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Actor-Critic learning for mean-field control in continuous time

Noufel FRIKHA∗ Maximilien GERMAIN† Mathieu LAURIERE‡

Huyên PHAM§ Xuanye SONG¶

March 12, 2023

Abstract

We study policy gradient for mean-field control in continuous time in a reinforcement
learning setting. By considering randomised policies with entropy regularisation, we derive
a gradient expectation representation of the value function, which is amenable to actor-
critic type algorithms, where the value functions and the policies are learnt alternately
based on observation samples of the state and model-free estimation of the population
state distribution, either by offline or online learning. In the linear-quadratic mean-field
framework, we obtain an exact parametrisation of the actor and critic functions defined
on the Wasserstein space. Finally, we illustrate the results of our algorithms with some
numerical experiments on concrete examples.

Keywords: Mean-field control, reinforcement learning, policy gradient, linear-quadratic, actor-
critic algorithms.

1 Introduction

Mean-field control (MFC in short), also called McKean-Vlasov (MKV in short) control problem
is concerned with the study of large population models of interacting agents who are cooperative
and act for collective welfare according to a center of decision (or social planner). It has
attracted a growing interest over the last years with the emergence of mean-field game, and
there is now a large literature on the theory and its various applications in economics/finance,
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population dynamics, social sciences and herd behavior. We refer to the seminal two-volume
monograph [4]-[5] for a detailed treatment of the topic.

Mean-field control problems lead to infinite dimensional problems in the Wasserstein space
of probability measures, and analytical solutions are rarely available. It is then crucial to
design efficient numerical schemes for solving such problems, and in the past few years,
several works have proposed numerical methods in a model-based setting based either on
forward-backward SDE characterisation of MKV from Pontryagin maximum principle, or
Master Bellman equation from dynamic programming, and often relying on suitable class of
neural networks, see e.g. [7], [16], [17], [21], [27], [25].

The question of learning solutions to MFC in a model-free setting, i.e. when the environment
(model coefficients) is unknown, has recently attracted attention, see [8, 9], [18], [1], and this is
precisely the purpose of Reinforcement learning (RL): learn optimal control by trial and error,
i.e., repeatedly try policy, observe the state, receive and evaluate the reward, and improve the
policy. There are two main approaches in RL: (i) Q-learning based on dynamic programming,
and (ii) Policy gradient based on parametrisation of policies, and a key feature in RL is the
exploration of the unknown environment to broaden search space, which can be achieved via
randomised policies. RL is a very active branch of machine learning and we refer to the second
edition of the monograph [29] for an overview of this field.

Most algorithms in RL are limited to discrete-time frameworks for Markov decision processes
(MDP) or mean-field MDP, and the study of RL in continuous time has been recently initiated
in [30], [23], [24] for controlled diffusion processes. In line with these works, we provide in
this paper a theoretical treatment of policy gradient methods for MFC in continuous time
and state/action space by relying on stochastic calculus that has been recently developed
for MKV equations. Our main theoretical result is to obtain a policy gradient representation
for value function with randomised parametric policies and entropy regularisers for encouraging
exploration. Based on this representation, we design model-free actor critic algorithms involving
either the whole trajectories of the state (off-line learning), or the current and next state (online
learning). In the mean-field context, a key issue is to handle the population state distribution,
which is an input of the policy (actor) and value function (critic), and instead of assuming
that we have at disposal a simulator of the state distribution as in [8], we estimate it in a
model-free manner as in [1], which is more suitable for real-world applications. We next study
the linear quadratic (LQ) case for which we derive explicit solutions, and this can be used for
proposing an exact parametrisation of the critic and actor functions that is incorporated in
stochastic gradient when updating the policies and value functions. The explicit solutions in
the LQ setting are served as benchmarks for the numerical results of our algorithms in two
examples.

The rest of the paper is organized as follows. In Section 2, we formulate the mean-field
control problem in continuous-time with randomised policies and entropy regularisers, and state
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the partial differential equation (PDE) characterisation of the value function in the Wasserstein
space. We develop in Section 3 policy gradient methods by establishing a policy gradient
representation, and its implication for actor-critic algorithms. Section 4 is devoted to the
linear-quadratic setting, and we present in Section 5 numerical results on two examples to
illustrate the accuracy of our algorithms. Finally, proofs of the policy gradient theorem are
detailed in Appendix A, while the derivation of the explicit solution in the LQ case is shown
in Appendix B.

Notations. The scalar product between two vectors x and y is denoted by x · y, and | · | is
the Euclidian norm. Given two matrices M = (Mij) and N = (Nij), we denote by M : N =

Tr(M ᵀN) =
∑

i,jMijNij its inner product, and by |M | the Frobenius norm of M . Here ᵀ is
the transpose matrice operator. LetM = (M i1i2i3) ∈ Rd1×d2×d3 be a tensor of order 3. For p
= 1, 2, 3, the p-mode product ofM with a vector b = (bi) ∈ Rdp , is denoted byM •p b, and it
is a tensor of order 2, i.e. a matrix defined elementwise as

(
M •1 b)i2i3 =

d1∑
i1=1

Mi1i2i3bi1 ,
(
M •2 b)i1i3 =

d2∑
i2=1

Mi1i2i3bi2 ,
(
M •3 b)i1i2 =

d3∑
i3=1

Mi1i2i3bi3 .

The p-mode product of a 3-th order tensorM ∈ Rd1×d2×d3 with a matrix B = (Bij) ∈ Rdp×d,
also denoted by M •p B, is a 3-th order tensor defined elementwise as

(
M •1 B

)
`i2i3

=

d1∑
i1=1

Mi1i2i3Bi1`,
(
M •2 B

)
i1`i3

=

d2∑
i2=1

Mi1i2i3Bi2`

(
M •3 B)i1i2` =

d3∑
i3=1

Mi1i2i3Bi3`.

Finally, the tensor contraction (or partial trace) of a 3-th order tensor M ∈ Rd1×d2×d3 whose
dimensions dp and dq are equal is denoted as Trp,qM . This tensor contraction is a tensor of
order 1, i.e. a vector, defined elementwise as

(
Tr1,2M

)
i3

=

d1∑
`=1

M``i3 ,
(
Tr1,3M

)
i2

=

d1∑
`=1

M`i2`,
(
Tr2,3M

)
i1

=

d2∑
`=1

Mi1``.

2 Exploratory formulation of mean-field control

Let us consider a mean-field control problem where the Rd-valued controlled state process X
= Xα is governed by the dynamics

dXs = b(Xs,PXs , αs)ds+ σ(Xs,PXs , αs)dWs, s ≥ 0, (2.1)
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with W a standard p-dimensional Brownian motion on a probability space (Ω,F ,P) equipped
with the filtration F = (Ft)t≥0 generated byW , and augmented with a σ-algebra G rich enough
to support a uniformly distributed random variable independent of W . The control α = (αt)t
is an F-progressively measurable process with αt representing the action of the agent at time
t, and valued in the action space A ⊂ Rq. Here, PXt denotes the marginal law of Xt, P2(Rd) is
the Wasserstein space of probability measures µ with a finite second order moment, i.e., M2(µ)

:=
( ∫
|x|2µ(dx)

) 1
2 < ∞, equipped with the Wasserstein distance W2, and the coefficient b

(resp. σ) is a measurable function from Rd × P2(Rd)×A into Rd (resp. Rd×p).
Throughout the paper, we make the standard Lipschitz assumptions on the coefficients b

and σ to ensure the existence and uniqueness of a strong solution to the stochastic differential
equation (SDE in short) (2.1) given any initial condition ξ with law µ ∈ P2(Rd).

The objective of a mean-field control problem on finite horizon T <∞, is to minimize over
the control α an expected total cost of the form

E
[ ∫ T

0
e−βsf(Xs,PXs , αs)ds+ e−βT g(XT ,PXT )

]
.

Here f is a running cost function defined on Rd×P2(Rd)×A, while g is a terminal cost function
on Rd × P2(Rd), and β ∈ R+ is a given discount factor. In a model-based setting, i.e., when
the coefficients b, σ, and the functions f , g are known, the solution to MFC control problem
can be characterised by a forward backward SDE arising from the maximum principle (see
[3], or by a Master Bellman equation arsing from dynamic programming principle (see [26]).
Moreover, the optimisation over F-progressively measurable process α (open-loop control), or
feedback (also called closed-loop) controls α, i.e., in the form αt = π(t,Xt,PXt), 0 ≤ t ≤ T , for
some deterministic policy π, i.e., a measurable function π : [0, T ] × Rd × P2(Rd) → A, yields
the same value function.

In a model-free reinforcement learning (RL) setting, when the coefficients are unknown,
the agent can only rely on observation samples of state and reward in order to learn the
optimal strategy. This is achieved by trial and error where the agent tries a policy, receive and
evaluate the reward and then improve performance by repeating this procedure. A critical issue
in reinforcement learning when the environment is unknown, is exploration in order to broaden
search space, and a key and now common idea is to use randomised (or stochastic) policies: in
a mean-field setting, this is defined by a probability transition kernel from [0, T ]×Rd×P2(Rd)
into A, i.e., a measurable function π : (t, x, µ) ∈ [0, T ] × Rd × P2(Rd) 7→ π(.|t, x, µ) ∈ P(A),
the set of probability measures on A. We then say that the process α = (αt)t is a randomised
feedback control generated from a stochastic policy π, denoted by α ∼ π, if at each time t, the
action αt is sampled from the probability distribution π(.|t,Xt,PXt). Note that the sampling
is drawn at each time from the σ-algebra G rich enough to support a uniformly distributed
random variable independent of W . More precisely, it is defined as follows: given a probability
transition kernel π, one can associate a measurable function φπ : [0, T ]× Rd × P2(Rd)× [0, 1]
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→ A such that the law of φπ(t, x, µ, U) is π(.|t, x, µ) where U is an uniform random variable on
[0, 1]. We would then naturally define the control process by αt = φπ(t,Xt,PXt , Ut), 0 ≤ t ≤ T ,
for a collection of G-measurable i.i.d. uniform random variables (Ut)t, but this raises some
measurability issues as (t, ω) 7→ Ut(ω) is not jointly measurable in the usual product space
([0, T ]×Ω,B[0,T ]⊗G,dt⊗P). To cope these issues, one can use the notion of Fubini extension,
see [28]. We consider an atomless probability space ([0, T ], T , ρ) extending the usual Lebesgue
measure interval space ([0, T ],B[0,T ],dt), and a rich Fubini extension ([0, T ]×Ω, T � G, ρ� P)

of the product space ([0, T ] × Ω, T ⊗ G, ρ ⊗ P). Then, from Theorem 1 in [28], there exists a
T � G-measurable map U : [0, T ]×Ω → [0, 1] such that the random variables Ut = U(t, .) are
essentially pairwise independent, and uniformly distributed on [0, 1]. Denote by F the filtration
generated by (W,U), and consider the controlled process governed by

dXs = b(Xs,PXs , αs)ds+ σ(Xs,PXs , αs)dWs, (2.2)

where αt = φπ(t,Xt,PXt , Ut) ∼ π(.|t,Xt,PXt), 0 ≤ t ≤ T , is F-progressively measurable. Here,
to alleviate notations, we write ρ(dt) ≡ dt.

Moreover, in order to encourage exploration of randomised policies, we shall substract
entropy regularisers to the cost term, as adopted in the recent works by [30], [20], by considering
the Shannon differential entropy defined as

E(π(.|t, x, µ)) := −
∫
A

log p(t, x, µ, a)π(da|t, x, µ),

by assuming that π(.|t, x, µ) admits a density p(t, x, µ, .) with respect to some measure ν on
A. The goal of the social planner is now to minimise over randomised policies π the cost

J(π) = Eα∼π
[ ∫ T

0
e−βs

[
f(Xs,PXs , αs)− λE

(
π(.|s,Xs,PXs)

)]
ds+ e−βT g(XT ,PXT )

]
,(2.3)

where λ ≥ 0 is a temperature parameter on exploration. Here, the notation in Eα∼π[.] means
that the expectation operator is taken when the randomised feedback control α is generated
from the stochastic policy π, and X = Xα is driven by the dynamics (2.2).

Let us now introduce the dynamic Markovian version of the above mean-field problem.
Given a stochastic policy π, an initial time-state-distribution triple (t, x, µ) ∈ [0, T ] × Rd ×
P2(Rd), and ξ ∈ L2(Ft;Rd) (the set of square-integrable Ft-measurable random variables valued
in Rd) with distribution law µ (ξ ∼ µ), we consider the decoupled state processes {Xt,ξ

s , t ≤
s ≤ T} and {Xt,x,ξ

s , t ≤ s ≤ T} given by

Xt,ξ
s = ξ +

∫ s

t
b(Xt,ξ

r ,P
Xt,ξ
r
, αr)dr +

∫ s

t
σ(Xt,ξ

r ,P
Xt,ξ
r
, αr) dWr,

Xt,x,µ
s = x+

∫ s

t
b(Xt,x,µ

r ,P
Xt,ξ
r
, αr)dr +

∫ s

t
σ(Xt,x,µ

r ,P
Xt,ξ
r
, αr) dWr, t ≤ s ≤ T,

(2.4)
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where α is a randomised feedback control generated from π, i.e., αs is sampled at each time
s from π(.|s,Xt,x,µ

s ,P
Xt,ξ
s

) (here, to alleviate notations, we omit the dependence of Xt,ξ and
Xt,x,µ in α ∼ π). We make the standard Lipschitz regularity assumptions on the coefficients
b and σ to ensure the existence and uniqueness of a strong solution to (2.4) given any initial
condition t, ξ, x. By weak uniqueness, it follows that the law of the process (Xt,ξ

s )s∈[t,T ] given
by the unique solution to the first SDE in (2.4) only depends upon ξ through its law µ. It thus
makes sense to consider (P

Xt,ξ
s

)s∈[t,T ] as a function of µ without specifying the choice of the
random variable ξ that has µ as distribution. In particular, for any 0 ≤ t ≤ s ≤ T , the random
variable Xt,x,µ

s depends on ξ only through its law µ. As a consequence, we can define the cost
value function of the stochastic policy π as the function defined on [0, T ]× Rd × P2(Rd) by

V π(t, x, µ) = Eα∼π
[ ∫ T

t
e−β(s−t)[f(Xt,x,µ

s ,P
Xt,ξ
s
, αs)− λE

(
π(.|s,Xt,x,µ

s ,P
Xt,ξ
s

)
)]

ds

+ e−β(T−t)g(Xt,x,µ
T ,P

Xt,ξ
T

)
]
. (2.5)

Since Xt,ξ,ξ
s = Xt,ξ

s a.s., the initial cost value in (2.3) when starting from some initial random
state ξ ∈ L2(G;Rd) with law µ is equal to J(π) = Eξ∼µ[V π(0, ξ, µ)].

