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Abstract

When human cord blood–derived CD34+ cells are induced to differentiate, they undergo

rapid and dynamic morphological and molecular transformations that are critical for fate

commitment. In particular, the cells pass through a transitory phase known as “multilineage-

primed” state. These cells are characterized by a mixed gene expression profile, different in

each cell, with the coexpression of many genes characteristic for concurrent cell lineages.

The aim of our study is to understand the mechanisms of the establishment and the exit

from this transitory state. We investigated this issue using single-cell RNA sequencing and

ATAC-seq. Two phases were detected. The first phase is a rapid and global chromatin

decompaction that makes most of the gene promoters in the genome accessible for tran-

scription. It results 24 h later in enhanced and pervasive transcription of the genome leading

to the concomitant increase in the cell-to-cell variability of transcriptional profiles. The sec-

ond phase is the exit from the multilineage-primed phase marked by a slow chromatin clo-

sure and a subsequent overall down-regulation of gene transcription. This process is

selective and results in the emergence of coherent expression profiles corresponding to dis-

tinct cell subpopulations. The typical time scale of these events spans 48 to 72 h. These

observations suggest that the nonspecificity of genome decompaction is the condition for

the generation of a highly variable multilineage expression profile. The nonspecific phase is

followed by specific regulatory actions that stabilize and maintain the activity of key genes,

while the rest of the genome becomes repressed again by the chromatin recompaction.

Thus, the initiation of differentiation is reminiscent of a constrained optimization process that

associates the spontaneous generation of gene expression diversity to subsequent
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regulatory actions that maintain the activity of some genes, while the rest of the genome

sinks back to the repressive closed chromatin state.

Introduction

Understanding the process of cell differentiation that generates functionally and morphologi-

cally different cells with distinct gene expression profiles is one of the major challenges in biol-

ogy. The way cell differentiation is conceptualized has changed during the last years [1].

Initially, cell differentiation was considered as a predetermined sequence of molecular and cel-

lular events programmed by the genome. In this classical cause-and-effect paradigm, the new

phenotype is induced by the action of specific signals that activate specific genes resulting in a

linear deterministic process of cell fate determination and phenotypic differentiation [2,3].

The idea of linear causation has been progressively undermined by the large amount of data

provided by the various “omics” approaches that raised the urgent need for generalizable prin-

ciples [4]. The introduction of the conceptual arsenal of the dynamical complex system’s field

can potentially satisfy this need [4] and provide an example how mathematics and physics can

stimulate thinking in biology [5]. It is now generally accepted that molecular interactions

within the cell, including gene transcription and translation, are fundamentally stochastic

[6,7]. First considered as a simple “noise” perturbing the neatly functioning of the determin-

istic regulatory pathways, now it is becoming likely that the molecular variations are part of

the system and play an essential biological role [8]. This view is further reinforced by the dem-

onstration that molecular fluctuations are not only ubiquitous, but the cell is unable to sup-

press them by specifically dedicated mechanisms [9]. The conceptual framework of the

complex dynamical systems allows the incorporation of molecular stochasticity and the result-

ing nonlinear dynamics in the explanatory scheme [10]. Importantly, the fundamental role of

molecular stochasticity in cell differentiation was conjectured long time ago by Kupiec [11–

13]. He proposed that cell differentiation can be viewed as a process of selective stabilization of

gene expression profiles generated by spontaneous stochastic variation of gene transcription.

The initial theory has been further developed [14,15] and now supported by a large body of

experimental observations [16].

Frequently considered as a paradigm of cell differentiation in general, hematopoietic cells

are widely used as experimental model to study fate commitment. The differentiation of the

hematopoietic cells is frequently represented as a series of binary fate decisions under the

action of key instructive factors inducing specific changes in the cell and leading to progres-

sively decreasing capacity of self-renewal, proliferation and lineage potential [17,18]. Such a

strict hierarchical process must imply tight regulation of the expression of key genes. A num-

ber of genes that play a key role in the process and the core gene regulatory network (GRN) of

hematopoiesis have been identified [19,20]. The early ideas [3] about gene regulation acting

linearly during differentiation evolved toward the dynamic system view and the conceptual

framework of the complex dynamical systems is now applied to the study of the hematopoietic

differentiation also [21]. The concept of stochasticity has also appeared early in the study of

hematopoietic differentiation, thanks to the pioneering work by Till [22]. Single-cell gene

expression studies added a new layer to the general picture. They demonstrated that soon after

their stimulation for differentiation, multipotent CD34+ cells go through a phase of disordered

gene expression called “multilineage-primed” phase characterized by concomitant expression

of genes typical for alternative lineages [23–26]. More recent studies confirmed that
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hematopoietic stem cells (HSCs) gradually acquire lineage characteristics along multiple direc-

tions without passing through discrete hierarchically organized and demarcated progenitor

populations [27] and that lineage-restricted cells emerge directly from a “continuum of low-

primed undifferentiated hematopoietic stem and progenitor cells” [27]. It has been shown that

this phase is accompanied by instabilities and fluctuations of the cell transcriptome, morphol-

ogy, and dynamic cell behavior essentially during the first 2 to 3 cell cycles [26,28]. How this

quasi-random gene expression pattern is generated remains unclear. Indeed, it is hardly possi-

ble to imagine that a different strictly regulated hierarchical processes targeting specific genes

could generate a unique mixed gene expression pattern in each cell and subsequently make

them to converge to the same defined profile. In order to determine how such a response is

produced, we investigated the early chromatin and transcriptional changes during the short

initial period of time when the critical fate decision is initiated in CD34+ cells.

To do this, we correlated the dynamic changes of the transcription profiles determined by

single-cell RNA sequencing (scRNA-seq) at different time points during the 96-h period fol-

lowing their stimulation with the chromatin profiles during the same period as determined by

bulk and single-cell ATAC sequencing (scATACAU : Pleasenotethat� scATAC � seq� hasbeenaddedasfullspellingfor� single � cellATACsequencing� :Pleaseconfirmthatthisiscorrect:-seq). The data revealed that a rapid and

global nonspecific chromatin decompaction precedes the global up-regulation of gene expres-

sion by an unusually long lag of 24 h. Specific regulatory actions may come at the next stage to

stabilize and maintain the activity of a subset of genes that allow the cell to better thrive in the

changing environment. The remaining part of the genome becomes repressed again as a con-

sequence of the chromatin recompaction.

Results

Our experimental strategy (Fig 1A) was as follows. First, we evaluated the progression of the

human CD34+ cord blood cells toward defined fates after cytokine stimulation using scRNA-

seq. This approach allowed us to assess quantitatively the phenotypic heterogeneity and iden-

tify subpopulations at each time point within the time window defined by our previous study

[26]. Then, we investigated the genome-scale changes of the chromatin structure using whole-

cell population-level ATAC-seq (referred to as bulk ATAC-seq). scATAC-seq was used at a

critical time point to confirm the conclusions. Finally, we analyzed the data to determine how

global chromatin changes are related to global transcription changes. As the hematopoietic

system is a very well-studied experimental model and the key individual elements are well

known, we focused our analysis on the less known global tendencies rather that individual

genes and chromatin elements.

An initial transcription burst precedes stable expression profiles

We used human CD34+ cells isolated from the cord blood of 2 healthy donors and cultured in

the presence of early acting cytokines as described previously [26]. We performed massively

parallel single-cell RNA sequencing (MARS-seq; see Materials and methods) at different time

points. The cells were isolated randomly from the CD34+ fraction to ensure a correct statistical

representation of the whole population without any preconceived ideas on the cell phenotypes

and categories. Based on our previous studies [26] showing that before cytokine stimulation

the CD34+ cells have very low transcriptional activity, we set 5 h poststimulation as the starting

point, followed by sampling at 24 h, 48 h, 72 h, and 96 h after the cells were cultured in the

presence of cytokines. The advantage to use MARS-seq is the high sensibility of the method,

which allows the reliable detection of low numbers mRNA molecules per gene in each cell. To

ensure the reliable quantification, we used unique molecular identifier (UMI)-marked syn-

thetic mRNAs (details about quality control of the results are shown in S1 Table). As a result,
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we were able to obtain high-resolution quantitative transcription profiles for individual cells.

To avoid technical variation, the cells of the 2 donors were processed parallelly and sequenced

on the same flow cell. However, the batch correction procedure tends to remove some relevant

information too; hence, we chose to represent the results separately for each donor. Separating

the donors allowed us to assess the similarities of the global tendencies while conserving the

potentially important inter- and intraindividual heterogeneity of the temporal progression.

