, a, b being at 6. This denotes that STEASmodel
captures the inherent gaze dynamics better at certain model
parameters. This says that STEAS model characterizes the
representative nature of the raw gaze data with parameters
being fine tuned [51]. It is to be noted that we perform
uniform sampling on velocity vectors and do not impose any
bias constraints for fixations and saccades. Hence, we say
that the STEAS resultant vector is a representative or features
of the raw velocity vector for identifying the visual category
of the corresponding stimuli. This feature can model the raw
data’s dependencies to get incorporated into the sampled data
with tuned model parameters [51].

B. GAZE DATA CLASSIFICATION AND VIDEO RETRIEVAL
1) CLASSIFICATION
Table 4 shows the performance comparison of STEAS model
with other related models on EG-SNIK dataset. STEAS
model is found to perform better than the other models. This
happens since the state and observation equations of our sta-
tistical model are designed after studying the dynamics of our
data and its noise variability. Thereby, the tuned parameters
are optimized for this dataset resulting in its optimal perfor-
mance during classification. However, it is not the case with
the other models in Table 4. SubsMatch 2.0 [52] considers
smaller subsequences from the gaze data of a viewer and
understands how frequently they occur based on AOIs. These
subsequences are used for training an SVM model providing
certain ranks to the features based on their discriminative
power. However, since our data has diverse exhibits with just
two or three interesting objects in them, participant may not
have very frequent visits to them, thus, SubsMatch 2.0 results
in inferior performance. MinHash [53] also works in a similar
style as that of SubsMatch 2.0. But, MinHash approximates
the Jaccard Index considering only a few subsequences,
and therefore cannot achieve the classification performance
of SubsMatch. HMM based model performs comparatively
closer to our approach since ours is also a statistical model.
However, HMM based model involves a large group of
parameters whose roles and weights are hard to interpret [25].
It is also one of the major drawbacks of the HMM based
model approach. Thus, it results in slightly inferior perfor-
mance on our EG-SNIK dataset. Hence, a promising value
of classification accuracy highlights that the STEAS model
extracts inherent features from the gaze data irrespective of

TABLE 4. Classification and retrieval performance comparison with other
models on the test set of EG-SNIK dataset.

the viewer. This helps us to identify the unknown gaze data
with its corresponding visual category.

2) VIDEO RETRIEVAL
UsingDKL and LDmetrics, we have also evaluated the perfor-
mance of STEAS for video retrieval of test velocity vectors.
Table 4 shows the performance of various other models.
As shown, the performance of our model is better than the
others because of the reasons mentioned in Section VI-B1.
However, for our STEAS model, MRRLD is less than the
classification accuracy using LD. The same is the case with
MRRKL also. This happens since the classification does not
associate the given test vector to its corresponding video
ground truth. Instead, it classifies the vector to one of the
many classes. Hence, the STEAS model based classification
and video retrieval can be used for viewer independent video
indexing for providing viewers a way to access and navigate
contents easily. We find that the STEAS model has performed
considerably well on our dataset collected in a free viewing
style of watching real world museum exhibits. This makes the
model a more generalized one, resulting in better-optimized
parameters and performance.

VII. CONCLUSION
In this work, we propose a novel egocentric vision dataset
acquired at a technological museum in IIT Kharagpur (named
as EG-SNIK dataset).We also propose an end-to-end pipeline
of processing the data on its video and gaze data streams.
A group of 25 students aged between 18 and 35 years
with normal vision wear Tobii Pro Glasses 2 eye tracker
and observe musuem exhibits. We then build a representa-
tive scanpath for each of the museum exhibits aggregating
25 viewers’ filtered gaze data. We employ STEAS model
to extract inherent gaze features from raw gaze data and
optimize it while learning on the training set of EG-SNIK.
The optimizedmodel is evaluated on the EG-SNIK test set for
gaze data classification and retrieval. We witness a superior
performance of STEAS model over other techniques with
77%, 0.727, 0.705 of accuracy, precision and recall, respec-
tively for classification and a MRR of 0.722 for retrieval. The
proposed dataset is readily useful for many computer vision
problems like object detection, semantic segmentation, etc.
Our work has these advantages over others: 1) data collected
using the state-of-the-art Tobii pro glasses 2, 2) addressed
all possible issues and made the dataset ready-to-use, and
3) shown two vision related use-cases, i.e., classification and
retrieval.
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