We complete this section by characterizing the cost value function V π, for a given stochastic
policy π, in terms of a linear parabolic partial differential equation (PDE) of mean-field type
stated in the strip [0, T ] × Rd × P2(Rd). We first introduce the coefficients associated to the
dynamics and the value function, given a stochastic policy π, namely

bπ(t, x, µ) =

∫
A
b(x, µ, a)π(da|t, x, µ), Σπ(t, x, µ) =

∫
A

(σσᵀ)(x, µ, a)π(da|t, x, µ),

fπ(t, x, µ) =

∫
A
f(x, µ, a)π(da|t, x, µ), Eπ(t, x, µ) = −

∫
A

log p(t, x, µ, a)π(da|t, x, µ),

and let σπ := Σ
1/2
π .

Before presenting the regularity assumptions, we introduce some notations regarding the
Wasserstein derivative (also called L-derivative) of a real-valued smooth map U defined on
P2(Rd). We follow the common practice of denoting by ∂µU(µ)(v) ∈ Rd the Wasserstein
derivative of U with respect µ evaluated at (µ, v) ∈ P2(Rd)×Rd. Its ith coordinate is denoted
by ∂iµU(µ)(v). We will also work with higher order derivatives. For a positive integer n, a
multi-index λ of {1, · · · , d}, a n-tuple of multi-indices γ = (γ1, · · · , γn) of {1, · · · , d} and v =

(v1, · · · , vn) ∈ (Rd)n, we denote by ∂λµU(µ)(v) the derivative ∂λnµ [· · · [∂λ1µ U(µ)](v1) · · · ](vn). If
v 7→ ∂λµU(µ)(v) is smooth, we write ∂γv ∂λµU(µ)(v) for the derivative ∂γnvn · · · ∂

γ1
v1 ∂

λ
µU(µ)(v).

We will often deal with maps that depend on additional time and space variables. In
particular, we will work with the two spaces C2,2(Rd×P2(Rd)) and C1,2,2([0, T ]×Rd×P2(Rd))
and refer the reader to [4] Chapter 5 for more details.
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Having these notations at hand, we make the following regularity assumptions on the
coefficients bπ, σπ, the cost functions fπ, g and the Shannon differential entropy Eπ. Below,
π : [0, T ]× Rd × P2(Rd)→ P(A) is a fixed stochastic policy.

Assumption 2.1 (i) For any h ∈ {biπ, σ
i,j
π , i = 1, · · · , d, j = 1, · · · , p}, the following derivatives

∂xh(t, x, µ), ∂2
xh(t, x, µ), ∂µh(t, x, µ)(v), ∂v[∂µh(t, x, µ)](v),

exist for any (t, x, v, µ) ∈ [0, T ] × (Rd)2 × P2(Rd), are bounded and locally Lipschitz
continuous with respect to x, µ, v uniformly in t ∈ [0, T ]. Moreover, h(t, .) is at most of
linear growth, uniformly in t ∈ [0, T ], namely, there exists C <∞ such that for all t, x, µ

|h(t, x, µ)| ≤ C(1 + |x|+M2(µ)).

(ii) For any t ∈ [0, T ], fπ(t, .), Eπ(t, .), g ∈ C2,2(Rd × P2(Rd)).

(iii) There exists some constant C <∞, such that for any (t, x, v, µ) ∈ [0, T ]×(Rd)2×P2(Rd),

|fπ(t, x, µ)|+ |Eπ(t, x, µ)|+ |g(x, µ)| ≤ C(1 + |x|2 +M2(µ)q),

|∂xfπ(t, x, µ)|+ |∂xEπ(t, x, µ)|+ |∂xg(x, µ)| ≤ C(1 + |x|+M2(µ)q),

|∂µfπ(t, x, µ)(v)|+ |∂µEπ(t, x, µ)(v)|+ |∂µg(x, µ)(v)| ≤ C(1 + |x|+ |v|+M2(µ)q),

|∂v[∂µfπ(t, x, µ)](v)|+|∂2
xfπ(t, x, µ)|+ |∂v[∂µEπ(t, x, µ)](v)|+ |∂2

xEπ(t, x, µ)|
+ |∂v[∂µg(x, µ)](v)|+ |∂2

xg(x, µ)| ≤ C(1 +M2(µ)q),

for some q ≥ 0.

Remark 2.1 It is readily seen from the integral form of bπ, Σπ, fπ, Eπ that if for any a ∈ A,
the functions (x, µ) 7→ b(x, µ, a), σ(x, µ, a), f(x, µ, a) and the density (x, µ) 7→ p(t, x, µ, a) of the
probability measure π(da|t, x, µ) are smooth with derivatives satisfying some adequate estimates
then Assumption 2.1 is satisfied. In particular, this will be the case when the coefficients b,
σ are linear functions and f together with g are quadratic functions of the variables of x,∫
Rd zµ(dz) and a and if p is a Gaussian density with a smooth mean and a time-dependent
covariance-matrix as in the linear quadratic framework, see Section 4.

We now have the following PDE characterisation of the cost value function V π.

Proposition 2.1 Under Assumption 2.1, the function V π defined by (2.5) belongs to C1,2,2([0, T ]×
Rd × P2(Rd)) and satisfies the following linear parabolic PDE

Lπ[V π](t, x, µ) + (fπ − λEπ)(t, x, µ) = 0, (t, x, µ) ∈ [0, T )× Rd × P2(Rd), (2.6)
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with the terminal condition V π(T, x, µ) = g(x, µ), where Lπ is the operator defined by

Lπ[ϕ](t, x, µ) = −βϕ(t, x, µ) + ∂tϕ(t, x, µ) + bπ(t, x, µ) ·Dxϕ(t, x, µ) +
1

2
Σπ(t, x, µ) : D2

xϕ(t, x, µ)

+ Eξ∼µ
[
bπ(t, ξ, µ) · ∂µϕ(t, x, µ)(ξ) +

1

2
Σπ(t, ξ, µ) : ∂υ∂µϕ(t, x, µ)(ξ)

]
.

Remark 2.2 In particular, the above result indicates that provided the coefficients bπ,Σπ, the
functions fπ, Eπ and the terminal condition g are smooth with derivatives satisfying some
appropriate estimates, the solution V π to the Kolmogorov PDE (2.6) is smooth. In this sense,
it preserves the regularity of the terminal condition.

However, one can weaken the regularity assumption on the terminal condition (and actually
of the coefficients themselves) by benefiting from the smoothness of the underlying fundamental
solution (or the transition density of the associated stochastic process) under some additional
non-degeneracy assumption. We refer e.g. to [13], [12], [11] in the uniformly elliptic diffusion
setting and to [15] in the case of non-degenerate stable driven SDE.

Proof. See Appendix A.1 2

3 Policy gradient method

We now consider a parametric family of randomised policies πθ, with densities pθ, θ ∈ Θ, Θ

being a non-empty open subset of RD, for some positive integer D, and denote by J(θ) =

J(πθ) the associated cost function, viewed as a function of the parameters θ, recalling that J is
defined by (2.3). The principle of policy gradient method is to minimize over θ the function J(θ)

by stochastic gradient descent algorithm. In our RL setting, we aim to derive a probabilistic
representation of the gradient function ∇θJ(θ) that does not involve model coefficients b, σ, but
only observation samples of state Xt, state distribution PXt , and rewards ft := f(Xt,PXt , αt),
gT := g(XT ,PXT ) when taking decision α ∼ πθ.

3.1 Policy gradient representation

Wemake the following assumptions on the parametric family of randomised policy and coefficients.

Assumption 3.1 (i) For any h ∈ {biπθ , σ
i,j
πθ , fπθ , Eπθ , g, i = 1, · · · , d, j = 1, · · · , p}, any

multi-indices α, β, λ of {1, · · · , d} such that 0 ≤ |α| ≤ 2, 0 ≤ |β| ≤ 1, λ being of length
n, 0 ≤ n ≤ 2, any n-tuple of multi-indices γ = (γ1, · · · , γn) with 0 ≤ |γ1|+ · · ·+ |γn| ≤ 2,
denoting by hθ(t, x, µ) the value of h at (θ, t, x, µ), the following derivatives

∂βθ ∂
α
x ∂

γ
v ∂

λ
µhθ(t, x, µ)(v), ∂αx ∂

β
θ ∂
γ
v ∂

λ
µhθ(t, x, µ)(v), ∂αx ∂

γ
v ∂

β
θ ∂

λ
µhθ(t, x, µ)(v), ∂αx ∂

γ
v ∂

λ
µ∂

β
θ hθ(t, x, µ)(v),

∂γv ∂
α
x ∂

λ
µ∂

β
θ hθ(t, x, µ)(v), ∂γv ∂

λ
µ∂

α
x ∂

β
θ hθ(t, x, µ)(v), ∂γv ∂

λ
µ∂

β
θ ∂

α
xhθ(t, x, µ)(v), ∂γv ∂

β
θ ∂

λ
µ∂

α
xhθ(t, x, µ)(v),

∂βθ ∂
γ
v ∂

λ
µ∂

α
xhθ(t, x, µ)(v), ∂γv ∂

β
θ ∂

α
x ∂

λ
µhθ(t, x, µ)(v), ∂γv ∂

α
x ∂

β
θ ∂

λ
µhθ(t, x, µ)(v), ∂βθ ∂

α
x ∂

γ
v ∂

λ
µhθ(t, x, µ)(v),

8



exist for any (t, θ, x,v, µ) ∈ [0, T ] × Θ × (Rd)n+1 × P2(Rd) and are locally Lipschitz
continuous with respect to θ, x, µ,v uniformly in t ∈ [0, T ]a. Moreover, if h = biπθ or σi,jπθ ,
the aforementioned derivatives of order greater or equal to one are bounded.

(ii) The estimates of Assumption 2.1(iii) are satisfied for the family of policies {πθ, θ ∈ Θ},
locally uniformly in θ, i.e. for any θ ∈ K, K being any compact subset of Θ. Additionally,
there exists some constant C < ∞, such that for any h ∈ {fπθ , Eπθ}, any (t, µ, x) ∈
[0, T ] × P2(Rd) × Rd, any v = (v1, v2) ∈ (Rd)2, any θ ∈ K, K being any compact subset
of Θ, any multi-index λ, |λ| = 2, any multi-index λ = (λ1, λ2) of {1, · · · , d}, any couple
of multi-indices γ = (γ1, γ2)

|∂θhθ(t, x, µ)| ≤ C(1 + |x|2 +M2(µ)q),

|∂θ∂xhθ(t, x, µ)|+ |∂xg(x, µ)| ≤ C(1 + |x|+M2(µ)q),

|∂θ∂µhθ(t, x, µ)(v1)|+|∂µ∂xhθ(t, x, µ)(v1)|+|∂µ∂xg(x, µ)(v1)| ≤ C(1+|x|+|v1|+M2(µ)q),

|∂θ∂v1∂µhθ(t, x, µ)(v1)|+ |∂θ∂2
xhθ(t, x, µ)|+ |∂µ∂2

xhθ(t, x, µ)(v1)|+ |∂γv ∂λµhθ(t, x, µ)(v)|
+ |∂v1∂µg(x, µ)(v1)|+ |∂2

xg(x, µ)|+ |∂γv ∂λµg(t, x, µ)(v)| ≤ C(1 +M2(µ)q),

for some q ≥ 0.

As shown in Appendix A.2, Assumption 3.1 guarantees that the derivatives (t, θ, x, µ, v) 7→
∂θ∂tVθ(t, x, µ), ∂θVθ(t, x, µ), ∂θ∂xVθ(t, x, µ), ∂θ∂µVθ(t, x, µ)(v), ∂θ∂2

xVθ(t, x, µ), ∂θ∂v∂µVθ(t, x, µ)(v),
where Vθ(t, x, µ) := V πθ(t, x, µ) defined by (2.5) with π = πθ, exist, are continuous and satisfy
suitable growth conditions.

We then let ∇θJ(θ) = E[Gθ(0, ξ, µ)] where Gθ(t, x, µ) := ∇θVθ(t, x, µ). The main result of
this section provides a probabilistic representation of the gradient function Gθ.

Theorem 3.1 Suppose that Assumption 3.1 holds. Assume moreover that for any t, x, µ, a, the
map Θ 3 θ 7→ pθ(t, x, µ, a) is differentiable with a derivative satisfying the following estimates:
for some constant C < ∞ and some q ≥ 0, for any (t, x, µ) ∈ [0, T ] × Rd × P2(Rd) and any
compact subset K ⊂ Θ.∫

A
sup
θ∈K
{|∇θpθ(t, x, µ, a)|(|b(x, µ, a)|+ |(σσ)

ᵀ
(x, µ, a)|

+ |f(x, µ, a)|+ | log(pθ(t, x, µ, a))|)}ν(da) <∞,
(3.1)

aHence, according to Clairaut’s theorem, these partial derivatives are equal.