The analysis revealed important features in global gene expression dynamics (Fig 1B and

1C). Following stimulation, the transcriptome underwent rapid and substantial quantitative

and qualitative changes. Both the number of expressed genes per cell and the number of

Fig 1. Experimental strategy and global gene expression dynamics. (A) CD34+ cells were isolated from human cord blood and cultured in serum-free

medium with early acting cytokines. scRNA-seq was used to analyze transcription at 5 h, 24 h, 48 h, 72 h, and 96 h. Concomitantly, at 0 h, 5 h, 24 h, and 48 h,

5,000 living cells were collected for “bulk” ATAC-seq analysis of the DNA accessibility. The 24-h time point was analyzed by scATAC-seq also. (B) Number of

detected genes per cell with scRNA-seq. Two donors were analyzed separately, both showed similar dynamics. The exact numbers are indicated in the Results

section. Note the rapid increase in the number of genes expressed per cell between 5 h and 24 h and the slow decrease after a plateau between 24 h and 72 h. (C)

WGCNA reveals groups of genes with similar dynamic patterns in the average mRNA expression in donor1 and donor2. Details about WGNCA are given in

Materials and methods. Note that category 1 reproduces the best overall dynamic pattern observed for genes showing detectable expression in single cells in

(B). Category 1 = 5,194 genes (donor1) and 5,518 genes (donor2), category 2 = 3,977 genes (donor1) and 2,602 (donor2), category 3 = 1,089 genes (donor1)

and 609 genes (donor2). (Numerical values available in scRNA-seq repository GSE156734: “GSE156734_Spread_MARSseq_data_all_filters_20200728.csv”)

scATAC-seq, single-cell ATAC sequencing; scRNA-seq, single-cell RNA sequencing; WGCNA, weighted correlation network analysis.

https://doi.org/10.1371/journal.pbio.3001849.g001

PLOS BIOLOGY Genome decompaction leads to stochastic activation of gene expression

PLOS Biology | https://doi.org/10.1371/journal.pbio.3001849 October 26, 2022 4 / 30

https://doi.org/10.1371/journal.pbio.3001849.g001
https://doi.org/10.1371/journal.pbio.3001849


mRNA molecules per gene increased substantially. The average number of expressed genes

detected per cell at 5 h was only 512 +/− 243 in donor1. This number increased to 1,693

+/− 813 at 24 h and 2,543 +/− 751 at 48 h, but then decreased to 2,014 +/− 714 at 72 h and to

1,612 +/− 613 at 96 h. The tendency for donor2 were very identical (5 h– 760 genes +/− 297, at

24 h– 2,298 genes +/− 822, at 48 h– 2,036 genes +/− 809, at 72 h– 2,217 genes +/− 612, and at

96 h– 1,420 genes +/− 630). The increase in global transcription activity is very rapid, it

occurred between 5 h and 24 h, suggesting that the cells expand their repertoire of transcribed

genes (Fig 1B) as the initial phase of the fate decision process. During this phase, each cell

expresses a unique collection of transcripts. After 72 h, the number of genes expressed per cell

started to decrease, coinciding with the time when the first signs of lineage-specific transcrip-

tional changes appear [26]. While the initial burst in mRNA levels is the likely consequence of

increased transcription activity, it is worth mentioning that the MARS-seq protocol allows the

detection of steady-state mRNA levels only. Since these levels are strongly dependent both on

the transcription and degradation rates of the mRNA molecules, our observations only par-

tially reflect the actual transcriptional activity of the genes.

We used weighted correlation network analysis (WGCNA) of gene expression to investigate

whether group of genes with distinct correlated dynamics can be identified. Similar categories

of genes with highly correlated mean expression patterns over time were defined in both

donors (Fig 1C). The 3 largest categories together sum up to more than 10,200 genes for

donor1 and 8,700 genes for donor2. Although with slightly different dynamics, all gene catego-

ries display an initial increase followed by a decrease, pointing to a genome-wide phenome-

non. Thus, the CD34+ cells of both donors responded to cytokine stimulation in a similar way,

with a strong, but transient, gene up-regulation both in terms of gene and transcripts

numbers.

To investigate the structure of the cell population, we first visualized the data using the

usual dimension reduction method, Uniform Manifold Approximation and Projection

(UMAP) (Fig 2A, 2B, 2G and 2H). For both donors, the cells collected at different time points

clustered separately, suggesting a clear time progression in gene expression. In order to iden-

tify cell clusters with similar gene expression patterns, characterize their lineage progression

and the possible trajectories of the cells, we analyzed our data using Clustering And Lineage

Inference in Single-cell Transcriptional Analysis (CALISTA). This method is specifically dedi-

cated to the analysis of single-cell RNA data [29]. On the basis of the 2-state stochastic model

of gene transcription [30], CALISTA identifies cell clusters. The algorithm calculates and

assigns a likelihood value to each cell that reflects the joint probability of its gene expression

pattern and mRNA levels. On the basis of the 200 most variable genes (S2 Table), for both

donors, CALISTA identified 5 single-cell clusters (Fig 2A and 2G). These clusters almost per-

fectly overlapped with the 5 visually distinguishable groups of cells on UMAP. For both

donors, clusters #1 and #2 were essentially composed of cells isolated at 5 h and 24 h, respec-

tively (Fig 2C and 2I). Clusters #3, #4, and #5 were mixed containing cells collected at 24 h,

48 h, 72 h, and 96 h. Correspondingly, when the cells were grouped according to the time

point they were collected, we observed that some cells reached the profile corresponding to

clusters #4 or #5 as early as 48 h, while others needed 96 h to do so (Fig 2D and 2J). This sug-

gests that the gene expression burst was initiated immediately after cytokine stimulation and

then the cells progressed at their own pace and gradually became desynchronized. It is worth

to remind that the time-lapse observations [26] showed that the first cell cycle after stimulation

lasts on average 56 h. Therefore, it is likely that the initial global increase in gene expression,

the establishment of the mixed quasi-random expression profile and the beginning of the spec-

ification of distinct profiles occur during the same single cell cycle.

PLOS BIOLOGY Genome decompaction leads to stochastic activation of gene expression

PLOS Biology | https://doi.org/10.1371/journal.pbio.3001849 October 26, 2022 5 / 30

https://doi.org/10.1371/journal.pbio.3001849


CALISTA also calculated “cluster distances” between each pair of clusters. This metrics is

based on the maximum difference in the cumulative likelihood values of the gene expression

distribution [31]. A small cluster distance makes the transition between them more likely than

a large one. Thus, these distances helped to visualize the likely sequences of the lineage pro-

gression. The 2 graphs show that the cells of both donors display similar overall lineage

Fig 2. Evolution of transcriptome profiles after cell stimulation. The 2 donors are presented separately: donor1 on the left panels (A to F) and donor2 on the

right (G to L). (A, B and G, H) UMAP visualization of the single-cell RNA data. Each point represents a single cell. The cells belonging to the same cluster

identified by CALISTA are color coded on (A and G). On (B and H), the cells are colored according to the time point they were collected. Note the good

agreement with the separate UMAP groups. (C and I) Composition of the CALISTA clusters according to the time point the cells were collected. CALISTA

clustered the cells according to their transcription profile similarity. Note that the heterogeneity of the cell population increases in time and concomitantly to

the transcription changes as the individual cells progressed at different pace. (D and J) Clusters composition of the groups of cells collected at the different time

points. Note the relative homogeneity of the groups at early time points and their gradual diversification at later time points. (E and K) Time progression of the

cells through different transcription states as determined by CALISTA. The transition edges with the cluster distances are shown. They suggest that different

simultaneous trajectories are possible. The cluster color code is the same as in (D and J). Comp1 and Comp2 are the first 2 axes of the PCA used by CALISTA

for dimensionality reduction. (F and L) The index for critical transitions (Ic) calculated separately for each cluster. Note that in both donors, the index reaches

the maximum value in clusters #2 and #3, indicating a phase of critical transition. (Numerical values available in scRNA-seq repository GSE156734:

“GSE156734_CALISTA_results_d1csv.gz” “GSE156734_Spread_MARSseq_data_all_filters_20200728.csv” “GSE156734_CALISTA_results_d2.csv.gz”)

CALISTA, Clustering And Lineage Inference in Single-cell Transcriptional Analysis; PCA, principal component analysis; UMAP, Uniform Manifold

Approximation and Projection.

https://doi.org/10.1371/journal.pbio.3001849.g002
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trajectories (Fig 2E and 2K). Importantly, the close distances between clusters #3, #4, and #5

make likely that different simultaneous trajectories are possible and a cell can reach any of

these clusters through different pathways or switch between them, as suggested by the previ-

ously reported time-lapse observations [26].

Cell differentiation can be conceptualized as a transition between 2 stable states of the

underlying gene expression network (GRN) configurations [32]. GRNs can be described using

the tools designed for the study of dynamic complex systems. The rise and decrease of global

transcription intensity in our cells coincided with the period of multilineage-primed state and

is reminiscent of a transition between 2 states of complex dynamic systems. Therefore, in

order to determine how far the different cell clusters are from the critical transition point, we

used the “index for critical transitions” (Ic) [32], a simple metric of dynamic systems adapted

to gene expression networks. The evolution of this index indicates an upcoming state transi-

tion of the system independently of the exact mechanism of the transition by simply consider-

ing the variance between and within the elements of the system, i.e., the cells. To determine

the Ic, we calculated the gene–gene Pearson correlations between all pairs of gene vectors (R

(gn,gm)) and the cell–cell correlation between all pairs of cell state vectors (R(ci,cj)). The analy-

sis was performed separately for each cluster and each donor. Only the correlations with a

Pearson coefficient higher than 0.70 were taken into account. The Ic is calculated as the ratio

between the average of all R(gn,gm)-s and R(ci,cj)-s [32]. The results shown on Fig 2F and 2L

indicate that in both donors, the Ic sharply increased toward a maximum between 24 h and 48

h, followed by a gradual decrease by 72 h to 96 h. This dynamic is a typical hallmark of a criti-

cal transition between 24 h and 48 h and indicates that these cells are close to or going through

a critical transition point.

In order to determine if specific genes are involved in the massive transcription burst

observed during the initiation of cell fate transition, we performed a comparative gene ontol-

ogy (GO) analysis of the genes expressed in the cell clusters. Based on the dynamical network

biomarker method [33], we used for this analysis the list of genes for which the pairwise gene–

gene correlation score was greater than 0.70. The top “molecular function” GO categories

(p< 0.01) were compared between the clusters (S3 Table and S1 Fig). The analysis showed

similar enriched GO terms among clusters for both donor1 and donor2. Cluster #1 is charac-

terized essentially with broad-spectrum terms associated to translation, transcription activities,

and cellular interactions. These categories constitute a common base for the differentiation

between the clusters. Clusters #2, #3, and #4 showed the greatest variety of enriched GO terms,

ranging from nucleotide synthesis to metabolic activities, but with no apparent cell type–

related functions. Finally, in cluster #5, GO terms pointing to erythroid lineage–related func-

tions emerged (see S3 Table for GO terms enrichment statistics), suggesting that these cells

were progressing in their lineage commitment as described earlier [26].