9



and∫
A
|∇θ log(pθ(t, x, µ, a))|2|σ(x, µ, a)|2 pθ(t, x, µ, a) ν(da) ≤ C(1 + |x|q +M2(µ)q). (3.2)

Then, it holds

Gθ(t, x, µ) = Eα∼πθ
[ ∫ T

t
e−β(s−t)∇θ log pθ(s,X

t,x,µ
s ,P

Xt,ξ
s
, αs)

{
dVθ(s,X

t,x,µ
s ,P

Xt,ξ
s

) (3.3)

+
[
f(Xt,x,µ

s ,P
Xt,ξ
s
, αs) + λ log pθ(s,X

t,x,µ
s ,P

Xt,ξ
s
, αs)− βVθ(s,X

t,x,µ
s ,P

Xt,ξ
s

)
]
ds
}

+

∫ T

t
e−β(s−t)Hθ[Vθ](s,X

t,x,µ
s ,P

Xt,ξ
s

)ds
]
,

for any (t, x, µ, θ) ∈ [0, T ]× Rd ×P2(Rd)×Θ and ξ ∼ µ, where Hθ is the operator defined by

Hθ[ϕ](t, x, µ) = Eξ∼µ
[
∇θbθ(t, ξ, µ)ᵀ∂µϕ(t, x, µ)(ξ) (3.4)

+
1

2
tr1,2

(
∇θΣθ(t, ξ, µ) •1 ∂υ∂µϕ(t, x, µ)(ξ)

)]
,

and we set bθ(t, x, µ) =
∫
A b(x, µ, a)πθ(da|t, x, µ), Σθ(t, x, µ) =

∫
A(σσᵀ)(x, µ, a)πθ(da|t, x, µ).

Here ∇θΣθ = (
∂Σijθ
∂θk

)i,j,k ∈ Rd×d×D is a tensor of order 3, and we used the product tensor
notations •1 recalled in the introduction.

Remark 3.1 (On the martingale property of the policy gradient) The representation
in Theorem 3.1 also means that the process{
e−β(s−t)Gθ(s,X

t,x,µ
s ,P

Xt,ξ
s

) +

∫ s

t
e−β(r−t)∇θ log pθ(r,X

t,x,µ
r ,P

Xt,ξ
r
, αr)

{
dVθ(r,X

t,x,µ
r ,P

Xt,ξ
r

)

+
[
f(Xt,x,µ

r ,P
Xt,ξ
r
, αr) + λ log pθ(r,X

t,x,µ
r ,P

Xt,ξ
r
, αr)− βVθ(r,X

t,x,µ
r ,P

Xt,ξ
r

)
]
dr
}

+

∫ s

t
e−β(r−t)Hθ[Vθ](r,X

t,x,µ
r ,P

Xt,ξ
r

)dr, t ≤ s ≤ T
}

is a martingale, for any given α ∼ πθ.

Proof. See Appendix A.3 2

In the next section, we show how the probabilistic representation formula of the gradient
function Gθ provided by Theorem 3.1 can be used to design two actor-critic algorithms for
learning optimal cost function and randomised policy by relying on samples of the actions,
states and state distributions.
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3.2 Actor-critic Algorithms

Actor-critic (AC) methods combine policy gradient (PG) and performance evaluation (PE).
Compared to most existing works on RL for mean-field problems, mainly based on Q-learning
(see e.g. [8], [14], [18]) we do not assume that the agent (the social planner) has at disposal a
simulator for the state distribution, but instead will estimate the distribution of the population
from the observation of the state of the representative player and by updating the distribution
along repeated episodes. More precisely, for each episode i = 1, 2, . . . , N , from the observation
of the state Xi

tk
of a representative player i at time tk, we update the state distribution

according to

µitk = (1− ρiS)µi−1
tk

+ ρiSδXi
tk
, (3.5)

where (ρiS)i is a sequence of learning parameters in (0, 1), e.g. ρiS = 1/i. It is expected from
the propagation of chaos, that when the number of episodes N goes to infinity, µNtk converge
to the limiting distribution PXtk of the population. Notice that a similar estimation procedure
was recently proposed in [1] in the context of a MFC control problem in discrete time with
finite state and action spaces over an infinite horizon.

In addition to the family of randomised policies (t, x, µ) 7→ πθ(da|t, x, µ) = pθ(t, x, µ)ν(da),
with parameter θ, we are given a family of functions (t, x, µ) 7→ Jη(t, x, µ) on [0, T ]×Rd×P2(Rd),
with parameter η, aiming to approximate the optimal cost value function. AC algorithm is then
updating alternately the two parameters to find the optimal pair (θ∗, η∗), hence determining
the approximate optimal randomised policy and the associated cost value function. On the
one hand, the loss function in the PE step for learning Jη, for fixed policy πθ, is based on the
martingale formulation of the process

{
e−βtJη(t,Xx,µ

t ,P
Xξ
t
) +

∫ t

0
e−βr

[
f(Xx,µ

r ,P
Xξ
r
, αr) + λ log pθ(r,X

x,µ
r ,P

Xξ
r
, αr)

]
dr, 0 ≤ t ≤ T

}
,

and on the other hand, the objective (here a cost) function in the PG step for learning πθ, for
fixed Jη, is based on the martingale formulation of the process{

e−βtGθ(t,X
x,µ
t ,P

Xξ
t
) +

∫ t

0
e−βr∇θ log pθ(r,X

x,µ
r ,P

Xξ
r
, αr)

[
dJη(r,Xx,µ

r ,P
Xξ
r
) (3.6)

+
(
f(Xx,µ

r ,P
Xξ
r
, αr) + λ log pθ(r,X

x,µ
r ,P

Xξ
r
, αr)− βJη(r,Xx,µ

r ,P
Xξ
r
)
)
dr
]

+ Hθ[Jη](r,Xx,µ
r ,P

Xξ
r
)dr, 0 ≤ t ≤ T

}
.

Here, we denote Xx,µ = X0,x,µ (resp. Xξ = X0,ξ) when the initial time of the flow is t =

0. We emphasise that these loss functions are minimised by training samples of the state
trajectories Xx0,ξ

t , actions α ∼ πθ, estimation µt of PXξ
t
according to (3.5), and observation of

the associated running and terminal costs.
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We first develop AC algorithms in the offline setting where all state trajectories are sampled.
In this case, given θ, the proposed loss function for the PE step is

LPE(η) = Eα∼πθ
[ ∫ T

0

∣∣∣e−β(T−t)g(XT ,PXT )

+

∫ T

t
e−β(r−t)[f(Xr,PXr , αr) + λ log pθ(r,Xr,PXr , αr)

]
dr − Jη(t,Xt,PXt)

∣∣∣2dt
]
,

which leads, after time discretisation of [0, T ] on the grid {tk = k∆t, k = 0, . . . , n}, and by
applying stochastic gradient descent (SGD) with learning rate ρE , to the following update rule:

η ← η + ρE

n−1∑
k=0

(
e−β(n−k)∆tgtn +

n−1∑
`=k

e−β(`−k)∆t
[
ft` + λ log pθ(t`, Xt` , µt` , αt`)

]
∆t

− Jη(tk, Xtk , µtk)
)
∇ηJη(tk, Xtk , µtk)∆t,

where we set ft` = f(Xt` ,PXt` , αt`), as the output running cost at time t`, for an input state
Xtl , action αt` , ` = 0, . . . , n − 1, and gT = g(XT ,PXT ) the terminal cost for an input XT .
Given η, the learning in the PG step relies on the gradient representation (3.3), and (after time
discretisation) leads to the update rule

θ ← θ − ρGĜθ,

with Ĝθ =
n−1∑
k=0

e−βtk∇θ log pθ(tk, Xtk , µtk , αtk)
[
Jη(tk+1, Xtk+1

, µtk+1
)− Jη(tk, Xtk , µtk)

+
(
ftk + λ log pθ(tk, Xtk , µtk , αtk)− βJη(tk, Xtk , µtk)

)
∆t
]

+Hθ[Jη](tk, Xtk , µtk)∆t.

The pseudo-code is described in Algorithm 1.
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Algorithm 1: Offline actor-critic mean-field algorithm

Input data: Number of episodes N , number of mesh time-grid n (↔ time step ∆t =

T/n), learning rates ρiS , ρ
i
E , ρ

i
G for the state distribution, PE and PG estimation, and

function of the number of episodes i. Parameter λ for entropy regularisation.
Functional forms Jη of cost value function, pθ of density policies.
Initialisation: µtk : state distribution on Rd, for k = 0, . . . , N , parameters η, θ.
for each episode i = 1, . . . , N do

Initialise state X0 ∼ µ0

for k = 0, . . . , n− 1 do
Update state distribution: µtk ← (1− ρiS)µtk + ρiSδXtk
Generate action αtk ∼ πθ(.|tk, Xtk , µtk)

Observe (e.g. by environment simulator) state Xtk+1
and cost ftk

If k = n− 1, update terminal state distribution: µtn ← (1− ρS)µtn + ρSδXtn ,
and observe terminal cost gtn
k ← k + 1

end
Compute

∆η =

n−1∑
k=0

(
e−β(n−k)∆tgtn +

n−1∑
`=k

e−β(`−k)∆t
[
ft` + λ log pθ(t`, Xt` , µt` , αt`)

]
∆t

− Jη(tk, Xtk , µtk)
)
∇ηJη(tk, Xtk , µtk)∆t

Ĝθ =
n−1∑
k=0

e−βtk∇θ log pθ(tk, Xtk , µtk , αtk)
[
Jη(tk+1, Xtk+1

, µtk+1
)− Jη(tk, Xtk , µtk)

+
(
ftk + λ log pθ(tk, Xtk , µtk , αtk)− βJη(tk, Xtk , µtk)

)
∆t
]

+Hθ[Jη](tk, Xtk , µtk)∆t.

Critic Update: η ← η + ρiE∆η; Actor Update: θ ← θ − ρiGĜθ
end
Return: Jη, πθ

We next develop AC algorithm for online setting where only past sample trajectory is
available, and so the parameters (θ, η) are updated in real-time incrementally. In this case,
given a policy πθ, we consider at each time step tk, k = 0, . . . , n − 1, a loss function for PE
given by

LPEtk (η) = Eα∼πθ
[∣∣∣Jη(tk+1, Xtk+1

,PXtk+1
)− Jη(tk, Xtk ,PXtk )

+
(
f(Xtk ,PXtk , αtk) + λ log pθ(tk, Xtk ,PXtk , αtk)− βJη(tk, Xtk ,PXtk )

)
∆t
∣∣∣2].

Concerning PG, we note that when θ is an optimal parameter, we should have Gθ = 0.
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Therefore, from the martingale condition in (3.6), this suggests to find θ such that at any
time tk, k = 0, . . . , n− 1

Eα∼πθ
{
∇θ log pθ(tk, Xtk ,PXtk , αtk)

[
Jη(tk+1, Xtk+1

,PXtk+1
)− Jη(tk, Xtk ,PXtk )

+
(
f(Xtk ,PXtk , αtk) + λ log pθ(tk, Xtk ,PXtk , αtk)− βJη(tk, Xtk ,PXtk )

)
∆t
]

+Hθ[Jη](tk, Xtk , µtk)∆t
}

= 0.

The pseudo-code is described in Algorithm 2.

Algorithm 2: Online actor-critic mean-field algorithm

Input data: Number of episodes N , number of mesh time-grid n (↔ time step ∆t =

T/n), learning rates ρiS , ρ
i
E , ρ

i
G for the state distribution, PE and PG estimation, and

function of the number of episodes i. Parameter λ for entropy regularisation.
Functional forms Jη of cost value function, pθ of density policies.
Initialisation: µtk : state distribution on Rd, for k = 0, . . . , n, parameters η, θ.
for each episode i = 1, . . . , N do

Initialise state X0 ∼ µ0

for k = 0, . . . , n− 1 do
Update state distribution: µtk ← (1− ρiS)µtk + ρiSδXtk
Generate action αtk ∼ πθ(.|tk, Xtk , µtk)

Observe (e.g. by environment simulator) state Xtk+1
and cost ftk

If k = n− 1, update terminal state distribution: µtk+1
←

(1− ρiS)µtk+1
+ ρiSδXtk+1

, and observe terminal cost gtk+1

Compute

δη = Jη(tk+1, Xtk+1
, µtk+1

)− Jη(tk, Xtk , µtk)

+
(
ftk + λ log pθ(tk, Xtk , µtk , αtk)− βJη(tk, Xtk , µtk)

)
∆t

∆η = δη∇ηJη(tk, Xtk , µtk)

∆θ = δη∇θ log pθ(tk, Xtk , µtk , αtk) +Hθ[Jη](tk, Xtk , µtk)∆t,

with the constraint that when k = n− 1, Jη(tk+1, Xtk+1
, µtk+1

) = gtk+1
.

Critic Update: η ← η + ρiE∆η; Actor Update: θ ← θ − ρiG∆θ

k ← k + 1
end

end
Return: Jη, πθ

Remark 3.2 (About the choice of actor and critic parametric functions) In the Actor-
critic algorithms, we have to specify a parametric family of randomised policies πθ, and a
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parametric family of critic functions Jη. In general, for critic functions, one can consider
cylindrical neural network functions in the form

Jη(t, x, µ) = Ψ(t, x,< ϕ, µ >), (t, x, µ) ∈ [0, T ]× Rd × P2(Rd), (3.7)

where Ψ is a feedforward neural network from [0, T ] × Rd × Rk into R, and ϕ is another
feedforward neural network from Rd into Rk (called latent space), and we use the notation
< φ, µ > :=

∫
φ(x)µ(dx). The set of parameters η is the union of the parameter sets for the

two neural networks Ψ and ϕ. This choice is motivated by the density property of the set of
cylindrical functions, i.e. functions in the form (3.7) with continuous functions Ψ and ϕ, with
respect to continuous functions on [0, T ] × Rd × P2(Rd) as shown in [19], and the universal
approximation property of feedforward neural networks on finite-dimensional space, see [22].