With the exception of the cluster #5, the GO analysis could not detect coherent functional

categories of coexpressed genes. To validate the results of this analysis in a more explicit way,

we examined the expression of 11 transcription factor (TFAU : Pleasenotethat� TF � hasbeenfullyspelledoutas� transcriptionfactoratitsfirstmentioninthesentenceTovalidatetheresultsofthisanalysisinamore:::Pleasecorrectifnecessary:)-coding genes known to be specifi-

cally involved in the definition of hematopoietic progenitor functions typical for early stages of

differentiation [20]. All of them showed high cell-to-cell variation and any of them was

expressed in every cell (Figs 3A and S2). Overall, these genes followed the general temporal

pattern seen for the WGCNA category 1 genes. At 5 h, only sporadic TF expression was

detected in the minority of the cells. At 24 h and 48 h, both the number of expressing cells and

the mRNA molecules increased followed by a decrease at 72 h and 96 h (Figs 3A and S2). The

highest expression was seen for RUNX1, GATA2, and SPI1, 3 TFs considered as “pioneer” fac-

tors. At 5 h in both donors, only 10% to 40% of cells showed some expression of these 3 genes

(S2 Fig). At 48 h, they were expressed in up to 80% of the cells. Others, like FLI1 or GATA1,
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showed no expression at 5 h and sporadic expression was detected later stages. Their mosaic

expression did not contribute to the classification of the cells into subgroups (clusters).

Recently, Weinreb and colleagues [34] also found that the list of expressed genes defining the

subtypes in HSPCs is almost entirely composed by highly expressed and highly variable genes,

and only marginally enriched in TFs. These observations are at odds with the usual idea that

TFs in general and pioneer TFs more specifically play a key role in initiating gene expression

changes by chromatin opening and directly stimulating the transcription of their target genes

[35,36]. Our observations on the TF-coding genes revealed that they followed the same

dynamic increase after the stimulation of the cells as all other genes. Their role, including the

pioneer TFs such as GATA1, GATA2, SPI1, or RUNX1, in the initial transcription burst

appears therefore minor for the simple reason that they are expressed at a very low level and in

the minority of the cells only. Thus, the transcription burst is likely to be initiated by other

causes than TFs.

Chromatin decondensation as a nonspecific response to cell stimulation

To get a better insight in the first steps of the process, we investigated the chromatin structure

changes. We used ATAC-seq to determine the DNA accessibility in the CD34+ cells [37].

First, bulk ATAC-seq was used to establish the temporal dynamics of the chromatin and iden-

tify the global systemic changes in chromatin structure [38]. Then, scATAC-seq at the most

critical time point was used to confirm the observations.

Bulk ATAC-seq analysis was performed on 5,000 cells of 3 independent donors at 4 time

points (0 h, 5 h, 24 h, and 48 h after cell stimulation). Relevant accessible regions were identi-

fied using a stringent filter based on the reproducible detection of accessibility in all 3 donors

[39] (see S4 Table for donor-related information). We found that a large number of DNA

regions were already accessible at 0 h (Fig 4A) around the time the cells encounter the cyto-

kines. Their number slightly increased between 0 h and 5 h around the transcription start

sites/promoters, in the introns and exons, but not in the intergenic regions, then decreased

gradually at relatively slow rate over the next 48 h (Fig 4B). The time-dependent decrease in

the number of ATAC-seq peaks varied with their genomic location. While the number of

peaks in distal intergenic regions was halved between 5 h and 48 h, the decrease in the other

locations was less important (Fig 4B). In particular, the number of accessible promoter regions

decreased by only 15% between 0 h and 48 h. These changes indicate a rapid and global reorga-

nization of the chromatin structure.

Next, we have analyzed how individual peaks changed over time. First, we estimated the

size of the peaks that were detected at least at 2 consecutive time points. As a proxy for the size

of a peak, we used the number of sequenced reads (read counts) that define it. The increase or

decrease in read counts for a peak in the same genomic position and between 2 consecutive

time points was used to assess the tendency of the chromatin to open or close. We calculated

Fig 3. Single-cell transcript levels and accessibility of 11 hematopoietic TFs. (A) Heat maps representing the single-cell transcript levels in

individual cells for donor1 (left) and donor2 (right) at 24 h. Each raw represents a single gene. The gene name abbreviations are indicated for

both panels on the left. Each column represents a single cell. Note the heterogeneity of transcript levels for each gene and in each cell. All the

time points (5 h, 24 h, 48 h, and 96 h) are shown on the S2 Fig. (B) ATAC-seq accessibility profiles of the same 11 genes (in the same order) as

determined by the “bulk” approach at the 24-h time point. (All the other time points are shown on the S2 Fig). The red boxes on the average

profile indicate the accessible promoter-located peaks. Note that every gene has accessible promoters irrespective of the expression state shown

on (A). The size of the peaks is indicated in normalized “read counts”. The genes are not drawn to scale. (C) UMAP representation of the

accessibility of the 11 hematopoietic TF-coding genes as determined by scATAC-seq at 24 h. The same UMAP projection (also shown on Fig

5D) was colored as a function of the log2 number of integrations within the whole gene (the color code is on the right). Note the substantial cell-

to-cell and gene-to-gene heterogeneity of the accessibility. scATAC-seq, single-cell ATAC sequencing; TF, transcription factor; UMAP, Uniform

Manifold Approximation and Projection.

https://doi.org/10.1371/journal.pbio.3001849.g003
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Fig 4. Rapid decompaction and slow recompaction of the chromatin as detected by ATAC-seq. (A) Total number of accessible regions (peaks) detected in

all 3 independent donors at 4 different time points as determined by “bulk” ATAC-seq. Note the highest number of peaks is seen at 5 h. (B) Distribution of the

peaks in (A) in different genomic elements. A single peak may count for 2 categories if it spans 2 elements (promoter and first exon, for example) with the

exception of the intergenic category defined by the exclusion of all the others. (C) Volcano plot representation of the quantitative changes of the peaks detected

at 2 consecutive time points (0 h and 5 h on the left plot; 5 h and 24 h in the middle; and 24 h and 48 h on the right). The plots show how the size of the peaks

that are detected at both time points change. Each point represents the difference between the size of the same peak (as log2 of the number of reads) and the

p-value of the change. Peaks in promoter regions are highlighted in blue and in intergenic regions in yellow. The extent of the changes is calculated as log2

read-counts (on the horizontal axis). The log10 p-value is given in the vertical axis. The threshold of 0.01 is indicated by a red spotted line in each plot. Note the

significant increase in size (accessibility) between 0 h and 5 h and the decreasing total number of changes after 24 h. (D) Evolution of the ATAC peaks in
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the log-fold changes of the number of reads of each peak for time intervals and the associated

p-values and represented them as volcano plots (Fig 4C). We observed a tendency for the

peaks already present at 0 h to further increase in accessibility by 5 h, in particular peaks

located in the promoter regions (blue dots in Fig 4C). Between 5 h and 24 h, approximately

equal proportions of peaks increased or decreased. Between 24 h and 48 h, the size of the per-

sisting remained stable. Overall, our ATAC-seq analysis shows that the chromatin is already

relaxed at 0 h and undergo further changes in accessibility during the first 48 h. First, new

genomic elements become accessible and others, already open, become more accessible during

the first 5 h. Then, the trend is reversed: Both the number and size of ATAC-seq peaks

decreased between 5 h and 24 h. The latter trend was maintained, albeit at a lesser degree,

between 24 h and 48 h. This analysis provided a quantitative assessment of the major trends

between 2 time points in term of peak numbers, but it gave no information on the evolution

dynamics of individual peaks. Therefore, we plotted the size of each peak at each time. This

representation gave a precise account of the changes at each peak and at the same time pro-

vided an overview of the general tendency. On Fig 4D, we represented the peaks detected in

promoters and intergenic regions at all 4 time points. In the intergenic region, only 27% of the

peaks are detected at all time points. In both cases, the size of the peaks increased between 0 h

and 5 h and gradually decreased between 5 h and 48 h (Fig 4D). The peaks that displayed

more complex dynamics are represented on S3 Fig; either they appeared later than 5 h or dis-

appeared completely at some stage. However, in both categories, the general tendency to

decrease remained the same.

Then, we focused our analysis on the accessibility profiles of the 11 hematopoietic TF-cod-

ing genes that showed heterogenous cell-to-cell expression [20] (Figs 3B and S4). The ATAC

profiles showed that at least one of the promoters of these genes were already accessible at 0 h

and remained so at 24 h and 48 h (Figs 3B and S4).

Next, we analyzed the accessibility of the transcription factor binding site (TFBS) motifs.

We observed that many of the TFBSs of factors known hematopoietic TFs, such as RUNX1,

ERG, PU.1, and FLI1, were highly accessible at 0 h and remained accessible at a similar level

up to 48 h (S5 Fig and S5 Table). The easy access to a large variety of promoters may explain

how the mixed multilineage-primed transcription profile can emerge in these cells. We also

noted that CTCF (CCCTC-binding factor) binding sites were detected more than 5 times

more frequently in the accessible regions than expected on the basis of their frequency in the

genome. Indeed, CTCF is known to play a key role of chromatin remodeling and loop forma-

tion in general [40] and more specifically in the hematopoietic lineage [41].

The unusually high number of accessible gene promoters raised the possibility that this

reflects the mixture of several markedly different subpopulations with distinct chromatin pro-

files. To test this hypothesis, we performed scATAC-seq on a 24-h sample, because the average

promoters (blue, left panel) and intergenic regions (yellow, right panel). Each line represents the evolution of the population average DNA accessibility at the

same single genomic location between the time points. There are 8,972 peaks mapped to promoters and 6,171 peaks mapped to intergenic positions. The size of

each ATAC peak is plotted for every time point. Each line connects the points corresponding to the ATAC peaks detected at the same genomic position. Only

the peaks detected at each time point are represented. The red spotted line indicates the mean tendency. Note the general tendency to pass through a maximum

at 5 h. (A minority of peaks displayed different evolution; they are shown on S5 Fig). (Numerical values available in bulk ATAC-seq repository GSE156733:

“GSE156733_readCount_00h_Xvivo.txt.gz”; “GSE156733_readCount_05h_Xvivo.txt.gz”; “GSE156733_readCount_24h_Xvivo.txt.gz”;

“GSE156733_readCount_48h_Xvivo.txt.gz”. “GSE156733_peaks_intersection_00h_Xvivo_ann.csv.gz”; “GSE156733_peaks_intersection_05h_MP_ann.csv.gz”;

“GSE156733_peaks_intersection_24h_MP_ann.csv.gz”; “GSE156733_peaks_intersection_48h_MP_ann.csv.gz”. Numerical values available in bulk ATAC-seq

repository GSE156733: “GSE156733_DEseq2_results_05h_MP_vs_00h_Xvivo.txt.gz”; “GSE156733_DEseq2_results_24h_MP_vs_05h_MP.txt.gz”;

“GSE156733_DEseq2_results_48h_MP_vs_24h_MP.txt.gz”; “GSE156733_readCount_00h_Xvivo.txt.gz”; “GSE156733_readCount_05h_Xvivo.txt.gz”;

“GSE156733_readCount_24h_Xvivo.txt.gz”; “GSE156733_readCount_48h_Xvivo.txt.gz”; “GSE156733_peaks_intersection_00h_Xvivo_ann.csv.gz”;

“GSE156733_peaks_intersection_05h_MP_ann.csv.gz”; “GSE156733_peaks_intersection_24h_MP_ann.csv.gz”;

“GSE156733_peaks_intersection_48h_MP_ann.csv.gz”).

https://doi.org/10.1371/journal.pbio.3001849.g004

PLOS BIOLOGY Genome decompaction leads to stochastic activation of gene expression

PLOS Biology | https://doi.org/10.1371/journal.pbio.3001849 October 26, 2022 11 / 30

https://doi.org/10.1371/journal.pbio.3001849.g004
https://doi.org/10.1371/journal.pbio.3001849


number of genes expressed per cell and the level of mRNAs were close to maximum at this

time point. We used the same number of cells as in the bulk version (5,000 cells). The results

are shown on Fig 5.

Overall, more than 250,000 accessible sites (peaks) were detected after aggregation of the

single-cell data. This number is comparable with the number of peaks detected in each individ-

ual donor in the bulk ATAC-seq experiment. Most of these peaks in scATAC-seq were shared

by a low number of cells (the median value is only 120 cells sharing a peak), signifying that half

of the peaks were present in less than 2.4% of the cells (Fig 5A). If we consider only the pro-

moter-spanning insertions, the median number of sharing cells was 382 (Fig 5B), whereas the

median number of the cells sharing the same intergenic regions peaks was 111 (Fig 5C).

When the results of the bulk and single-cell approaches were compared, we found that 99%

of the peaks obtained by “bulk” ATAC-seq were also detected by the single-cell approach. In

addition, the commonly detected peaks between bulk and single-cell ATAC-seq are also the

most shared peaks between cells in the single-cell dataset. The median number of cells that

shared one of these peaks was 1,104 (Fig 5A). This number is much higher if we consider only

the gene promoter-spanning peaks. Each of the 11,570 promoter-spanning peaks detected in

“bulk” were also detected by the “single-cell” approach, indicating that these promoters were

reproducibly detected as accessible in the cells of each donor. BetweenAU : Pleasecheckandconfirmthattheeditstothesentence� Between2; 000and4; 000cellssharedaboutthehalfof :::� arecorrect; andamendifnecessary:2,000 and 4,000 cells

shared about the half of these peaks (the median number of cells was 2,700; Fig 5B). Qualita-

tively similar picture emerged from the comparison of the peaks detected in the intergenic

regions by the “bulk” and “single-cell” approaches (Fig 5C). The intergenic peaks identified by

both the “bulk” and “single-cell” approach were shared by a median number of 755 cells versus

the 111 cells for the peaks detected only by the single-cell approach (Fig 5C).

scATAC-seq allows to assess the heterogeneity of the cell population based on the chroma-

tin structure. As shown on the UMAP visualization (Fig 5D), a major (82%) and a minor (14%

of all the cells) group of cells were identified. This is in good agreement with the single-cell

mRNA expression analysis, which also identified a minor subpopulation at 24 h (Fig 2D and

2J). The minor population cells had lower number of accessible regions (Fig 5E). We found

about 10% less accessible promoters and 40% less intergenic genomic sites in the minor com-

pared to the major population (Fig 5F and 5G).

As shown in Fig 5F, the number of promoter-specific peaks detected in most of the cells

was close to 6,000. Given that the average number of genes expressed in individual cell at this

time point is between 2,000 and 2,500 (Fig 1B), this means that there are more promoters

available for transcription than the number of genes actually transcribed. In addition, the

median number of promoter-specific peaks shared by the same cell is higher than the same

number for intergenic peaks (Fig 5B and 5C). Our data do not provide precise explanation for

the higher number of promoter-spanning peaks shared between the cells. One can only specu-

late that intergenic regions made accessible are less engaged in functional interactions than

promoter-specific regions. As a consequence, they remain accessible for shorter periods. This

results in less cells where a particular intergenic region is accessible at the moment of the

snapshot.

In order to assess the heterogeneity of the 11 hematopoietic-specific genes, we visualized

the aggregated number of ATAC insertions found in each gene in each cell on the same

UMAP projection (Fig 3C). The results suggest high gene-to-gene and cell-to-cell heterogene-

ity and only a modest overall correlation between the accessibility and transcript levels. For

example, RUNX1 showed the highest expression at 24 h (Fig 3A) and appeared as highly acces-

sible in most of the cells (Fig 3C). The poorly expressed GATA1 appeared as poorly accessible

in the majority of the cells (Fig 3A and 3C). By contrast, CBFA2T3, ERG, or SMAD6 appeared

to be highly accessible but were poorly expressed (Fig 3A and 3C).
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Fig 5. scATAC-seq analysis of chromatin accessibility at 24 h poststimulation. (A) Histogram of the distribution of the total number of peaks as a function

of cells sharing them. The distribution of the peaks detected only by scATAC-seq are in pink, and those detected both by single-cell and bulk ATAC-seq are in

green. The median numbers are indicated below the histogram. Note that the peaks detected by scATAC-seq only are shared by a low number of cells only,

while those detected by both methods are present in a large number of cells. (B) Histogram of the distribution of the promoter-specific peaks as a function of

cells sharing them. The color codes are the same as in (A). The peaks detected by both methods are shared by a very large number of cells. (C) Histogram of the
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It is likely that the observed cell-to-cell heterogeneity of DNA accessibility at the analyzed

loci can only partially be explained by the high incidence of failed detections. Our data pro-

vided no information on the intrinsic dynamic fluctuations of the chromatin structure. These

fluctuations vary from cell to cell and from locus to locus on a time scale of milliseconds for

individual nucleosomes [42] to hundreds of seconds for large chromatin domains [43] that is

not comparable to the time scale of this study (hours to days). Nevertheless, these fluctuations

also increase the heterogeneity of a population detected by a snapshot and produce a broad

spectrum of genome configurations in the cells [44]. This heterogeneity certainly contributes

to the overall transcriptional heterogeneity observed in the cells during this period.

Overall, the scATAC-seq confirmed the conjecture of a genome-wide chromatin decom-

paction made on the basis of the “bulk” approach. In addition, it demonstrated the high cell-

to-cell heterogeneity of the chromatin structure in the genome of the 24-h cells, suggesting

that the global chromatin remodeling itself is a highly dynamic and variable process.

Transcriptional burst lags behind chromatin decompaction by several

hours

The comparison of the chromatin and transcriptional changes shows that the gene transcrip-

tion burst followed the chromatin decompaction with a delay that exceeds the usual time scale

of transcriptional activation. It is a long-standing conundrum of how the chromatin opens to

allow TF access to the regulatory sites. One of the possible explanations is that chromatin

opening is initiated by specific TFs [35,45]. For this explanation to be correct, TFs must be

present before or at the moment of chromatin opening. Therefore, we examined how the

changes in the accessibility of gene promoter regions are related to the changes in gene expres-

sion, more particularly to the expression of TF-coding genes. Since the joint detection of

mRNAs and accessible sites in the same cell is still technically challenging to provide convinc-

ing results, we could only compare independently obtained single-cell RNA-seq and ATAC-

seq data.