Concerning the policies, notice that when the temperature parameter for exploration λ is
zero, the optimal policy is of pure (non randomised) feedback form as a function of (t, x, µ).
When λ > 0, the optimal policy is in general truly randomised, and the larger is λ, the larger
is the exploration in the sense that the variance of the randomised policy increases. We can
then take for the parametric family of randomised policies, for example Gaussian distributions:

πθ(.|t, x, µ) = N
(
m(t, x, µ);ϑ(λ)

)
,

where m is a cylindrical neural network function on [0, T ]×Rd×P2(Rd) valued in A ⊂ Rm, and
ϑ(.) is a given symmetric matrix-valued function, nondecreasing w.r.t. λ, with ϑ(λ) positive-
definite for λ > 0, and ϑ(0) = 0.

In some particular mean-field models, we may know a priori the structural form of the
optimal value function and optimal randomised policy, and this suggests alternately some
specific form for the parametric family of actor and critic functions. This is typically the
case of the linear quadratic model, as presented in the next section.

Remark 3.3 The above actor-critic algorithms involve the computation of the term Hθ[Jη]
at each time tk, and along the observed state Xtk and estimated state distribution µtk . This
additional term, compared to the actor-critic algorithms designed in [24] for standard stochastic
control without mean-field interaction, involves the operatorHθ defined in (3.4). In the separable
form case, namely when the coefficients of the mean-field process are in the form

b(x, µ, a) = b(x, µ) + C(a), (σσᵀ)(x, µ, a) = Σ(x, µ) + F (a),

where C and F are known functions from A into Rd, resp. Rd×d, we notice that

∇θbθ(t, x, µ) = ∇θCθ(t, x, µ), with Cθ(t, x, µ) :=

∫
C(a)πθ(da|t, x, µ),

∇θΣθ(t, x, µ) = ∇θFθ(t, x, µ), with Fθ(t, x, µ) :=

∫
F (a)πθ(da|t, x, µ),
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are known functions, and consequently also the function Hθ[Jη]. Another important case where
the term Hθ[Jη] is a known computable function is given in the linear quadratic framework as
presented in the next section.

4 The linear quadratic case

We focus on the important class of MFC control problem with linear state dynamics and
quadratic reward, namely

b(x, µ, a) = Bx+ B̄µ̄+ Ca, σ(x, µ, a) = γ +Dx+ D̄µ̄+ Fa,

f(x, µ, a) = xᵀQx+ µ̄ᵀQ̄µ̄+ aᵀNa+ 2aᵀIx+ 2aᵀĪ µ̄+ 2M.x+ 2H.a,

g(x, µ) = xᵀPx+ µ̄ᵀP̄ µ̄+ 2L.x,

(4.1)

for (x, µ, a) ∈ Rd×P2(Rd)×Rm, where we denote by µ̄ =
∫
xµ(dx), B, B̄, D, D̄ are constant

matrices in Rd×d, C, F are constant matrices in Rd×m, γ is a constant in Rd, N is a symmetric
matrix in Sm+ , I, Ī ∈ Rm×d, Q, Q̄, P , P̄ are symmetric matrices in Sd, with Q ≥ 0, P ≥ 0, M ,
L ∈ Rd, H ∈ Rm.

In this case, the optimal value function to this LQ MFC problem with entropy regularisation
when minimizing over randomised controls a functional cost as in (2.5), is given by

v(t, x, µ) = (x− µ̄)ᵀK(t)(x− µ̄) + µ̄ᵀΛ(t)µ̄+ 2Y (t).x+R(t),

where K (valued in Sd), Λ (valued in Sd), Y valued in Rd, and R valued in R, are solutions
to a system of ordinary differential equations on [0, T ] given in (B.1). Moreover, the optimal
randomised control is of feedback form with Gaussian distribution:

π∗(.|t, x, µ) = N
(
− S(t)−1

(
U(t)x+ (W (t)− U(t))µ̄+O(t)

)
;
λ

2
S(t)−1

)
,

where

S(t) = N + F ᵀK(t)F, O(t) = H + CᵀY (t) + F ᵀK(t)γ

U(t) = I + CᵀK(t) + F ᵀK(t)D, W (t) = I + Ī + CᵀΛ(t) + F ᵀK(t)(D + D̄).

This is an extension of the mean-field LQ control without entropy and control randomization,
and the proof that adapts arguments in [2] is reported in Appendix B.

In a RL setting, the coefficients of the LQ model (4.1) are unknown, thus K, Λ, Y , and R
cannot be solved from the system of ODEs, and S, O, U , and W are also unknown. We shall
then employ our RL algorithms to solve the LQ problem in a model-free setting. In view of
the above structure of the optimal value function and randomised policy, we parametrise the
cost value function by

Jη(t, x, µ) = (x− µ̄)ᵀKη(t)(x− µ̄) + µ̄ᵀΛη(t)µ̄+ 2Y η(t).x+Rη(t), (4.2)
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for some parametric functions Kη, Λη, Y η, Rη on [0, T ], with parameters η ∈ Rp. On the other
hand, we parametrise the randomised policies by

πθ(.|t, x, µ) = N
(
φθ1(t)x+ φθ2(t)µ̄+ φθ3(t); Σθ(t)

)
, (4.3)

for some parametric functions φθ1, φθ2, φθ3,Σθ on [0, T ], with parameter θ ∈ Rq.
The parametric functions Kη, Λη, Y η, Rη, and φθ1, φ

θ
2, φ

θ
3,Σ

θ, could be in general neural
networks on [0, T ], but depending on the examples, we could take more specific forms, as
discussed in the next section.

For parametrisation of the cost value function and randomised policies as in (4.2), (4.3),
we see that

∂µJη(t, x, µ)(x′) = −2Kη(t)(x− µ̄) + 2Ληµ̄, and so ∂x′∂µJη(t, x, µ)(x′) = 0,

∇θbθ(t, x, µ) = C∇θφθ1(t) •2 x+ C∇θφθ2(t) •2 µ̄+ C∇θφθ3(t)

and then

Hθ[Jη](t, x, µ) = 2
[
(∇θφθ1(t) +∇θφθ2(t)) •2 µ̄+∇θφθ3(t)

]ᵀ
Cᵀ
(
−Kη(t)(x− µ̄) + Ληµ̄

)
,

which only involves, up to the knowledge of C, known functions of (t, x, µ). Notice also that
when φθ1 = −φθ2, and φθ3 ≡ 0 (see below the example of mean-field systemic risk), then Hθ[Jη]
≡ 0.

5 Numerical examples

5.1 Example 1: mean-field systemic risk

We consider a mean-field model of systemic risk introduced in [6]. This fits into a LQ MFC
with

B̄ = −B > 0, C = 1, γ > 0, D = D̄ = F = 0

I = −Ī > 0, Q+ Q̄ = 0, N =
1

2
, M = H = L = 0, P + P̄ = 0,

and Q ≥ 2I2. We also take X0 ∼ N (0, 1). In this case, the solution to the system of ODEs
(B.1) yields the analytic expression:

K(t) = −1

2

[
B̄ + 2I −

√
∆

√
∆ sinh(

√
∆(T − t)) + (B̄ + 2I + 2P ) cosh(

√
∆(T − t))√

∆ cosh(
√

∆(T − t)) + (B̄ + 2I + 2P ) sinh(
√

∆(T − t))

]
,

R(t) =
γ2

2
ln
[

cosh(
√

∆(T − t)) +
B̄ + 2I + 2P√

∆
sinh(

√
∆(T − t))

]
− γ2

2
(B̄ + 2I)(T − t)

−λ(T − t)
2

log(2πλ)
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with
√

∆ =
√

(B̄ + 2I)2 + 2Q− 4I2, and Λ = Y = 0, while the optimal randomised policy is
given by

π̂(.|t, x, µ) = N
(
φ(t)(x− µ̄);λ

)
, with φ(t) = −2(K(t) + I).

In view of these expressions, we shall use critic function as

Jη(t, x, µ) = Kη(t)(x− µ̄)2 +Rη(t),

for some parametric functions Kη and Rη on [0, T ] with parameters η, and actor functions as

πθ(.|t, x, µ) = N
(
φθ(t)(x− µ̄);λ

)
,

i.e. log pθ(t, x, µ, a) = −1

2
log(2πλ)−

∣∣a− φθ(t)(x− µ̄)
∣∣2

2λ
,

for some parametric function φθ on [0, T ] with parameter θ. As shown in Section 4, we notice
that Hθ[Jη] = 0.

We shall test with two choices of parametric functions:

1. Exact parametrisation:
Kη(t) = −1

2

[
η3 − η1

sinh(η1(T−t))+η2 cosh(η1(T−t))
cosh(η1(T−t))+η2 sinh(η1(T−t))

]
,

Rη(t) = η4 ln
[

cosh(η1(T − t)) + η2 sinh(η1(T − t))
]
− η3η4(T − t)− λ(T−t)

2 log(2πλ)

φθ(t) = θ3 − θ1
sinh(θ1(T−t))+θ2 cosh(θ1(T−t))
cosh(θ1(T−t))+θ2 sinh(θ1(T−t)) ,

(5.1)
with parameters η = (η1, η2, η3, η4) ∈ R4

+, and θ = (θ1, θ2, θ3) ∈ R3
+, so that the optimal

solution in the model-based case corresponds to η∗1 =
√

∆, η∗2 = B̄ + 2I + 2P , η∗3 =

B̄ + 2I, η∗4 = γ2/2, and θ∗1 =
√

∆, θ∗2 = B̄ + 2I + 2P , θ∗3 = B̄.

2. Neural networks: for Kη, Rη and φθ, with time input.

We implement our actor-critic algorithms with a simulator of X for coefficients equal to

T = 1, γ = 1, B̄ = −B = 0.6, I = 0.4, P = Q = 1,

The simulator for X is based on the real mean-field model:

dXt =
(
B̄(E[Xt]−Xt) + αt

)
dt+ γdWt.

Since α ∼ πθ, we note that E[αt] = φθ(t)(E[Xt] − E[µ̄t]) = 0. We deduce that under such α,
dE[Xt] = 0, hence E[Xt] = E[X0]. From the above mean-field dynamics of X, we deduce that

Xtk+1
− E[X0] = e−B̄∆t(Xtk − E[X0]) + αtk

(1− e−B̄∆t

B̄

)
+ γ

∫ tk+1

tk

e−B̄(tk+1−s)dWs

' eB∆t(Xtk − E[X0]) + αtk
(1− e−B̄∆t

B̄

)
+ γe−B̄∆t∆Wtk .
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The cost is simulated according to

ftk = Q(Xtk − E[X0])2 +
1

2
α2
tk

+ 2αtkI(Xtk − E[X0]), gT = P (XT − E[X0])2.

We first present the numerical results of our offline Algorithm 1 when using the exact
parametrisation (5.1). The derivatives w.r.t. to η of Kη, Rη, hence of Jη, as well as the
derivative w.r.t. θ of log pθ have explicit analytic expressions that are implemented in the
updating rule of the actor-critic algorithm.

Here we used the following parameters: µtk was initialized at 0; the number of episodes
was N = 2100; the time horizon was T = 1 and the time step ∆t = 0.02. The values of the
model parameters were as described above. The learning rates (ρS , ρE , ρG) and λ were taken
as ρS = 0.2 constant, and at iteration i,

ρE(i) =

{
(0.01, 0.1, 0.01, 0.2) if i ≤ 500

(0.1, 0.1, 0.1, 0.1) if 500 < i ≤ 21000
ρG(i) =


(0.03, 0.05, 0.03) if i ≤ 7000

(0.01, 0.01, 0.01) if 7000 < i ≤ 10000

(0.005, 0.01, 0.005) if 10000 < i ≤ 14000

(0.002, 0.002, 0.002) if 17000 < i ≤ 21000

and

λ(i) =


0.1 if i ≤ 8000,

0.01 if 8000 < i ≤ 14000,

0.001 if 14000 < i ≤ 21000

Moreover, after i = 14000 iterations, we also increase the size of the minibatch from 20 to 40.
In Table 1, we give the learnt parameters for the critic and actor functions, to be compared
wih the exact value of the parameters.

η1 η2 η3 η4 θ1 θ2 θ3

exact 1.8221 1.8660 1.4 0.5 1.8221 1.8660 0.6

learnt 1.4197 2.0536 0.9997 0.4824 1.6204 1.9167 0.3660

Table 1: Learnt vs exact parameters of the critic and actor functions.

In Figure 1, we see that, even though the parameters η and θ (shown with full lines) are
slightly different from the true optimal values (shown in dashed lines), the functions K,R and
φ are matched almost perfectly.

We also display one realization of the control and of the cost. These are based on evaluating
the control and the cumulative cost along one trajectory of the state. We first simulate
104 realizations of a Brownian motion. Based on this, we generate trajectories for one 104
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population of agents using the learnt control and one population of 104 agents using the optimal
control. For the population that uses the learnt control, the control is given by the mean of the
actor, namely, φθ(t)(x− µ̄). In the dynamics, the cost and the control, the mean field term is
replaced by the empirical mean of the corresponding population at the current time. We can
see that the trajectories of control (resp. cost) are very similar.
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Figure 1: Convergence of the learnt value function and policy with exact parametrisation for the
offline Algorithm 1. Top: learned parameters of critic (left) and associated critic functions Kη, Rη (right)
vs optimal parameters and associated functions. Middle: learned parameters of actor (left) and associated
actor function φθ vs optimal parameters and associated function. Bottom: one realization of the control (left)
and one realization of the cost (right) vs the optimal ones, respectively along a state trajectory controlled by
the learnt control and a state trajectory controlled optimally (both using the same realization of the Brownian
motion).

20



Next, we present in Figure 2 and Figure 3 the numerical results of our online Algorithm
2 when using neural networks. In this case, the derivatives w.r.t. to η of Kη, Rη, hence of
Jη, as well as the derivative w.r.t. θ of log pθ are computed by automatic differentiation. We
use neural networks with 3 hidden layers, 10 neurons per layer and tanh activation functions.
We take n = 30, N = 15000 iterations, batch size 500 (10000 for the law estimation in the
simulator), constant learning rates 10−3, except ωS = 1. We change λ along episodes: λ = 0.1

for the first 3334 ones, then 0.01 for the next 3333 ones, then 0.001 until the end.

Figure 2: Learnt critic cost function with neural networks for the online Algorithm 2. Left panel:
Neural network functions Kη, Rη vs optimal one. Right panel: Neural network function φθ vs optimal one.

Figure 3: Learnt actor policy function with neural networks for the online Algorithm 2. Left
panel: One realization of the control vs the optimal non-randomised one with λ = 0 Right panel: Plot of one
realization of t 7→ Jη(t,Xt,PXt), respectively along a state trajectory controlled by the learnt policy and a state
trajectory controlled optimally (both using the same realization of the Brownian motion).

Finally, we test in Table 2 the learnt policies from the exact and NN parametrisation
by computing the associated initial expected social costs. We simulate 10 populations, each
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consisting of 104 agents. All the agents use the control function with the parameters learnt
by the algorithm. For the dynamics, the cost and the control, the mean field term is replaced
by the empirical mean of the corresponding population at the present time step. For each
population, we compute the social cost. We then average over the 10 populations in order to
get a Monte Carlo estimate of the social cost. We report in the table the value of this average
social cost, the standard deviation over the 10 populations, and the relative error between the
average social cost and the optimal cost computed by the formula Kη∗

0 Var(X0) +Rη
∗

0 with the
optimal parameter η∗.

Initial cost (Std dev.) Rel. error
Learnt with exact parameterization 0.625 (0.006) 2.00%

Learnt with NN 0.632 (0.006) 3.10%

Exact value 0.613

Table 2: Initial costs when following learnt policies vs optimal ones

5.2 Example 2: optimal trading

We consider an optimal trading problem where the inventory is governed by

dXt = αtdt+ γdWt,

and we aim to minimize over randomised trading rate α ∼ π the cost functional

E
[ ∫ T

0
α2
t + 2Hαt − λE(πt)dt+ PVar(XT )

]
.

where γ > 0, H > 0 is the transaction price per trading, P > 0 is a risk aversion parameter,
and λ > 0 is the temperature parameter. This model fits into the LQ framework, and the
solution to the system of ODEs (B.1) is given by

K(t) =
P

1 + P (T − t)
, R(t) = γ2 log(1 + P (T − t))−

(
H2 +

λ

2
log(πλ)

)
(T − t),

Λ = Y ≡ 0, while the optimal randomised policy is given by

π̂(|t, x, µ) ∼ N
(
−K(t)(x− µ̄)−H;

λ

2

)
.

In a RL setting, the coefficients σ, H and P are unknown, and we use critic function as

Jη(t, x, µ) = Kη(t)(x− µ̄)2 +Rη(t),
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for some parametric functions Kη and Rη on [0, T ] with parameters η, and actor functions as

πθ(.|t, x, µ) = N
(
φθ(t)(x− µ̄) + φθ3(t);

λ

2

)
,

i.e. log pθ(t, x, µ, a) = −1

2
log(πλ)−

∣∣a− φθ(t)(x− µ̄)− φθ3(t)
∣∣2

λ
,

for some parametric functions φθ, φθ3 on [0, T ] with parameter θ. Given such family of
parametric actor/critic functions, we have

Hθ[Jη](t, x, µ) = −2CKη(t)(x− µ̄)∇θφθ3(t).

We shall test with two choices of parametric functions:

1. Exact parametrisation:
Kη(t) = η1

1+η1(T−t)

Rη(t) = η2 log(1 + η1(T − t))−
(
η3 + λ

2 log(πλ)
)
(T − t)

φθ(t) = − θ1
1+θ1(T−t) , φθ3(t) = −θ2,

(5.2)

with parameters η = (η1, η2, η3) ∈ (0,∞)3, θ = (θ1, θ2) ∈ (0,∞)2, so that the optimal
solution in the model-based case corresponds to (η∗1, η

∗
2, η
∗
3) = (P, γ2, H2), and (θ∗1, θ

∗
2) =

(P,H).

2. Neural networks: for Kη, Rη, φθ, and φθ3 with time input. Actually, we take for φθ3 a
constant function.

We first present the numerical results of our offline Algorithm 1 when using the exact
parametrisation (5.2). The derivatives w.r.t. to η of Kη, Rη, hence of Jη, as well as the
derivative w.r.t. θ of log pθ, and Hθ[Jη] have explicit analytic expressions that are implemented
in the updating rule of the actor-critic algorithm. Here we used the following parameters: the
learning rates (ρS , ρE , ρG) and λ were taken as ρS = 0.2 constant, and at iteration i,

ρE(i) =

{
(0.05, 0.05, 0.05) if i ≤ 8000

(0.05, 0.05, 0.01) if 8000 < i ≤ 20000
ρG(i) =


(0.005, 0.005) if i ≤ 8000

(0.001, 0.001) if 8000 < i ≤ 13000

(0.0005, 0.0005) if 8000 < i ≤ 13000

and

λ(i) =


0.1 if i ≤ 8000,

0.01 if 8000 < i ≤ 13000

0.001 if 13000 < i ≤ 20000
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µtk was initialized at 0; the number of episodes was N = 20000; the time horizon was T = 1

and the time step ∆t = 0.02. The values of the model parameters are: P = 3, H = 2, γ = 1,
and X0 ∼ N (1, 1).

In Table 3, we give the learnt parameters for the critic and actor function to be compared
with the exact values, when using the learnt policy with learnt empirical distribution from the
algorithm.

η1 η2 η3 θ1 θ2

exact 3 1 4 3 2

learnt 2.9864 0.9637 3.9154 3.0161 2.0016

Table 3: Learnt vs exact parameters of the critic and actor functions.

In Figure 4, we see that the parameters and, hence, the functions K,R and φ are matched
almost perfectly. We also display one realization of the control and of the cost. These are based
on evaluating the control and the cumulative cost along one trajectory of the state. We first
simulate 104 realizations of a Brownian motion. Based on this, we generate trajectories for one
104 population of agents using the learnt control and one population of 104 agents using the
optimal control. For the population that uses the learnt control, the control is given by the
mean of the actor, namely, φθ(t)(x− µ̄) +φθ3(t). In the dynamics, the cost and the control, the
mean field term is replaced by the empirical mean of the the corresponding population at the
current time. We can see that the trajectories of control (resp. cost) are very similar.
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Figure 4: Convergence of the learnt value function and policy with exact parametrisation for the
offline Algorithm 1. Top: learned parameters of critic (left) and associated critic functions Kη, Rη (right) vs
optimal parameters and associated functions. Middle: learned parameters of actor (left) and associated actor
function φθ vs optimal parameters and associated function. Bottom: one realization of the control (left) and
one realization of the cost (right) vs the optimal ones, respectively along a state trajectory controlled by the
learned control and a state trajectory controlled optimally (both using the same realization of the Brownian
motion).
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Next, we present in Figure 5 and Figure 6 the numerical results of our online Algorithm
2 when using neural networks. In this case, the derivatives w.r.t. to η of Kη, Rη, hence of
Jη, as well as the derivative w.r.t. θ of log pθ are computed by automatic differentiation. We
use neural networks with 3 hidden layers, 10 neurons per layer and tanh activation functions.
We take n = 30, N = 15000 iterations, batch size 300 (10000 for the law estimation in the
simulator), constant learning rates 10−3, except ωS = 1. Again, we change λ along episodes:
λ = 0.1 for the second 3334 ones, then 0.01 for the next 3333 ones, then 0.001 until the end.

Figure 5: Learnt critic cost function with neural networks for the online Algorithm 2. Left panel:
Neural network function Kη vs optimal one. Right panel: Neural network function Rη vs optimal one.

Figure 6: Learnt actor policy function with neural networks (NN) for the online Algorithm
2. Left up panel: NN φθ vs optimal one. Right up panel: NN φθ3 vs optimal one. Bottom panel: (left) One
realization of the control vs the optimal non-randomised one with λ = 0, and (right) one realization of the cost
t 7→ Jη(t,Xt,PXt) , respectively along a state trajectory controlled by the learnt policy and a state trajectory
controlled optimally (both using the same realization of the Brownian motion).
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Finally, we test in Table 4 the learnt policies from the exact and NN parametrisation
by computing the associated initial expected social costs. We simulate 10 populations, each
consisting of 104 agents. All the agents use the control function with the parameters learnt
by the algorithm. For the dynamics, the cost and the control, the mean field term is replaced
by the empirical mean of the corresponding population at the present time step. For each
population, we compute the social cost. We then average over the 10 populations in order to
get a Monte Carlo estimate of the social cost. We report in the table the value of this average
social cost, the standard deviation over the 10 populations, and the relative error between the
average social cost and the optimal cost computed by the formula Kη∗

0 Var(X0) +Rη
∗

0 with the
optimal parameter η∗.

Social cost (Std dev.) Rel. error
Learnt with exact parametrisation −1.861 (0.025) 0.11%

Learnt with NN −1.787 (0.035) 4.08%

Exact value −1.863

Table 4: Initial social costs when following learnt policies vs optimal one.

A Proofs of some representation results

A.1 Proof of Proposition 2.1

Step 1: For a fixed policy π, we introduce the non-linear McKean-Vlasov SDE with dynamics

X̃t,ξ
s = ξ +

∫ s

t
bπ(r, X̃t,ξ

r ,P
X̃t,ξ
r

) dr +

∫ s

t
σπ(r, X̃t,ξ

r ,P
X̃t,ξ
r

) dWr, (A.1)

recalling that σπ = Σ
1/2
π , as well as its associated decoupled SDE with dynamics

X̃t,x,µ
s = x+

∫ s

t
bπ(r, X̃t,x,µ

r ,P
X̃t,ξ
r

) dr +

∫ s

t
σπ(r, X̃t,x,µ

r ,P
X̃t,ξ
r

) dWr. (A.2)

Under Assumption 2.1(i), the coefficients bπ and σπ are Lipschitz-continuous and with at most
linear growth with respect to the variable x and µ locally uniformly in time. Hence, the SDEs
(A.1)-(A.2) admit a unique strong solution.

Denoting by P the probability measure on C([0,∞),Rd) (the space of continuous functions
defined on [0,∞) taking values in Rd) induced by the unique solution to the SDE (A.1) and
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by P(t) its marginal at time t, its infinitesimal generator is given by

L̃πt ϕ(x) =
d∑
i=1

∫
A
bi(x,P(t), a)π(da|t, x,P(t))∂xiϕ(x)

+
1

2

d∑
i,j=1

∫
A

(σσᵀ)i,j(x,P(t), a)π(da|t, x,P(t))∂2
xi,xjϕ(x).

Now, coming back to the dynamics of the McKean-Vlasov SDE (2.4), we importantly point
out that since at each time s, the action αs is sampled from the probability distribution
π(.|s,Xt,ξ

s ,P
Xt,ξ
s

) independently of W , the infinitesimal generator at time t of (2.4) is exactly
given by L̃πt . Hence, it follows from the uniqueness of the martingale problem associated to L̃π

that Xt,ξ and X̃t,ξ have the same law b.
We thus conclude that V π can be written as

V π(t, x, µ) = E
[ ∫ T

t
e−β(s−t)(fπ − λEπ)(s, X̃t,x,µ

s ,P
X̃t,ξ
s

) ds+ e−β(T−t)g(X̃t,x,µ
T ,P

X̃t,ξ
T

)
]
.

(A.3)

Step 2: We know, see e.g. [13] or [10], that Assumption 2.1(i) guarantees the existence of a
modification of X̃t,x,µ such that:

• The map x 7→ X̃t,x,ξ
s is P-a.s. twice continuously differentiable,

• for any x ∈ Rd, 0 ≤ t ≤ s, and any p ≥ 1, the map P2(Rd) 3 µ 7→ X̃t,x,µ
s ∈ Lp(P) is

differentiable and the map Rd 3 v 7→ ∂µX̃
t,x,µ
s (v) ∈ Lp(P) is differentiable,

• for any p ≥ 1, the derivatives (t, x, µ, v) 7→ ∂xX̃
t,x,µ
s , ∂2

xX̃
t,x,µ
s , ∂µX̃

t,x,µ
s (v), ∂v[∂µX̃

t,x,µ
s ](v) ∈

Lp(P) are continuous.

Moreover, the following estimates hold for n = 1, 2 and any p ≥ 1

sup
0≤t≤s≤T,(x,v)∈(Rd)2,µ∈P2(Rd)

{
‖∂nx X̃t,x,µ

s ‖Lp(P) + ‖∂µX̃t,x,µ
s (v)‖Lp(P) + ‖∂v∂µX̃t,x,µ

s (v)‖Lp(P)

}
<∞.

We thus deduce that the functions x 7→ fπ(s, X̃t,x,µ
s ,P

X̃t,ξ
s

), Eπ(s, X̃t,x,µ
s ,P

X̃t,ξ
s

), g(X̃t,x,µ
T ,P

X̃t,ξ
T

)

are P-a.s. twice continuously differentiable with derivatives that belong to Lp(P), for any p ≥ 1,
uniformly in x, µ and t ∈ [0, s]. The dominated convergence theorem eventually guarantees
that x 7→ V π(t, x, µ) is twice continuously differentiable with

∂xiV
π(t, x, µ) = E

[ ∫ T

t
e−β(s−t)

d∑
k=1

∂xk(fπ − λEπ)(s, X̃t,x,µ
s ,P

X̃t,ξ
s

)∂xi(X̃
t,x,µ
s )kds

+ e−β(T−t)
d∑

k=1

∂xkg(X̃t,x,µ
T ,P

X̃t,ξ
T

)∂xi(X̃
t,x,µ
T )k

]
, (A.4)

bThis was formally shown by law of large numbers in [30] in the standard diffusion case.
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and

∂2
xi,xjV

π(t, x, µ) = E
[ ∫ T

t
e−β(s−t)

d∑
k,`=1

∂2
xk,x`

(fπ − λEπ)(s, X̃t,x,µ
s ,P

X̃t,ξ
s

)∂xi(X̃
t,x,µ
s )k∂xj (X̃

t,x,µ
s )`ds

+ e−β(T−t)
d∑

k,`=1

∂2
xk,x`

g(X̃t,x,µ
T ,P

X̃t,ξ
T

)∂xi(X̃
t,x,µ
T )k∂xj (X̃

t,x,µ
T )`

+

∫ T

t
e−β(s−t)

d∑
k=1

∂xk(fπ − λEπ)(s, X̃t,x,µ
s ,P

X̃t,ξ
s

)∂2
xi,xj (X̃

t,x,µ
s )kds

+ e−β(T−t)
d∑

k=1

∂xkg(X̃t,x,µ
T ,P

X̃t,ξ
T

)∂2
xi,xj (X̃

t,x,µ
T )k

]
.