To do this, we expanded the circle of potential players to TFs other than those analyzed

above. We explored the expression of every TF-coding gene in our dataset. We sought to deter-

mine if there was an association between the changes in the expression of TF-coding genes in

general and changes in the expression of their target genes. We assumed that the mRNA levels

of TF-coding genes were acceptable surrogates of the TF protein abundance in a cell. If the

expression of the TF-coding genes precedes that of their target genes, it is possible that the

transcription burst of the target genes is at least partially induced by the TFs. In order to test

this hypothetic association, we categorized the genes according to the variation of their mRNA

levels. This classification is based on the number of UMIs detected in a cell (see Materials and

methods section for details). Genes that showed a statistically significant change in the corre-

sponding mRNA level in the 2 donors between 2 time points are referred to as differentially

expressed (DE). Between 5 h and 24 h, we found 4,415 DE genes of the total number of 11,248

genes detected. Note that DE genes were essentially up-regulated; only 110 genes were down-

distribution of the intergenic peaks as a function of cells sharing them. The color codes are the same as in (A) and (B). The peaks detected by both methods are

shared by more cells than those detected only by scATAC-seq, but both numbers are low. (D) UMAP visualization of the scATAC-seq data. Two significant

groups of cells were identified; a major (82% of the cells) and a minor (14% of all the cells). (E) Histogram of the distribution of total number of peaks detected

per cell belonging to the large (cluster 0) or small (cluster 1) cluster as seen in (D). Note the lower number of peaks in the cells of the small cluster. (F)

Histogram of the distribution of promoter-specific peaks detected per cell belonging to the large (cluster 0) or small (cluster 1) cluster. Here, the difference

between the number of promoter-specific peaks is smaller between the 2 clusters. (G) Histogram of the distribution of the intergenic peaks detected per cell

belonging to the large (cluster 0) or small (cluster 1) cluster. More intergenic peaks were detected in the large cluster than in the small. scATAC-seq, single-cell

ATAC sequencing; UMAP, Uniform Manifold Approximation and Projection.

https://doi.org/10.1371/journal.pbio.3001849.g005
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regulated. Among those DE genes, we identified 56 TF-coding genes (referred as DE TF-cod-

ing genes). Using the Regulatory Circuits resource [46], we found 2,630 DE genes (referred as

DE target genes) targeted by at least one of the TFs of DE TF-coding genes (Fig 6B). We iden-

tified 1,785 DE genes targeted only by one of the 414 non-DE TFs. Using a two-sided Fisher

exact test, we demonstrated that there are proportionally more DE genes targeted by DE TF-

coding genes than those that are targeted only by non-DE TF coding ones (p = 1.4 × 10−6) (Fig

6B). In other words, if the expression of a TF-coding gene increased, it was frequently paral-

leled by the increase of the expression of its target genes. However, approximately 40% of the

DE target genes increased their transcription without being targeted by a DE TF, suggesting

that the TFs are not necessarily required to generate the transcription burst. Using the same

approach applied to the period between 24 h and 48 h, only 16 TFs were detected as DE and

among them 8 were already classified as such between 5 h and 24 h. No significant difference

was found between the proportion of DE genes targeted by the DE and non-DE TF-coding

genes (Fig 6B). The low level of association between the genes and their TFs and the decrease

of the number of gene expression changes suggests that the initial transcription burst observed

between 5 h and 24 h came close to the maximum.

We performed GO analysis of the DE TFs and non-DE TFs. A significant fraction of the

DE TFs is associated to functionalities related to the hematopoietic system (S6A and S6C Fig),

such as “regulation of hematopoiesis, myeloid cell differentiation, mononuclear cell differenti-

ation etc.” No such enrichment was found in the group of the non-DE TFs (S6B and S6D

Fig). The complete list of DE TFs and non-DE TFs together with their target genes are given in

S6 Table.

As a next step to integrate the gene expression and DNA accessibility observations, we

grouped the promoters detected in the ATAC-seq analysis in 4 groups: “open-open”, “open-

closed”, “closed-closed” and “closed-open”, depending on how the chromatin around them

changed conformation between the 2 time points (Fig 6A). We then compared the lists of the

genes corresponding to each category of promoters to the lists of DE and non-DE genes. The

period between 5 h and 24 h is particularly interesting and important, because most of the

changes in gene expression occur at this stage. We found that the promoters of the 74.2% of

DE genes were in “open-open” configuration (Fig 6C). Hence, their promoters were already

accessible 5 h after cell stimulation, long before the burst of transcription. Enrichment analysis

showed that this is significantly higher than the proportion of the DE genes in the other cate-

gories of promoter configuration (two-sided Fisher exact test: p< 10−4) (Fig 6C). The same

analysis performed on data obtained between 24 h and 48 h revealed similar repartition of DE

genes among categories of promoter configuration (Fig 6D). Particularly, more than 60% of

DE genes are associated with the “open-open” promoter configuration. However, during this

period, the total number of DE genes is much lower (n = 1,849) compared to the 5-h to 24-h

period (n = 6,230) and statistical tests did not reveal any significant overrepresentation of gene

categories (Fig 6D).

Finally, we examined how differential expression of TF-coding genes correlated to their tar-

get gene transcription and on the DNA accessibility of the target gene’s promoter. To do this,

we further divided the category of DE genes with “open-open” promoters into 2 subcategories,

depending whether they were targeted by a DE TF-coding or non-DE TF-coding gene (Fig

6E). The same subdivision was done for the other categories of promoter configurations also

(Fig 6E) and for the period of 24 h to 48 h (Fig 6F). Between 5 h and 24 h, we found signifi-

cantly more DE TF-coding genes targeted DE genes in the category with “open-open” chroma-

tin configuration than in all other categories (46%; two-sided Fisher exact test: p< 2.5 × 10−7)

(Fig 6E). In comparison, only 33% of the DE target genes were in the non-DE TF-coding gene
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Fig 6. Integration of the ATAC-seq and scRNA-seq data. (A) Schematic representation of the classification of the gene promoters on the basis of their

accessibility over an interval between 2 time points and genes depending how their transcription changes during the same time interval. The comparison of

ATAC-seq and RNA-seq data was done using this classification. (B) Enrichment analysis of the DE target genes depending on if they were targeted by DE TF-

coding-genes or non-DE TF-coding genes. Left panel: between 5 h and 24 h; right panel: between 24 h and 48 h. The color code identifies the genes targeted by

DE TFs or non-DE TFs. As indicated by the asterisks, the genes targeted by DE TFs were overrepresented among the DE genes as determined by two-sided

Fisher exact test (p = 1.4 × 10−6). (C, D) The total number of DE target genes as a function of the evolution of the promoter accessibility between 5 h and 24 h

(C) and 24 h and 48 h (D). Note that DE genes are significantly associated to the open-open promoter configuration between 5 h and 24 h (indicated by the

asterisks; two-sided Fisher exact test: p< 10−4). (E, F) The total number of DE target genes as a function of the evolution of the promoter accessibility and as

the function of if they are targeted by DE TFs (blue) or non-DE TFs (green) between 5 h and 24 h (E) and 24 h and 48 h (F) (each category represented on C)

and (D) is divided into two. Note that only the DE genes with open-open promoter between 5 h and 24 h and regulated by DE TFs are significantly
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category with “open-open” chromatin. No significant enrichment was found in the categories

between 24 h and 48 h (Fig 6F).

Taken together, this complex enrichment analysis points to a rather simple conclusion. The

transcription of a gene is more likely potentiated by specific TFs if its promoter was already

accessible before the transcription burst. Closed chromatin impedes the action of TFs, even if

the expression of this latter increases.

Taken together, the integration of gene expression and chromatin accessibility data revealed

the biphasic chronology of chromatin and transcriptional changes in the CD34+ cells. We

observed that genome-wide nonspecific chromatin opening that starts before the stimulation

of the cells precedes the multilineage-type mixed hyperexpression of the genome. After 48 h,

both gene hyperexpression and the number of accessible promoters and extragenic sites

started to decrease concomitantly with the emergence of distinct cell populations with particu-

lar gene expression patterns.

Discussion

Progress through a transitional cell state marked by the rise and fall in transcriptional uncer-

tainty and a concomitant rise and fall of cell-to-cell variability was previously reported as a uni-

versal feature of cells during the initial phases of the fate commitment process [47]. We show

here that the global increase in transcription in CD34+ cells is made possible by the wide-

spread and nonspecific chromatin opening that makes accessible more than 50% of gene pro-

moters in the genome. The process of global chromatin decompaction is initiated before or

around the moment the cells are stimulated by the cytokines. By contrast, the burst of tran-

scription that follows the chromatin decompaction by several hours is dependent on the cyto-

kines because without such stimulation, the cells do not grow and die soon. Hence, the

transcription burst is made possible but not initiated by the chromatin decompaction. In addi-

tion, TFs cannot play a major role in the chromatin opening, because the expression of the

genes coding for those factors starts later and remains sporadic. Importantly, the number of

gene promoters that become accessible largely exceeds the number of genes that are actually

transcribed in each cell (Figs 1B and 4B), raising the question of why some genes become tran-

scribed in a cell while others not. It is hardly possible to explain this observation as a result of a

specific and targeted gene activation. Each cell has a different gene expression pattern, and it is

highly unlikely that a different specific mechanism is acting in each individual cell. However, if

the cell is viewed as a complex system composed of a multitude of interacting components

(genes, proteins, small metabolites, etc.), the phenomenon of a global chromatin decompac-

tion followed by a multilineage gene expression burst with a strong stochastic component

appears as a manifestation of the state transition typical for dynamical complex systems under

stress [48,49]. The rise and fall of the index for critical transitions (Ic) (Fig 2F and 2L) is an

unambiguous indicator that the cells behave as a dynamical complex system close to the transi-

tion point between stable states. By creating a permissive chromatin landscape and transiently

increasing the transcriptional fluctuations, the nonspecific chromatin opening is likely to be

essential to cell fate transition. The preeminent role of the genome reorganization and more

particularly of the CTCF protein in the initiation of the transition state is now recognized [50]

overrepresented (indicated by the asterisks; two-sided Fisher exact test: p< 2.5 × 10−7). (Numerical values available in scRNA-seq repository GSE156734 used

for differential expression “GSE156734_Spread_MARSseq_data_all_filters_20200728.csv”. Numerical values available in bulk ATAC-seq repository

GSE156733 for open/closed promoter information: “GSE156733_peaks_intersection_00h_Xvivo_ann.csv.gz”; “GSE156733_peaks_intersection_05h_MP_ann.

csv.gz”; “GSE156733_peaks_intersection_24h_MP_ann.csv.gz”; “GSE156733_peaks_intersection_48h_MP_ann.csv.gz”) DE, differentially expressed; scRNA-

seq, single-cell RNA sequencing; TF, transcription factor.

https://doi.org/10.1371/journal.pbio.3001849.g006
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and further supported by the increased number of the available binding sites seen in our study

(S5 Fig).