It follows from the above expression and again the dominated convergence theorem that
(t, x, µ) 7→ ∂xiV

π(t, x, µ), ∂2
xi,xjV

π(t, x, µ) are continuous.
Similarly, note that under the current assumption, the functions µ 7→ h(t, X̃t,x,µ

s ,P
X̃t,ξ
s

),
g(X̃t,x,µ

T ,P
X̃t,ξ
T

), where h ∈ {fπ, Eπ}, are L-differentiable with derivatives satisfying

∂iµ[h(s, X̃t,x,µ
s ,P

X̃t,ξ
s

)](v) =
d∑

k=1

∂xkh(s, X̃t,x,µ
s ,P

X̃t,ξ
s

)∂iµ[(X̃t,x,µ
s )k](v)

+ Ê
[ d∑
k=1

∂kµh(s, X̃t,x,µ
s ,P

X̃t,ξ
s

)(X̂t,v,µ
s )∂xi(X̂

t,v,µ
s )k

]
+

∫
Rd

Ê
[ d∑
k=1

∂kµh(s, X̃t,x,µ
s ,P

X̃t,ξ
s

)(X̂t,x′,µ
s )∂iµ[(X̂t,x′,µ

s )k](v)
]
µ(dx′),

∂iµ[g(X̃t,x,µ
T ,P

X̃t,ξ
T

)](v) =
d∑

k=1

∂xkg(X̃t,x,µ
T ,P

X̃t,ξ
T

)∂iµ[(X̃t,x,µ
T )k](v)

+ Ê[
d∑

k=1

∂kµg(X̃t,x,µ
T ,P

X̃t,ξ
T

)(X̂t,v,µ
T )∂xi(X̂

t,v,µ
T )k]

+

∫
Rd

Ê[
d∑

k=1

∂kµg(X̃t,x,µ
T ,P

X̃t,ξ
T

)(X̂t,x′,µ
T )∂iµ[(X̂t,x′,µ

T )k](v)]µ(dx′),

(A.5)
where (X̂t,x,µ

s )s∈[t,T ] stands for a copy of (X̃t,x,µ
s )s∈[t,T ] defined on a copy (Ω̂, F̂ , P̂) of the original

probability space (Ω,F ,P). Under Assumption 2.1, it follows from the above identities that
(t, x, µ, v) 7→ ∂µ[h(s, X̃t,x,µ

s ,P
X̃t,ξ
s

)](v), ∂µ[g(X̃t,x,µ
T ,P

X̃t,ξ
T

)](v) ∈ Lp(P), p ≥ 1, are continuous
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and satisfy

|∂µ[h(s, X̃t,x,µ
s ,P

X̃t,ξ
s

)](v)| ≤ K(1 + |X̃t,x,µ
s |+ |v|+M2(P

X̃t,ξ
s

)q)(1 + |∂µX̃t,x,µ
s (v)|)

≤ K(1 + |X̃t,x,µ
s |+ |v|+M2(µ)q)(1 + |∂µX̃t,x,µ

s (v)|),

and

|∂µ[g(X̃t,x,µ
T ,P

X̃t,ξ
T

)](v)| ≤ K(1 + |X̃t,x,µ
T |+ |v|+M2(P

X̃t,ξ
T

)q)(1 + |∂µX̃t,x,µ
T (v)|)

≤ K(1 + |X̃t,x,µ
T |+ |v|+M2(µ)q)(1 + |∂µX̃t,x,µ

T (v)|),

where we used the fact that M2(P
X̃t,ξ
s

) ≤ K(1 + M2(µ)), for any s ∈ [t, T ], for the last
inequality. Similarly, it follows from (A.5) and the dominated convergence theorem that v 7→
∂µ[h(t, X̃t,x,µ

s ,P
X̃t,ξ
s

)](v), ∂µ[g(X̃t,x,µ
T ,P

X̃t,ξ
T

)](v) are continuously differentiable with derivatives
being continuous with respect to their entries and satisfying

|∂v∂µ[h(s, X̃t,x,µ
s ,P

X̃t,ξ
s

)](v)| ≤ K(1 + |X̃t,x,µ
s |+ |v|+M2(µ)q),

|∂v∂µ[g(X̃t,x,µ
T ,P

X̃t,ξ
T

)](v)| ≤ K(1 + |X̃t,x,µ
T |+ |v|+M2(µ)q).

Coming back to (A.3) and using the above estimates together with the dominated convergence
theorem allows to conclude that µ 7→ V π(t, x, µ) is L-differentiable and that v 7→ ∂µV

π(t, x, µ)(v)

is differentiable. Moreover, both derivatives ∂µV π(t, x, µ)(v), ∂v∂µV π(t, x, µ)(v) are continuous
with respect to their entries and satisfy

sup
t∈[0,T ]

{|∂µV π(t, x, µ)(v)|+ |∂v∂µV π(t, x, µ)(v)|} ≤ K(1 + |x|+ |v|+M2(µ)q). (A.6)

We thus conclude that V π ∈ C0,2,2([0, T ]× Rd × P2(Rd)).

Step 3: Let us now prove that (t, x, µ) 7→ V π(t, x, µ) ∈ C1,2,2([0, T ]× Rd × P2(Rd)). From the
Markov property satisfied by the SDE (A.1), stemming from its strong well-posedness, for any
0 ≤ h ≤ t, the following relation is satisfied

V π(t− h, x, µ) = e−βhE
[ ∫ t

t−h
e−β(s−t)(fπ − λEπ)(s, X̃t−h,x,µ

s ,P
X̃t−h,ξ
s

)ds
]

+ e−βhE
[
V π(t, X̃t−h,x,µ

t ,P
X̃t−h,ξ
t

)
]
.

Now, combining the fact that V π(t, .) ∈ C2,2(Rd×P2(Rd)) with (A.6) guarantees that one may
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apply Itô’s rule, see e.g. Proposition 5.102 [4]. We thus obtain

h−1(V π(t− h, x, µ)− V π(t, x, µ))

= e−βhh−1

∫ t

t−h
e−β(s−t)E

[
(fπ − λEπ)(s, X̃t−h,x,µ

s ,P
X̃t−h,ξ
s

)
]
ds

+ e−βhh−1E
[
V π(t, X̃t−h,x,µ

t ,P
X̃t−h,ξ
t

)− V π(t, x, µ)
]

+ h−1(e−βh − 1)V π(t, x, µ)

= e−βhh−1

∫ t

t−h
e−β(s−t)E

[
(fπ − λEπ)(s, X̃t−h,x,µ

s ,P
X̃t−h,ξ
s

)
]
ds

+ e−βhh−1

∫ t

t−h
E
[
L̃[V π](t, X̃t−h,x,µ

s ,P
X̃t−h,ξ
s

)
]
ds

+ h−1(e−βh − 1)V π(t, x, µ),

(A.7)

where

L̃π[ϕ](t, x, µ) = bπ(t, x, µ) ·Dxϕ(t, x, µ) +
1

2
Σπ(t, x, µ) : D2

xϕ(t, x, µ)

+ Eξ∼µ
[
bπ(t, ξ, µ) · ∂µϕ(t, x, µ)(ξ) +

1

2
Σπ(t, ξ, µ) : ∂υ∂µϕ(t, x, µ)(ξ)

]
.

Letting h ↓ 0 in (A.7), from the continuity and quadratic growth of fπ, Eπ as well as the
continuity of L̃[V π](t, .), we deduce that t 7→ V π(t, x, µ) is left-differentiable on (0, T ). Still
from the continuity of fπ, Eπ and L̃[V π], we eventually conclude that it is differentiable on
[0, T ) with a derivative satisfying

∂tV
π(t, x, µ)− βV π(t, x, µ) + L̃π[V π](t, x, µ) + (fπ − λEπ)(t, x, µ) = 0.

The proof is now complete.

A.2 Differentiability of the parametric critic function

Under the standard assumption that the coefficients bπθ(t, .), σπθ(t, .) are Lipschitz-continuous
on Rd × P2(Rd) uniformly in t ∈ [0, T ] and θ ∈ Θ, the system of SDEs (2.4) admits a unique
strong solution when α ∼ πθ. We will denote by (Xt,ξ

s (θ), Xt,x,ξ
s (θ)) the solution taken at time

s. We will also use the more compact notation

Xt,ξ
s (θ) = ξ +

∫ s

t

p∑
j=0

gjθ(r,X
t,ξ
r (θ),P

Xt,ξ
r (θ)

) dW j
r

Xt,x,µ
s (θ) = x+

∫ s

t

p∑
j=0

gjθ(r,X
t,x,µ
r (θ),P

Xt,ξ
r (θ)

) dW j
r , t ≤ s ≤ T,

with g0
θ(t, x, µ) = bπθ(t, x, µ), gjθ(t, x, µ) = σ.,jπθ(t, x, µ), dWr = (dW 0

r , · · · ,dW
p
r ) with dW 0

r =

dr.
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Lemma A.1 Under Assumption 3.1, the derivatives (t, θ, x, µ, v) 7→ ∂θ∂xX̃
t,x,µ
s (θ), ∂x∂θX̃

t,x,µ
s (θ),

∂θ∂
2
xX̃

t,x,µ
s (θ), ∂2

x∂θX̃
t,x,µ
s (θ), ∂θ[∂µX̃

t,x,µ
s (θ)](v), ∂µ∂θX̃

t,x,µ
s (θ)(v), ∂θ∂v[∂µX̃

t,x,µ
s (θ)](v), ∂v[∂µ∂θX̃

t,x,µ
s (θ)](v)

∈ Lp(P) exist and are locally Lipschitz continuous for all p ≥ 1.

Proof. The proof of the existence and continuity of the derivatives of the flow Xt,x,ξ
s (θ) with

respect to the parameters x, µ, v and θ is rather standard but quite mechanical and actually
follows similar lines of reasonings as those employed for the proof of Theorem 3.2 in [13]. We
thus omit it. 2

With the same notations as Lemma A.1, under Assumption 3.1, taking hθ = fπθ , Eπθ or
g(x, µ), we deduce from the above result that the derivatives (t, θ, x, µ,v) 7→ ∂θ∂x[hθ(s, X̃

t,x,µ
s (θ),P

X̃t,ξ
s (θ)

)],

∂x∂θ[hθ(s, X̃
t,x,µ
s (θ),P

X̃t,ξ
s (θ)

)], ∂θ∂µ[hθ(s, X̃
t,x,µ
s (θ),P

X̃t,ξ
s (θ)

)](v), ∂µ∂θ[hθ(s, X̃
t,x,µ
s (θ),P

X̃t,ξ
s (θ)

)](v),

∂θ∂v∂µ[hθ(s, X̃
t,x,µ
s (θ),P

X̃t,ξ
s (θ)

)](v), ∂v∂µ∂θ[hθ(s, X̃
t,x,µ
s (θ),P

X̃t,ξ
s (θ)

)](v) ∈ Lp(P), for any p ≥ 1

and any 0 ≤ t ≤ s ≤ T , exist and are continuous. For instance, standard computations give

∂θl∂xi [hθ(s, X̃
t,x,µ
s (θ),PX̃t,ξs (θ))]

=

d∑
j=1

∂θl∂xjhθ(s, X̃
t,x,µ
s (θ),PX̃t,ξs (θ))∂xi(X̃

t,x,µ
s (θ))j

+

d∑
j,k=1

∂2xj ,xkhθ(s, X̃
t,x,µ
s (θ),PX̃t,ξs (θ))∂xi(X̃

t,x,ξ
s (θ))j∂θl(X̃

t,x,µ
s (θ))k

+

d∑
j,k=1

Ê
[
[∂µ∂xjhθ(s, X̃

t,x,µ
s (θ),PX̃t,ξs (θ))]k(X̂t,µ

s (θ))∂θl(X̂
t,ξ
s (θ))k

]
∂xi(X̃

t,x,µ
s (θ))j

+

d∑
j=1

∂xjhθ(s, X̃
t,x,µ
s (θ),PX̃t,ξs (θ))∂θl∂xi(X̃

t,x,µ
s (θ))j
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and

∂θl∂
i
µ[hθ(s, X̃

t,x,µ
s (θ),PX̃t,ξs (θ))](v)

=

d∑
j=1

∂θl∂xjhθ(s, X̃
t,x,µ
s (θ),PX̃t,ξs (θ))∂

i
µ(X̃t,x,µ

s (θ))j

+

d∑
j,k=1

∂2xj ,xkhθ(s, X̃
t,x,µ
s (θ),PX̃t,ξs (θ))∂

i
µ(X̃t,x,µ

s (θ))j∂θl(X̃
t,x,µ
s (θ))k

+

d∑
j,k=1

Ê
[
[∂µ∂xjhθ(s, X̃

t,x,µ
s (θ),PX̃t,ξs (θ))]k(X̂t,ξ

s (θ))∂θl(X̂
t,ξ
s (θ))k

]
∂iµ(X̃t,x,µ

s (θ))j

+

d∑
j=1

∂xjhθ(s, X̃
t,x,µ
s (θ),PX̃t,ξs (θ))∂θl∂

i
µ(X̃t,x,µ

s (θ))j

+

d∑
j=1

Ê[∂θl∂
j
µhθ(s, X̃

t,x,µ
s (θ),PX̃t,ξs (θ))(X̂

t,v,µ
s (θ))∂vi(X̂

t,v,µ
s (θ))j ]

+

d∑
j,k=1

Ê[∂xk∂
j
µhθ(s, X̃

t,x,µ
s (θ),PX̃t,ξs (θ))(X̂

t,v,µ
s (θ))∂vi(X̂

t,v,µ
s (θ))j ]∂θl(X̃

t,x,µ
s )k

+

d∑
j,k=1

ÊĚ[∂kµ∂
j
µhθ(s, X̃

t,x,µ
s (θ),PX̃t,ξs (θ))(X̂

t,v,µ
s (θ), X̌t,ξ

s (θ))∂vi(X̂
t,v,µ
s (θ))j∂θl(X̌

t,ξ
s (θ))k]

+

d∑
j,k=1

Ê[∂vk∂
j
µhθ(s, X̃

t,x,µ
s (θ),PX̃t,ξs (θ))(X̂

t,v,µ
s (θ))∂vi(X̂

t,v,µ
s (θ))j∂θl(X̂

t,v,µ
s (θ))k]

+

d∑
j=1

Ê[∂jµhθ(s, X̃
t,x,µ
s (θ),PX̃t,ξs (θ))(X̂

t,v,µ
s (θ))∂θl∂vi(X̂

t,v,µ
s (θ))j ]

+

d∑
j=1

∫
Rd

Ê[∂θl∂
j
µhθ(s, X̃

t,x,µ
s (θ),PX̃t,ξs (θ))(X̂

t,x′,µ
s (θ))∂iµ(X̂t,x′,µ

s (θ))j(v)]µ(dx′)

+

d∑
j,k=1

∫
Rd

Ê[∂xk∂
j
µhθ(s, X̃

t,x,µ
s (θ),PX̃t,ξs (θ))(X̂

t,x′,µ
s (θ))∂θl(X̃

t,x,µ
s (θ))k∂iµ(X̂t,x′,µ

s (θ))j(v)]µ(dx′)

+

d∑
j,k=1

∫
Rd

ÊĚ[∂kµ∂
j
µhθ(s, X̃

t,x,µ
s (θ),PX̃t,ξs (θ))(X̂

t,x′,µ
s (θ), X̌t,ξ

s (θ))∂iµ(X̂t,x′,µ
s (θ))j(v)∂θl(X̌

t,ξ
s (θ))k]µ(dx′)

+

d∑
j,k=1

∫
Rd

Ê[∂vk∂
j
µhθ(s, X̃

t,x,µ
s (θ),PX̃t,ξs (θ))(X̂

t,x′,µ
s (θ))∂θl(X̂

t,x′,µ
s (θ))k∂iµ(X̂t,x′,µ

s (θ))j(v)]µ(dx′)

+

d∑
j=1

∫
Rd

Ê[∂jµhθ(s, X̃
t,x,µ
s (θ),PX̃t,ξs (θ))(X̂

t,x′,µ
s (θ))∂θl∂

i
µ(X̂t,x′,µ

s (θ))j(v)]µ(dx′).

In the above identity, X̌t,ξ
s (θ) stands for a random variable independent of (X̃t,x,µ

s , X̂t,v,µ
s , X̂t,x′,µ

s )
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with the same law as X̃t,ξ
s .

Then, starting from the expression of Vθ in (A.3) (with π = πθ), the dominated convergence
theorem guarantees that the derivatives (t, θ, x, µ, v) 7→ ∂θ∂xVθ(t, x, µ), ∂x∂θVθ(t, x, µ), ∂θ∂2

xVθ(t, x, µ),
∂2
x∂θVθ(t, x, µ), ∂θ∂µVθ(t, x, µ)(v), ∂µ∂θVθ(t, x, µ)(v), ∂θ∂v∂µVθ(t, x, µ)(v), ∂v∂µ∂θVθ(t, x, µ)(v)

exist and are locally Lipschitz continuous. Hence, from Clairaut’s theorem, we deduce that
∂θ∂xVθ(t, x, µ) = ∂x∂θVθ(t, x, µ), ∂θ∂2

xVθ(t, x, µ) = ∂2
x∂θVθ(t, x, µ), ∂θ∂µVθ(t, x, µ)(v) = ∂µ∂θVθ(t, x, µ)(v)

and ∂θ∂v∂µVθ(t, x, µ)(v) = ∂v∂µ∂θVθ(t, x, µ)(v) for all t, x, µ, θ, v.
Moreover, from Assumption 3.1 and Lemma A.1, there exist q and C such that for any

t, x, µ, v and any θ ∈ K, K being a compact subset of Θ

|∂θVθ(t, x, µ)| ≤ C(1 + |x|2 +M2(µ)q), (A.8)

|∂θ∂xVθ(t, x, µ)|+ |∂θ∂µVθ(t, x, µ)(v)| ≤ C(1 + |x|+ |v|+M2(µ)q), (A.9)

and
|∂θ∂2

xVθ(t, x, µ)|+ |∂θ∂v∂µVθ(t, x, µ)(v)| ≤ C(1 + |v|+M2(µ)q). (A.10)

Now, differentiating with respect to θ both sides of (2.6), we deduce that θ 7→ ∂tVθ(t, x, µ) is
differentiable with a derivative ∂θ∂tVθ(t, x, µ) being continuous with respect to t, x, µ, θ. Also,
taking π = πθ and differentiating with respect to θ both sides of the identity of (A.7) (using
Lemma A.1 together with the estimates (A.8), (A.9), (A.10) and the dominated convergence
theorem to differentiate the right-hand side therein) and then passing to the limit as h ↓ 0, we
get that t 7→ ∂θVθ(t, x, µ) is differentiable with a derivative ∂t∂θVθ(t, x, µ) being continuous
with respect to t, x, µ, θ. We thus conclude that the two derivatives ∂θ∂tVθ(t, x, µ) and ∂t∂θVθ(t, x, µ)

coincide for all t, x, µ, θ.

A.3 Proof of Theorem 3.1

Step 1: We start from the PDE characterisation of Vθ in Proposition 2.1 that we write as∫
A

{
Laθ [Vθ](t, x, µ) + f(x, µ, a) + λ log pθ(t, x, µ, a)

}
πθ(da|t, x, µ) = 0, (A.11)

where

Laθ [ϕ](t, x, µ) = −βϕ(t, x, µ) + ∂tϕ(t, x, µ) + b(x, µ, a) ·Dxϕ(t, x, µ) +
1

2
σσᵀ(x, µ, a) : D2

xϕ(t, x, µ)

+ Eξ∼µ
[
bθ(t, ξ, µ) · ∂µϕ(t, x, µ)(ξ) +

1

2
Σθ(t, ξ, µ) : ∂υ∂µϕ(t, x, µ)(ξ)

]
,

recalling that bθ(t, x, µ) =
∫
A b(x, µ, a)πθ(da|t, x, µ), Σθ(t, x, µ) =

∫
A(σσᵀ)(x, µ, a)πθ(da|t, x, µ).

For any fixed t, x, µ, we now differentiate w.r.t. θ ∈ Θ both sides of (A.11) to get a new
system of linear PDEs satisfied by Gθ. In particular, using the identity

∇θ
[
Laθ [Vθ](t, x, µ)

]
= Laθ [Gθ](t, x, µ) +Hθ[Vθ](t, x, µ),
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together with (3.1) and the dominated convergence theorem, we get∫
A

{
Laθ [Gθ](t, x, µ) +Hθ[Vθ](t, x, µ)

+
[
Laθ [Vθ](t, x, µ) + f(x, µ, a) + λ log pθ(t, x, µ, a)

]
∇θ log pθ(t, x, µ, a)

}
πθ(da|t, x, µ) = 0,

(A.12)
with terminal condition Gθ(T, x, µ) = 0. Note that we have used the fact that∫

A
∇θ log pθ(t, x, µ, a)πθ(da|t, x, µ) = ∇θ

∫
A
πθ(da|t, x, µ) = 0,

and the above PDE is a system of D equations, where Laθ [Gθ] denotes the operator applied to
each component of the RD-valued function Gθ.

Step 2: Denote by

F̃θ(t, x, µ, a) =
{
Laθ [Vθ](t, x, µ) + f(x, µ, a) + λ log pθ(t, x, µ, a)

}
∇θ log pθ(t, x, µ, a)

+ Hθ[Vθ](t, x, µ),

and

f̃πθ(t, x, µ) =

∫
A
F̃θ(t, x, µ, a)πθ(da|t, x, µ),

so that the linear PDE (A.12) satisfied by Gθ now writes

Lπθ [Gθ](t, x, µ) + f̃πθ(t, x, µ) = 0,

with terminal condition Gθ(T, x, µ) = 0. Observe that the above PDE is similar to (2.6).
In order to obtain the announced probabilistic representation formula, we first apply the
chain rule formula on the strip [t, T ] × Rd × P2(Rd), see e.g. Proposition 5.102 in [4], to
(e−βsGθ(s, X̃

t,x,µ
s ,P

X̃t,ξ
s

))s∈[t,T ] using the estimates (A.8) and (A.10). We thus obtain

d(e−βsGθ(s, X̃
t,x,µ
s ,P

X̃t,ξ
s

)) = −e−βsf̃πθ(s, X̃
t,x,µ
s ,P

X̃t,ξ
s

) ds

+ e−βs∂xGθ(s, X̃
t,x,µ
s ,P

X̃t,ξ
s

)ᵀσπθ(X̃
t,x,µ
s ,P

X̃t,ξ
s

) dWs.

Observe that (A.9) together with the fact that for any θ ∈ RD, |σπθ(x, µ)| ≤ C(1 + |x| +
M2(µ)), for some constant C, directly yields that the stochastic integral is a square integrable
martingale. Hence, integrating from t to T both sides of the above and using the facts that
Gθ(T, x, µ) = 0 and P

X̃t,ξ
s

= P
Xt,ξ
s
, P

X̃t,x,µ
s

= PXt,x,µ
s

, we eventually deduce

Gθ(t, x, µ) = Eα∼πθ
[ ∫ T

t
e−β(s−t)F̃θ(s,X

t,x,µ
s ,P

Xt,ξ
s
, αs) ds

]
.
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Step 3: On the other hand, applying again the chain rule formula to Vθ(s,X
t,x,µ
s ,P

Xt,ξ
s

), when
α ∼ πθ, see e.g. Proposition 5.102 in [4], we have

dVθ(s,X
t,x,µ
s ,P

Xt,ξ
s

) =
(
Lαsθ [Vθ](s,X

t,x,µ
s ,P

Xt,ξ
s

) + βVθ(s,X
t,x,µ
s ,P

Xt,ξ
s

)
)

ds

+ DxVθ(s,X
t,x,µ
s ,P

Xt,ξ
s

)ᵀσ(Xt,x,µ
s ,P

Xt,ξ
s
, αs) dWs, t ≤ s ≤ T,

and thus by definition of F̃θ∫ T

t
e−β(s−t)F̃θ(s,X

t,x,µ
s ,P

Xt,ξ
s
, αs) ds

=

∫ T

t
e−β(s−t)∇θ log(pθ(s,X

t,x,µ
s ,P

Xt,ξ
s
, αs))

(
dVθ(s,X

t,x,µ
s ,P

Xt,ξ
s

)− βVθ(s,X
t,x,µ
s ,P

Xt,ξ
s

)

+Hθ[Vθ](s,X
t,x,µ
s ,P

Xt,ξ
s

)
)

ds

+

∫ T

t
e−β(s−t)∇θ log(pθ(s,X

t,x,µ
s ,P

Xt,ξ
s
, αs))

(
f(Xt,x,µ

s ,P
Xt,ξ
s
, αs) + λ log(pθ(s,X

t,x,µ
s ,P

Xt,ξ
s
, αs))

)
ds

−
∫ T

t
e−β(s−t)∇θ log(pθ(s,X

t,x,µ
s ,P

Xt,ξ
s
, αs))DxVθ(s,X

t,x,µ
s ,P

Xt,ξ
s

)ᵀσ(Xt,x,µ
s ,P

Xt,ξ
s
, αs) dWs.

Note that (3.2) as well as the bound |DxVθ(s, x, µ)| ≤ C(1 + |x| + |µ|q), for some q ≥ 0,
directly deduced from the identity (A.4) and Assumption 2.1, guarantees that the stochastic
integral appearing in the right-hand side of the above identity is a square integrable martingale.
Hence, taking expectation in both sides of the above identity eventually yields

Gθ(t, x, µ) := Eα∼πθ
[ ∫ T

t
e−β(s−t)∇θ log pθ(s,X

t,x,µ
s ,P

Xt,ξ
s
, αs)

{
dVθ(s,X

t,x,µ
s ,P

Xt,ξ
s

)

+
[
f(Xt,x,µ

s ,P
Xt,ξ
s
, αs) + λ log pθ(s,X

t,x,µ
s ,P

Xt,ξ
s
, αs)− βVθ(s,X

t,x,µ
s ,P

Xt,ξ
s

)
]
ds
}

+

∫ T

t
e−β(s−t)Hθ[Vθ](s,X

t,x,µ
s ,P

Xt,ξ
s

)ds
]
.

This proves the announced probabilistic representation formula for Gθ.