Coherent transcription profiles emerge from this heterogeneous transitory state concomi-

tantly with the gradual chromatin compaction. As a consequence, gene promoters and inter-

genic sites in the genome become gradually inaccessible again (Fig 4B). Some promoters

gradually become repressed by chromatin closing, while others are stabilized in an open chro-

matin configuration. The stabilization of the transcriptome is presumably the consequence of

these chromatin changes. Contrary to the initial phase, the role of TFs appears crucial at this

stage. Indeed, between 5 h and 24 h, the increase of the transcription of TF-coding genes corre-

lated with the similar increase of their target genes with accessible promoters. No association

of the expression of the TF-coding genes is observed with their target genes if their promoters

are in “closed” chromatin configuration around the promoter (Fig 6E), indicating that chro-

matin accessibility plays a permissive or gating role for TF action. Since the number of the

open promoters is higher at the beginning of the process than the number of expressed genes,

a competition for the available TFs among accessible promoters may explain the transcrip-

tional and phenotypic fluctuations observed during this period [26]. These fluctuations cease

when the transcriptome is stabilized [26]. The role of TFs may be crucial during the second

phase, because their binding may keep the target genes transcribed and prevent the closing of

the chromatin. It is worth to remind that TF-coding genes playing a role in the hematopoietic

differentiation represent a large fraction of the DE TF-coding genes (S6 Fig and S6 Table) and

that their target sequence motifs are also frequent in the accessible regions (S5 Fig and S5

Table). It is likely that during the synchronous transcription burst of a large number of genes,

the hematopoietic TFs stabilize the open chromatin of their target genes through binding their

sequence motifs. In return, this binding stabilizes the TF proteins. Since regulatory sequences

of TF-coding genes also bind TFs, the result may be a self-reinforcing network that stimulates

the transcription of both the TF-coding and their target genes, as suggested [51].

The proposed scenario of general nonspecific chromatin destabilization followed by a selec-

tive repression of the genes is also supported by the observations showing that the inhibition

of chromatin compaction using valproic acid (VPA), a histone deacetylase inhibitor, can main-

tain the multilineage-primed state with promiscuous transcription profile for a long period

[26,28,52]. The removal of VPA allows defined transcriptome profiles to be established [28].

Therefore, global chromatin structural changes appear to be causally involved both in the gen-

eration of a nonspecific multilineage-primed transcriptional state and the stabilization of the

cell fate choice.

The observations reported here represent an example of the general pattern of changes dur-

ing the process of cell fate choice. Several reports on various cell models converge to conclu-

sions similar to ours. For example, a recent study of human fetal hematopoietic cells

demonstrated that extensive epigenetic, but not transcriptional priming of HSC/MPPs, occurs

prior to lineage commitment [53]. In another study, monitoring the alterations in the chroma-

tin structure and the nuclear architecture during B cell activation revealed that as quiescent

lymphocytes encounter antigens, they rapidly decondense chromatin by spreading nucleo-

somes from the nuclear matrix to the entire nucleoplasm, decondensing chromatin clusters

into mononucleosome fibers, and strengthening their nuclear architecture by creating new

CTCF loops and contact domains. TheAU : Pleasecheckandconfirmthattheeditstothesentence� TheglobaldecompactionandloopformationrequireMyc; constantenergy:::� arecorrect; andamendifnecessary:global decompaction and loop formation require Myc,

constant energy input, and histone acetylation and are accompanied by an increase in regula-

tory DNA interactions and gene expression [41]. Studies on hair bulb stem cells also showed

that changes in chromatin accessibility precede gene expression changes and lineage commit-

ment [54]. Similarly, the loss of DNA methylation has been shown to be essential for the estab-

lishment of chromatin accessibility that determines differential TF binding in neural stem and
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progenitor cells. Following the differentiation into glial cells, new methylation is acquired to

maintain the identity of glial cells by silencing neuronal genes [55]. Furthermore, in human

cells, most changes during differentiation arise from dramatic redistributions of repressive

H3K9me3 and H3K27me3 marks, which form blocks that significantly expand in differenti-

ated cells [56].

It is of particular importance for further understanding to investigate the process of tran-

scriptome stabilization and the feedback mechanisms that must accompany the emergence of

specific gene expression patterns. In this respect, it may be relevant that a dynamic positive

feedback loop between permissive chromatin and translational output has been previously

reported for embryonic stem and in CD34+ cells [57]. It is noteworthy that many of the genes

with the most variable expression that contribute significantly to the specification of the

emerging transcription patterns are ribosomal protein (RP)-coding genes (S2 Table), thus

impacting the process of translation [58]. A high degree of RP expression heterogeneity has

already been observed in hematopoietic cells, where a small subset of RPs can discriminate cell

types belonging to different hematopoietic lineages [59]. Therefore, it is possible that, in addi-

tion to the TF and promoter interactions, a feedback action of the translational output may

also contribute to the stabilization of the chromatin. Analogous feedback regulation has been

described in ES cells where the translational output directly promotes a permissive chromatin

environment, in part by maintaining the levels of unstable euchromatin [57]. Clearly, the selec-

tive stabilization of the chromatin is impacted by many more mechanisms, but their respective

roles remain to be clarified.

The observations reported here together with other studies bring a new perspective to our

understanding of how cell fate commitment is initiated. We propose the following hypotheti-

cal scenario. The observed stochastic and highly variable gene expression profile is made pos-

sible by the global chromatin decompaction. This can be seen as a rapid but nonspecific

response to a substantial and stressful change in the cell’s environment. This reaction is anal-

ogous to the physiological stress response whose role is to prepare the organism to meet new

and unforeseen circumstances [60]. The mechanisms of the first stage are not yet identified,

but explicit and testable hypotheses have been made on their nature [14,15]. The first rapid

and nonspecific response is followed by a slower adaptation process that is contingent on the

cells own history (cellular memory) and the microenvironmental constraints. The general

and nonspecific opening of the chromatin lifts the transcription repression creating the

opportunity for the quasi-random activation of genes coding for a large variety of proteins

and functional RNAs that were not expressed before. It is likely that in each cell, several con-

current regulatory networks (GRNs) can potentially emerge from the mixed profile. Yet,

only 1 GRN will be stabilized at the end of the fate decision process. For example, in our

case, each of the CD34+ cells adopt one of the 2 profiles observed. However, the exact nature

of the GRN that will emerge from this disorder is not predetermined. The GRN that will pre-

vail in each cell is contingent on the interactions of the cell with the environment including

the other cells (extrinsic constraints) and on the cell’s own history recorded by the cellular

memory mechanisms (intrinsic constraints). This could be a kind of multistep iterative

exploratory trial-and-error process with several potential outcomes. The stochastic fluctua-

tions of molecular interactions within the cell’s nucleus and cytoplasm drive the transitions

between the possible GRNs. In a previous paper, using time-lapse microscopy and molecular

analysis, we identified “hesitant” cells with this kind of behavior. The GRN that enables the

cell to express new functionalities (phenotype) complying better with the constraints in the

new microenvironment will be stabilized by feedback mechanisms that reduce the fluctua-

tions. Overall, the process of fate commitment could be viewed as analogous to a continuous

iterative process of constrained optimization of the cell phenotype, a kind of “learning
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process”. This way to conceptualize fate commitment has been theorized long ago [11,12,60–

62], and it is compatible by an increasing number of experimental studies [23,26,32,47,63].

The observations reported in this paper shed light on the initial step of this process. We hope

that they will contribute to the still unsettled debate on the nature of cell fate commitment

and stimulate new experimental studies.

Materials and methods

Cell culture

Mononuclear cells were isolated from umbilical cord blood from anonymous healthy donors

by density centrifugation using Ficoll (Biocoll, Merck Millipore). Human CD34+ cells were

then enriched in the sample by immunomagnetic beads using an AutoMACSpro (Miltenyi

Biotec). After collection, enriched CD34+ cells were frozen in a cryopreservation medium con-

taining 90% of fetal bovine serum (Eurobio) and 10% of dimethylsulfoxide (Sigma) and stored

in liquid nitrogen.

After thawing, the CD34+ cells were cultured in a 96-well plate in a humidified 5% CO2

incubator at 37˚C. Cells were cultured in prestimulation medium made of XVivo (Lonza) sup-

plemented with penicillin/streptomycin (respectively, 100 U/mL and 100 μg/mL; Gibco,

Thermo Fisher Scientific), 50 ng/ml h-FLT3-ligand, 25 ng/ml h-SCF, 25 ng/ml h-TPO, and

10 ng/ml h-IL3 (Miltenyi) final concentration.

Fast ATAC-seq

We used Fast ATAC-seq with minor modifications. This protocol was optimized for blood

cells [37]. Prior to transposition, cells were marked with 7AAD and dead cells were removed

by FACS (Beckman Coulter). Removing dead cells is an important parameter to ensure clear

nucleosome patterns and to improve signal to noise ratio. A total of 5,000 living cells were

used at each time point. A 1-step gentle membrane permeabilization and DNA transposition

was performed by adding 50 μl of transposition mixture (25 μL TD buffer 2×, 2.5 μL of trans-

posase TDE1 (Illumina), 0AU : PleasenotethatasperPLOSstyle; alwaysuseperiods; notcommas; toindicatedecimalpoints:Hence; commasinalldecimalsthroughoutthetexthavebeenreplacedwithperiods:.5 μL digitonin 0.1% (Promega), and 22 μL water) to the cell pellets

and by incubating at 37˚C for 30 min under agitation. Obtained transposed DNA were then

purified using MinElute PCR Purification Kit (Qiagen) and preamplified using Nextera bar-

coded primers (Illumina) and NEBNext High-Fidelity 2xPCR Master Mix (New England Bio-

labs) for 5 cycles. A quantitative PCR amplification was made on 5 μL of the sample with

SYBR Green to determine the number of additional cycles in order to generate libraries with a

minimal number of PCR cycles and to limit PCR bias (according to [37]). Appropriate number

of PCR cycles were applied on the rest of the preamplified samples. PCR fragments were puri-

fied with MinElute PCR Purification Kit (Qiagen) to get rid of unused primers. A supplemen-

tal purification step was performed using Ampure beads kit (Beckman Coulter) to size-select

DNA fragments ranging between 100 and 700 pb. ATAC-seq libraries were checked for quality

using Bioanalyzer (Agilent) prior to sequencing and sequenced in paired-end mode (2 × 50

bp) on the Illumina HiSeq2500 platform.