B Linear quadratic mean-field control with randomised controls
and entropy regularisation

A stochastic policy is a probability transition kernel from [0, T ]×Rd×P2(Rd) into A = Rm, i.e.,
a measurable function π : (t, x, µ) ∈ [0, T ]× Rd × P2(Rd) 7→ π(.|t, x, µ) ∈ P(Rm). We denote
by Π the set of stochastic policies π with densities p with respect to the Lebesgue measure
on Rm: π(da|t, x, µ) = p(t, x, µ, a)da. We say that the process α = (αt)t is a randomised
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feedback control generated from a stochastic policy π ∈ Π, denoted by α ∼ π, if at each time
t, the action αt is sampled (according to the σ-algebra G) from the probability distribution
π(.|t,Xt,PXt). The dynamics X = Xα follows a linear mean-field dynamics with coefficients
b(x, µ, a) = b̄(x, µ̄, a), σ(x, µ, a) = σ̄(x, µ̄, a) in the form

b̄(x, x̄, a) = Bx+ B̄x̄+ Ca, σ̄(x, x̄, a) = γ +Dx+ D̄x̄+ Fa,

for (x, µ, x̄, a) ∈ Rd × P2(Rd)× Rd × Rm, where we denote by µ̄ =
∫
xµ(dx), B, B̄, D, D̄ are

constant matrices in Rd×d, C, F are constant matrices in Rd×m, γ is a constant in Rd.
Given a stochastic policy π ∈ Π, we consider the functional cost V π with entropy regulariser

defined in (2.5) with quadratic functions f(x, µ, a) = f̄(x, µ̄, a) and g(x, µ) = ḡ(x, µ̄):

f̄(x, x̄, a) = xᵀQx+ x̄ᵀQ̄x̄+ aᵀNa+ 2aᵀIx+ 2aᵀĪ x̄+ 2M.x+ 2H.a,

ḡ(x, x̄) = xᵀPx+ x̄ᵀP̄ x̄+ 2L.x,

where N is a symmetric matrix in Sm+ , I, Ī ∈ Rm×d, Q, Q̄, P , P̄ are symmetric matrices in Sd,
M , L ∈ Rd, H ∈ Rm, assumed to satisfy the conditions:

(H1) (i) There exists δ > 0 s.t.

N ≥ δIm, P ≥ 0, Q− IᵀN−1I ≥ 0.

or (ii) n = m = 1, I = 0, F 6= 0, Q ≥ 0, P > 0.

(H2) (i) There exists δ > 0 s.t.

N ≥ δIm, P + P̄ ≥ 0, (Q+ Q̄)− (I + Ī)ᵀN−1(I + Ī) ≥ 0.

or (ii) I + Ī = 0, F 6= 0, Q+ Q̄ ≥ 0, P + P̄ ≥ 0, P > 0.

The solution to the LQ mean-field control problem with entropy regulariser is then given
by the following theorem:

Theorem B.1 Let Assumptions (H1)-(H2) hold. Then, the value function is equal to

v(t, x, µ) := inf
π∈Π

V π(t, x, µ) = (x− µ̄)ᵀK(t)(x− µ̄) + µ̄ᵀΛ(t)µ̄+ 2Y (t)ᵀx+R(t),

for (t, x, µ) ∈ [0, T ]× Rd ×P2(Rd), where the quadruple (K,Λ, Y, R) valued in (Sd+, Sd+,Rd,R)
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is solution on [0, T ] to the system of Riccati equations:

K̇(t)− βK(t) +Q+K(t)B +BᵀK(t) +DᵀK(t)D

−(I + CᵀK(t) + F ᵀK(t)D)ᵀ(N + F ᵀK(t)F )−1(I + CᵀK(t) + F ᵀK(t)D) = 0,

Λ̇(t)− βΛ(t) + Q̂+ Λ(t)B̂ + B̂ᵀΛ(t) + D̂ᵀK(t)D̂

−
(
Î + CᵀΛ(t) + F ᵀK(t)D̂

)ᵀ
(N + F ᵀK(t)F )−1

(
Î + CᵀΛ(t) + F ᵀK(t)D̂

)
= 0

Ẏ (t)− βY (t) +M + B̂ᵀY (t) + D̂ᵀK(t)γ

−(Î + CᵀΛ(t) + F ᵀK(t)D̂)ᵀ(N + F ᵀK(t)F )−1(H + CᵀY (t) + F ᵀK(t)γ) = 0

Ṙ(t)− βR(t) + γᵀK(t)γ + λm
2 log(2π)− λ

2 log| λ
2det(N+F ᵀK(t)F ) |

−(H + CᵀY (t) + F ᵀK(t)γ)ᵀ(N + F ᵀK(t)F )−1(H + CᵀY (t) + F ᵀK(t)γ) = 0

(B.1)

with the terminal condition (K(T ),Λ(T ), Y (T ), R(T )) = (P, P̂ , L, 0), where we set Î := I + Ī,
B̂ := B + B̄, D̂ := D + D̄, Q̂ := Q+ Q̄, P̂ := P + P̄ .

Moreover, the optimal stochastic policy follows a Gaussian distribution:

π∗(.|t, x, µ) = N
(
− S(t)−1

(
U(t)x+ (Û(t)− U(t))µ̄+O(t)

)
;
λ

2
S(t)−1

)
, (B.2)

where we set

S(t) := N + F ᵀK(t)F, O(t) := H + CᵀY (t) + F ᵀK(t)γ

U(t) := I + CᵀK(t) + F ᵀK(t)D, Û(t) := Î + CᵀΛ(t) + F ᵀK(t)D̂.

Remark B.1 Conditions (H1) and (H2) ensure the existence and uniqueness of a solution
(K,Λ) to the matrix Riccati equation in (B.1) satisfying K ≥ 0, Λ ≥ 0 (hence S(t)−1 is well-
defined). Given (K,Λ), the equations for (Y,R) are simply linear ODEs.

Proof of Theorem B.1. We adapt the arguments in [2] to our case with randomised controls
and entropy regulariser.
Step 1. Let us consider the function defined on [0, T ]×Rd ×P2(Rd) by w(t, x, µ) = w̄(t, x, µ̄),
where w̄ is defined on [0, T ]× Rd × Rd by

w̄(t, x, x̄) = (x− x̄)ᵀK(t)(x− x̄) + x̄ᵀΛ(t)x̄+ 2Y (t)ᵀx+R(t),

for some functions (to be determined later) K, Λ, Y and R on [0, T ], and valued on Sd+, Sd+,
Rd, and R. Fix (t0, x0, µ0) ∈ [0, T ] × Rd × P2(Rd), and ξ0 ∈ L2(Ft0 ;Rd) ∼ µ0. Given π ∈ Π

with density p, and a randomised control α ∼ π, we consider the process

Sαt := e−β(t−t0)w̄(t,Xt0,x0,µ0
t , X̄t0,µ0

t ) +

∫ t

t0

e−β(s−t0)
[
f̄(Xt0,x0,µ0

s , X̄t0,µ0
s , αs)

+ λ

∫
Rm

(
log pt(a)

)
pt(a)da

]
ds,
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for t0 ≤ t ≤ T , where we set pt(a) = p(t,Xt0,x0,µ0
t ,P

X
t0,ξ0
t

, a), and X̄t0,µ0
t := Eα∼π[Xt0,ξ0

t ] which
follows the dynamics:

dX̄t =
(
B̂X̄t + Cᾱt)dt,

with ᾱt := Eα∼π[αt].

Step 2. We apply Itô’s formula to Sαt for α ∼ π, and take the expectation to get

dEα∼π[Sαt ] = e−β(t−t0)Eα∼π[Dαt ]dt, (B.3)

with

Dαt = −βw̄(t,Xt, X̄t) +
d

dt
Eα∼π[w̄(t,Xt, X̄t)] + f̄(Xt, X̄t, αt) + λ

∫
Rm

(log pt(a))pt(a)da,

where we omit the dependence on t0, x0, µ0 ofX and X̄ to alleviate notations. By applying Itô’s
formula to w̄(t,Xt, X̄t), recalling the quadratic forms of w̄, f̄ , and using the linear dynamics
of X and X̄, we obtain similarly as in [2] (after careful but straightforward computations):

Eα∼π[Dαt ] = Eα∼π
[
(Xt − X̄t)

ᵀ
(
K̇(t)− βK(t) +Q+K(t)B +BᵀK(t) +DᵀK(t)D

)
(Xt − X̄t)

+ X̄ᵀ
t

(
Λ̇(t)− βΛ(t) + Q̂+ Λ(t)B̂ + B̂ᵀΛ(t) + D̂ᵀK(t)D̂

)
X̄t

+ 2
(
Ẏ (t)− βY (t) +M + B̂ᵀY (t) + D̂ᵀK(t)γ

)ᵀ
Xt + Ṙ(t)− βR(t) + γᵀK(t)γ

+ αᵀ
tS(t)αt + 2αᵀ

t

(
U(t)(Xt − X̄t) + Û(t)X̄t +O(t)

)
+ λ

∫
Rm

(log pt(a))pt(a)da
]

= Eα∼π
[
(Xt − X̄t)

ᵀ
(
K̇(t)− βK(t) +Q+K(t)B +BᵀK(t) +DᵀK(t)D

)
(Xt − X̄t)

+ X̄ᵀ
t

(
Λ̇(t)− βΛ(t) + Q̂+ Λ(t)B̂ + B̂ᵀΛ(t) + D̂ᵀK(t)D̂

)
X̄t

+ 2
(
Ẏ (t)− βY (t) +M + B̂ᵀY (t) + D̂ᵀK(t)γ

)ᵀ
Xt + Ṙ(t)− βR(t) + γᵀK(t)γ

+

∫
Rm

[φt(a) + λ log pt(a)]pt(a)da
]
, (B.4)

where we used in the last equality the fact that α ∼ π, and set φt(a) := aᵀS(t)a+ 2aᵀχt with
χt := U(t)(Xt − X̄t) + Û(t)X̄t +O(t).

Step 3. Let φ be a quadratic function on Rm: φ(a) = aᵀSa + 2aᵀχ for some positive-definite
matrix S ∈ Sm+ , and χ ∈ Rm, and denote by D2(Rm) the set of square integrable density
functions on Rm, i.e., the set of nonnegative measurable functions p on Rm s.t.

∫
Rm p(a)da =

1, and
∫
Rm |a|

2p(a)da < ∞. Let us consider the cost functional on D2(Rm) defined by

Cφ(p) :=

∫
Rm

[φ(a) + λ log p(a)]p(a)da.
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Then, the minimizer of Cφ is achieved with p∗ ∈ D2(Rm) given by

p∗(a) =
exp

(
− 1

λφ(a)
)∫

Rm exp
(
− 1

λφ(a)
)
da
, a ∈ Rm. (B.5)

Indeed, by considering the Lagrangian function associated to this minimization problem

Lφ(p, ν) = Cφ(p)− ν
( ∫

Rm
p(a)da− 1

)
=

∫
Rm

[
φ(a) + λ log p(a)− ν

]
p(a)da + ν,

for (p, ν) ∈ D2(Rm)×R, we see that the minimization over p is obtained pointwisely, i.e. inside
the integral over a ∈ Rm, hence leading to the first-order equations:{

φ(a) + λ log p∗(a)− ν∗ + λ = 0, a ∈ Rm,∫
a∈Rm p∗(a)da = 1.

This yields the expression of p∗ in (B.5), which is actually the density of a Gaussian distribution

π∗ = N
(
− S−1χ;

λ

2
S−1

)
. (B.6)

The infimum of Cφ is then equal to

inf
p∈D2(Rm)

Cφ(p) = Cφ(p∗) = −χᵀS−1χ− λm

2
log(2π)− λ

2
log| λ

2det(S)
|. (B.7)

Step 4. Notice that under (H1), the matrix S(t) = N + F ᵀK(t)F is positive-definite for K ≥
0, and pt(.) ∈ D2(Rm) a.s. for t ∈ [t0, T ]. From (B.4) and (B.7), we then have for all π ∈ Π,

Eα∼π[Dαt ]

= Eα∼π
[
(Xt − X̄t)

ᵀ
(
K̇(t)− βK(t) +Q+K(t)B +BᵀK(t) +DᵀK(t)D

)
(Xt − X̄t)

+ X̄ᵀ
t

(
Λ̇(t)− βΛ(t) + Q̂+ Λ(t)B̂ + B̂ᵀΛ(t) + D̂ᵀK(t)D̂

)
X̄t

+ 2
(
Ẏ (t)− βY (t) +M + B̂ᵀY (t) + D̂ᵀK(t)γ

)ᵀ
Xt + Ṙ(t)− βR(t) + γᵀK(t)γ

+ Cφt(pt)
]

≥ Eα∼π
[
(Xt − X̄t)

ᵀ
(
K̇(t)− βK(t) +Q+K(t)B +BᵀK(t) +DᵀK(t)D − U(t)ᵀS(t)−1U(t)

)
(Xt − X̄t)

+ X̄ᵀ
t

(
Λ̇(t)− βΛ(t) + Q̂+ Λ(t)B̂ + B̂ᵀΛ(t) + D̂ᵀK(t)D̂ − Û(t)ᵀS(t)−1Û(t)

)
X̄t

+ 2
(
Ẏ (t)− βY (t) +M + B̂ᵀY (t) + D̂ᵀK(t)γ −O(t)ᵀS(t)−1Û(t)

)ᵀ
Xt

+ Ṙ(t)− βR(t) + γᵀK(t)γ −O(t)ᵀS(t)−1O(t)− λm

2
log(2π)− λ

2
log| λ

2det(S(t))
|. (B.8)
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Therefore, by taking (K,Λ, Y, R) solution to (B.1), we see that the r.h.s. of (B.8) vanishes,
which means that for all π ∈ Π, Eα∼π[Dαt ] ≥ 0. Moreover, from (B.6), the equality in (B.8)
holds true for the choice of π∗ ∈ Π as defined in (B.2), and thus

inf
π∈Π

Eα∼π[Dαt ] = Eα∼π∗ [Dαt ] = 0, t ∈ [t0, T ].

From (B.3), this means that the function t 7→ Eα∼π[Sαt ] is nondecreasing on [t0, T ] for any π
∈ Π, and constant on [t0, T ] for π = π∗. By definition of Sα, V π, and noting that w̄(T, x, x̄)

= ḡ(x, x̄) from the terminal condition on (K,Λ, Y, R), it follows that

w(t0, x0, µ0) = w̄(t0, x0, µ̄0) = Eα∼π[Sαt0 ] ≤ Eα∼π[SαT ] = V π(t0, x0, µ0), (B.9)

for any π ∈ Π, with equality in (B.9) for π = π∗. We conclude that

inf
π∈Π

V π(t0, x0, µ0) = V π∗(t0, x0, µ0) = w(t0, x0, µ0)

= (x0 − µ̄0)ᵀK(t0)(x0 − µ̄0) + µ̄0
ᵀΛ(t0)µ̄0 + 2Y (t0)ᵀx0 +R(t0).

2
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