Single-cell ATAC-seq

A total of 5,000 living cells collected 24 h after stimulation were used. The experiment and raw

data processing/peak annotation was performed by the technical platform of the Institute

IMAGINE (https://www.institutimagine.org/en) using the 10X Genomics Chromium

technology.
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Single-cell RNA sequencing adapted from MARS-seq

To perform scRNA-seq, we adapted the MARS-seq protocol [64]. CD34+ cells were stained

with 7AAD to only work with living cells, and cells were isolated by FACS. Individual cells

were sorted into 96-well plates containing 4 μL of lysis buffer with specific barcoded RT prim-

ers (final concentration: 0.2% Triton, 0.4 U/μL RNaseOUT (Thermo Fisher Scientific), 400

nM idx_RT_primers). Idx_RT_primers contain a T7 RNA polymerase promoter for further in

vitro transcription (IVT), single-cell barcodes for subsequent demultiplexing and UMIs allow-

ing correction for amplification biases. After cell sorting, plates were immediately centrifuged

and put into dry ice before storage at −80˚C preceding the reverse transcription (RT). To open

RNA secondary structure, plates containing single cells were incubated at 72˚C for 3 min and

immediately put in ice. In each well, 4 μL of RT mix were added (final concentration of RT

mix: 20 mM DTT, 2 mM dNTP, 2× First stranded buffer, 5 U/μL Superscript III RT enzyme,

10% (W/V) PEG 8000). PEG8000 was added in the RT mix because it has been shown that it

can increase the cDNA yield in scRNA sequencing [65]. ERCC RNA spike-in mix (Thermo

Fisher Scientific) was also added to the solution for further amplification quality filtering (dilu-

tion 1/40.10e7). The plate was then put into thermocycler (thermocycler program: 42˚C– 2

min; 50˚C– 50 min; 85˚C– 5 min; 4˚C–hold).

After first retrotranscription, samples were pooled (see [64]) and ExonucleaseI digestion

was performed, followed by 1.2× AMpure beads purification kit (Beckman Coulter) to keep

only retrotranscribed single-strand cDNA. Samples were eluted in 17 μL of 10 mM Tris–HCl

(pH 7.5). Second strand cDNA synthesis (SSS) using NEBNext mRNA second strand synthesis

module kit was then performed (SSS mix: 2 μL 10× SSS buffer, 1 μL SSS enzyme; thermocycler

program: 16˚C– 150 min; 65˚C– 20 min; 4˚C–hold). Obtained cDNA was linearly amplified

by overnight IVT (HighScribe T7 High Yield RNA synthesis, New England Biolabs) at 37˚C

under T7 promoter. The product was purified with 1.3× AMpure beads and eluted in 10 μL of

10 mM Tris–HCl, 0.1 mM EDTA. For 3 min, 9 μL of amplified RNA were then enzymatically

fragmented with 1 μL of 10× RNA fragmentation reagents (Thermo Fisher Scientific) in 70˚C.

The fragmentation was stopped with 34 μL of STOP mix (1.2 μL Stop solution, 26.4 μL

AMpure beads, 9.8 μL TE), and samples were purified. Differing from original MARS-seq pro-

tocol, the second RT was done with primers (P5N6_XXXX) containing random hexamers and

specific barcode to distinguish the different plates (i.e., times) (final concentration: 5 mM

DTT, 500 μM dNTP, 10 μM P5N6_XXXX, 1× First stranded buffer, 10 U/μL Superscript III

RT enzyme, 2 U/μL RNaseOUT; thermocycler program: 25˚C– 5 min; 55˚C– 20 min; 70˚C–

15 min; 4˚C–hold). cDNA was purified with 1.2× AMpure beads and eluted in 10 μL.

As for ATAC-seq, the appropriate number of PCR cycles was determined using a fraction

of the library with SYBR Green based qPCR as described in [66] (final concentration: 1× Kapa

Hifi HotSTart PCR mix, 1× SybrGreen, 0.5 μM mix primer P5.Rd1/P7.Rd2; thermocycler pro-

gram: 95˚C– 3 min– 40 cycles; 98˚C– 20 s; 57˚C– 30 s; 72˚C– 40 s; 72˚C– 5 min; 4˚C–hold). After

PCR amplification, libraries were purified with 0.7× AMpure beads. Libraries were checked for

quality, using Bioanalyzer HighSensitivity DNA (Agilent) prior to sequencing. Libraries were

finally sequenced in paired-end mode (2 × 50 bp) on Illumina HiSeq2500 platform.

Idx RT primers: TTTTTTTTTTTTTTTTTTTTN = poly-T allowing matching with mRNA

poly-A tail, NNNN = 4 bases UMI (randomly generated), XXXXXX = 6 bases cell barcode.

The rest of the sequence consists of a PCR adaptor and a T7 promoter sequence for further

IVT amplification.

P5N6 XXX: NNNNNN = random hexamer allowing the capture of the fragmented IVT ampli-

fied RNA, XXXX = 4 bases “plate barcode”. The rest of the sequence consists of a PCR adaptor.

P5.Rd1/P7.Rd2: P5 and P7 Illumina sequencing adaptors.
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Bioinformatic analysis

Single-cell RNA-seq (scRNA-seq) analysis. Raw data processing: Cell and plate barcode

demultiplexing steps were accomplished under strict selection criteria with the following

command:

< cutadapt -q 30 -e 0 -m 30:20—no-trim—no-indels—pair-filter = any>

ERCC mapping was performed using bowtie2 [67] on ERCC known sequences, and regular

mapping was performed using STAR [68] on the reference genome version hg19 and aligned

reads annotated. After quality filtering, reads and UMIs count per gene and ERCC were calcu-

lated for expression analysis.

Cell and gene filtering: Chromosome Y was removed from the analysis to avoid unwanted

effects, and only protein coding genes were kept for further analysis. Cells with less than

80,000 total reads were removed, as well as cells with more than 10% of reads corresponding to

mitochondrial RNA. To reduce undesired effect due to PCR nonlinear amplification, ERCC

spikes were used to assess the linearity of amplification. Pearson correlation coefficient was cal-

culated for each cell, and only cells above 0.6 were retained. For each cell remaining, genes

were defined as detectable if at least 2 cells contained more than a single UMI (= transcript)

and a minimum of 5 reads in total.

Single-cell clustering and variability analysis: Clustering analysis was performed with

CALISTA [31], a numerically efficient and highly scalable toolbox for end-to-end analysis of

single-cell transcriptomic profiles. This approach includes single-cell mRNA counts in a prob-

abilistic distribution function associated with stochastic gene transcriptional bursts and ran-

dom technical dropout events. In the data preprocessing, we removed cells with more than

95% of zero expression values and then selected the top 200 most informative genes for further

analysis. The optimal number of clusters was chosen to be 5 based on the eigengap plot (see

[31] for more details). The top “molecular function” GO categories were compared between

the clusters using compareCluster function of the Cluster Profiler package [13].

WGCNA: We applied WGCNA [69] to the mRNA expression data from each donor sepa-

rately, to identify modules of genes with similar gene transcriptional dynamics. We excluded

genes without any detectable expression in all samples. In implementing WGCNA, we set the

soft-thresholding power for a scale-free topology index of 0.9. For each module, we calculated

the mean expression of genes by averaging the UMI counts from the 2 donors separately.

Enrichment analysis: We obtained a curated collection of TFs to CAGE-defined promoters

to gene isoform mapping for a total of 662 human TFs from the Regulatory Circuits resource

[46,70]. In our analysis, we used only TF–promoter pairs with moderate confidence scores

>0.5. We grouped genes based on whether the relevant TFs demonstrated differential expres-

sions. More specifically, a classification of DE TF was given to any gene in which at least one of

its TFs showed a differential expression. Otherwise, a classification of non-DE TF was

assigned. A two-sided Fisher exact test was used to perform over- and underrepresentation

analysis [71].

Index for critical transition (Ic): The Ic was calculated from the scRNA-seq-filtered count

matrix, as the ratio between the average of gene–gene correlation (Pearson) between all pairs

of gene vectors (R(gn,gm)) and the average of cell–cell correlation between all pairs of cell state

vectors (R(ci,cj)): IC ¼ Rðgn; gmÞ=Rðci; cjÞ
The analysis was performed separately for each cluster identified by CALISTA and each

donor separately. Only Pearson correlation values higher than 0.70 were considered.

Uniform Manifold Approximation and Projection (UMAP): For each donor, UMI count

of the top 200 most varying genes identified by CALISTA were extracted from the scRNA-seq-

filtered count matrix. Then, we plotted the cells based on the gene expression in a 2D plot
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using UMAP representation (package umap v0.2.8.0) and colored the cells either according to

their time of collection or their CALISTA cluster affiliation.

Bulk ATAC-seq analysis. Raw data processing: Tn5 adapters sequences were first

trimmed with the following command:

< cutadapt -q 20 -g "AGATGTGTATAAGAGACAG; max_error_rate = 0.1; min_over-
lap = 10" -A "AGATGTGTATAAGAGACAG; max_error_rate = 0.1; min_overlap = 10"—mini-
mum-length 18—times 2—pair-filter = both>

Genome alignment (hg19) was performed using Bowtie2 with the following parameters:

< bowtie2 -x hg19—no-unal -X 800>

Only paired-end fragments were kept, considering mapping quality (phred score = 30).

Duplicated reads were removed using Picard MarkDuplicates tool. In attempt to not bias the

signal recovered after peak calling due to multiple donors, all paired-end files were randomly

downsampled to 16 M reads (without disrupting pairs of reads) as regard to the smallest num-

ber of reads detected in the cohort (donor1–0 h).

ATAC-seq peaks were then called on those downsampled files using the following:

< macs2 callpeak -f BAMPE -g hs -B—broad—broad-cutoff 0.1—keep-dup all>

In order to retain only significant accessibility peaks across samples, each list of peaks used

in advanced analysis has been defined as the intersection between peaks of the 3 donors tested

at the same time point.

Peak annotation: Peaks were assigned to genomic regions thanks to a homemade script

based on the FindOverlap function from the R package “GenomicRanges” [72]. Genomic ele-

ments positions (exons, introns, CpG islands, and CTCF) were retrieved from UCSC database

(hg19). As for the RNA-seq analysis, promoter regions were retrieved from the online database

FANTOM5 [70]. Intergenic category was defined as the exclusion of all other defined catego-

ries. No priority has been set across the different genomic elements. Therefore, peaks overlap-

ping several genomic features are counted multiple times, resulting in a total number of peaks

across elements exceeding the total number of peaks detected at each time point.

Peak differential analysis: DEseq2 tool was used to calculate difference in read count

between peaks in 2 consecutive time points [73]. More precisely, the region considered is

defined as the interval formed by the union of 2 overlapping peaks at t2 and t1.

Motif enrichment: Peak motif enrichment analysis was conducted with the tool “findMo-

tifsGenome.pl” from the HOMER software tool suite [74]. Background file was generated

using an autogenerated list of random regions across the genome (hg19). Motifs were scanned

using the total length of our peaks by providing the option <size given>.

scATAC-seq analysis and bulk ATAC-seq comparison. Fastq files generated by Imagine

Institute platform were aligned to the hg38 reference genome using Cell Ranger software to

obtain count matrix, which was further imported into R (v4.1.2). Using Seurat (v4.1.1) and

Signac (v1.6.0) R packages, we integrated the data into a ChromatinAssay object and attributed

a genomic annotation using FANTOM5 database for promoters and biomaRt (v2.52.0) for

other annotations. Nonstandard chromosomes were removed from the analysis as the number

of corresponding peaks was insignificant (<50). TF-IDF normalization followed by singular

value decomposition (SVD) were performed on the top features shared by more than 90% of

the cells. Dimensions 2 to 30 of LSI reduction were used for cluster analysis. Regarding com-

parison with the bulk ATAC-seq datasets, aligned reads were shifted from hg38 to hg19 refer-

ence genome thanks to Lift Genome Annotations tool. FindOverlap function from

GenomicRanges R package (v1.48.0) was used to test the overlap between the accessible

regions detected in bulk ATAC-seq and scATAC-seq datasets.

ATAC-seq and scRNA-seq combined analysis (accessibility–expression). Identifica-

tion of promoters that have configurational changes: In an effort to identify promoter
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regions that are affected (and not affected) by configurational changes of the chromatin, we

employed the R Bioconductor package “GenomicRanges” [72]. By comparing the peaks over-

lapping the promoters between 2 time points (0 h to 5 h, 5h to 24 h, and 24 h to 48 h), we

grouped promoters into 4 possible chromatin accessibility configurations: “open-open”,

“open-closed”, “closed-open”, and “closed-closed”. We then used the CAGE-defined promot-

ers to gene isoform mapping from the Regulatory Circuits resource [46,70] to identify promot-

ers that overlap with the peaks of ATAC-seq and their corresponding target genes.

Differential gene expression of single-cell RNA sequencing: We computed Z-scores for

every gene in each of the 2 donors between 2 different time points using the mean and stan-

dard deviation of the UMI counts of approximately 100 single cells.

Zt2 � t1
ij ¼

meanðUMIt2j Þ � meanðUMIt1j Þ
ððsdðUMIt2j ÞÞ

2þðsdðUMIt1j ÞÞ
2Þ

1
2

10

Zt2 � t1
ij denotes the Z-score of the expression change of gene j in donor i between time t2 and

t1. An average Z-score between the 2 donors was computed and used to identify the set of DE

genes. We selected Z-score thresholds of 2 and −2 (i.e., 2 standard deviations of change) to des-

ignate up-regulated and down-regulated genes, respectively. Collectively, they represent the set

of DE genes.

Enrichment analysis of combined ATAC-seq and scRNA-seq: For the combined ATAC-

and scRNA-seq analysis, we grouped genes into 8 possible groups based on the chromatin

accessibility configurations (i.e., one of the following 4 configurations: “open-open”, “open-

closed”, “closed-open”, and “closed-closed”) and whether at least one of their TF-coding genes

showed differential expression (i.e., one of the following 2 groups: “DE TF-coding gene” and

“non-DE TF-coding gene”). As with the analysis of scRNA-seq data, a gene was assigned to the

group “DE TF-coding gene” when at least one of its TFs showed differential expression; other-

wise, the gene was classified as “non-DE TF-coding gene”. Note that different isoforms of the

same gene can have distinct TSSs that are under the control of different promoters. Thus, a

gene might be counted in more than 1 category in the chromatin accessibility configurations.

Consequently, the total sum of the genes in the 8 groups as described above might exceed the

total number of genes. A two-sided Fisher exact test was used to perform over- and underrep-

resentation analysis [71].
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Supporting information

S1 Fig. Comparative GO enrichment analysis of clusters in both donors. Top GO categories

expressed in the cells of the 5 clusters found by CALISTA (p-adj < 0.05). Only genes with pair-

wise gene–gene correlation scores greater than 0.70 in each cluster were used. Columns corre-

spond to individual clusters (#) from donor1 (d1) and 2 (d2). Numbers of genes associated to

each cluster are indicated between parentheses under each cluster number. For GO terms asso-

ciated statistics and “Entrez” gene IDs, see S3 Table. CALISTAAU : AbbreviationlistshavebeenccompiledforthoseusedinS1andS6Figs:Pleaseverifythatallentriesarecorrect:, Clustering And Lineage
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Inference in Single-cell Transcriptional Analysis; GO, gene ontology.

(TIF)

S2 Fig. Heat maps representing the single-cell transcript levels in individual cells for

donor1 and donor2. Each raw represents a single gene. The gene name abbreviations are indi-

cated on the left of both panels. Each column represents a single cell. Note the heterogenous

and low transcript levels detected for each gene, in each cell and at each time point, but with a

general tendency to increase between 48 h and 72 h.

(TIF)

S3 Fig. Evolution of the ATAC-seq peaks with complex dynamics. Only the peaks that were

present at 2 or more time points and display a more complex evolution than the major cate-

gory of peaks shown on Fig 4D are represented. (A) Promoter peaks (blue) and (B) intergenic

regions (yellow). The number of each profile is indicated on each panel. Note the low number

of complex profiles and the low size (number of “read counts”) for both the promoter and

intergenic peaks.

(TIF)

S4 Fig. Bulk ATAC-seq profiles of the 11 hematopoietic TF-coding genes. Gene names are

on the left to each panel. All the time points are shown for each gene. The size of the peaks is

indicated in normalized “read counts”. The genes are not drawn to scale. The boxes on the

profiles indicate the accessible peaks. Promoter-located peaks are highlighted in red. Note that

every gene has accessible promoters but some promoters are only accessible at a single time

point.

(TIF)

S5 Fig. Selected binding motifs in the accessible chromatin regions. The names, sequence

motifs, p-values of enrichment, and the frequency compared to the background are shown.

CTCF, a major chromatin organizer, shows the highest incidence in the ATAC peaks. The

other motifs ate hematopoietic TF-binding sequences. Note that the fraction of motifs accessi-

ble remains almost constant over the period examined.

(TIF)

S6 Fig. GO analysis of the DE TF and non-DE TF-coding genes. (A) and (C) show the results

for DE TF-coding genes for the time intervals between 5 h and 24 h and 24 h and 48 h, respec-

tively. Note that the significant fraction of the DE TFs is associated to functionalities related to

the hematopoietic system. (B) and (D) show the results for non-DE TF-coding genes for the

time intervals between 5 h and 24 h and 24 h and 48 h, respectively. No enrichment for

hematopoietic functions is observed. DE, differentially expressed; GO, gene ontology; TF,

transcription factor.

(TIF)

S1 Table. Quality control summary of MARS-seq data. This table indicates the quality filters

used and the number of cells retained for analysis after filtering.

(CSV)

S2 Table. Top 200 most variable genes per donor determined by CALISTA and used for

cell cluster identification. Note that the list for the 2 donors is almost identical (the first 80

genes are in the same order). The only gene on the list that plays a key role in hematopoietic

differentiation is RUNX1.

(CSV)
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S3 Table. GO terms enrichment statistics per cluster. The table contains the GO terms,

descriptions, gene IDs, and p-values used to prepare the S1 Fig.

(CSV)

S4 Table. Bulk ATAC-seq donor-related information. This table indicates the number of

unique pairs of sequence reads and the number of peaks detected after downsampling in each

donor at each time point.

(CSV)

S5 Table. Complete list of motifs used in the enrichment analysis with HOMER. Extensive

list of tested motifs and statistics found in peak sequences at each time point. The peak

sequences were scanned by HOMER for “known motifs”. Complete HOMER outputs are

available on NCBI public repository.

(CSV)

S6 Table. Complete list of DE TFs and non-DE TFs together with their target genes.

(CSV)
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