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We study policy gradient for mean-field control in continuous time in a reinforcement learning setting. By considering randomised policies with entropy regularisation, we derive a gradient expectation representation of the value function, which is amenable to actorcritic type algorithms, where the value functions and the policies are learnt alternately based on observation samples of the state and model-free estimation of the population state distribution, either by offline or online learning. In the linear-quadratic mean-field framework, we obtain an exact parametrisation of the actor and critic functions defined on the Wasserstein space. Finally, we illustrate the results of our algorithms with some numerical experiments on concrete examples.

Introduction

Mean-field control (MFC in short), also called McKean-Vlasov (MKV in short) control problem is concerned with the study of large population models of interacting agents who are cooperative and act for collective welfare according to a center of decision (or social planner). It has attracted a growing interest over the last years with the emergence of mean-field game, and there is now a large literature on the theory and its various applications in economics/finance, population dynamics, social sciences and herd behavior. We refer to the seminal two-volume monograph [START_REF] Carmona | Probabilistic Theory of Mean Field Games: vol. I, Mean Field FBSDEs, Control, and Games, Mean Field game with common noise and Master equations[END_REF]- [START_REF] Carmona | Probabilistic Theory of Mean Field Games[END_REF] for a detailed treatment of the topic.

Mean-field control problems lead to infinite dimensional problems in the Wasserstein space of probability measures, and analytical solutions are rarely available. It is then crucial to design efficient numerical schemes for solving such problems, and in the past few years, several works have proposed numerical methods in a model-based setting based either on forward-backward SDE characterisation of MKV from Pontryagin maximum principle, or Master Bellman equation from dynamic programming, and often relying on suitable class of neural networks, see e.g. [START_REF] Carmona | Convergence analysis of machine learning algorithms for the numerical solution of mean-field control and games: II-the finite horizon case[END_REF], [START_REF] Germain | DeepSets and their derivative networks for solving summetric PDEs[END_REF], [START_REF] Germain | Numerical resolution of McKean-Vlasov FBSDEs using neural networks[END_REF], [START_REF] Han | Learning high-dimensional McKean-Vlasov forward-backward stochastic differential equations with general distribition dependence[END_REF], [START_REF] Reisinger | A fest iterative PDE-based algorithm for feedback controls of nonsmooth mean-field control problems[END_REF], [START_REF] Pham | Mean-field neural networks-based algorithms for McKean-Vlasov control problems[END_REF].

The question of learning solutions to MFC in a model-free setting, i.e. when the environment (model coefficients) is unknown, has recently attracted attention, see [START_REF] Carmona | Model-free mean-field reinforcement learning: mean-field MDP and mean-field Q-learning[END_REF][START_REF] Carmona | Linear-quadratic mean-field reinforcement learning: convergence of policy gradient methods[END_REF], [START_REF] Gu | Mean field controls with Q-learning for cooperative MARL: convergence and complexity analysis[END_REF], [START_REF] Angiuli | Unified reinforcement Q-learning for mean field game and control problems[END_REF], and this is precisely the purpose of Reinforcement learning (RL): learn optimal control by trial and error, i.e., repeatedly try policy, observe the state, receive and evaluate the reward, and improve the policy. There are two main approaches in RL: (i) Q-learning based on dynamic programming, and (ii) Policy gradient based on parametrisation of policies, and a key feature in RL is the exploration of the unknown environment to broaden search space, which can be achieved via randomised policies. RL is a very active branch of machine learning and we refer to the second edition of the monograph [START_REF] Sutton | Reinforcement Learning: An Introduction[END_REF] for an overview of this field.

Most algorithms in RL are limited to discrete-time frameworks for Markov decision processes (MDP) or mean-field MDP, and the study of RL in continuous time has been recently initiated in [START_REF] Wang | Reinforcement learning in continuous time and space: A stochastic control approach[END_REF], [START_REF] Jia | Policy evaluation and temporal difference learning in continuous time and space: a martingale approach[END_REF], [START_REF] Jia | Policy gradient and actor critic learning in continuous time and space: theory and algorithms[END_REF] for controlled diffusion processes. In line with these works, we provide in this paper a theoretical treatment of policy gradient methods for MFC in continuous time and state/action space by relying on stochastic calculus that has been recently developed for MKV equations. Our main theoretical result is to obtain a policy gradient representation for value function with randomised parametric policies and entropy regularisers for encouraging exploration. Based on this representation, we design model-free actor critic algorithms involving either the whole trajectories of the state (off-line learning), or the current and next state (online learning). In the mean-field context, a key issue is to handle the population state distribution, which is an input of the policy (actor) and value function (critic), and instead of assuming that we have at disposal a simulator of the state distribution as in [START_REF] Carmona | Model-free mean-field reinforcement learning: mean-field MDP and mean-field Q-learning[END_REF], we estimate it in a model-free manner as in [START_REF] Angiuli | Unified reinforcement Q-learning for mean field game and control problems[END_REF], which is more suitable for real-world applications. We next study the linear quadratic (LQ) case for which we derive explicit solutions, and this can be used for proposing an exact parametrisation of the critic and actor functions that is incorporated in stochastic gradient when updating the policies and value functions. The explicit solutions in the LQ setting are served as benchmarks for the numerical results of our algorithms in two examples.

The rest of the paper is organized as follows. In Section 2, we formulate the mean-field control problem in continuous-time with randomised policies and entropy regularisers, and state the partial differential equation (PDE) characterisation of the value function in the Wasserstein space. We develop in Section 3 policy gradient methods by establishing a policy gradient representation, and its implication for actor-critic algorithms. Section 4 is devoted to the linear-quadratic setting, and we present in Section 5 numerical results on two examples to illustrate the accuracy of our algorithms. Finally, proofs of the policy gradient theorem are detailed in Appendix A, while the derivation of the explicit solution in the LQ case is shown in Appendix B.

Notations. The scalar product between two vectors x and y is denoted by x • y, and | • | is the Euclidian norm. Given two matrices M = (M ij ) and N = (N ij ), we denote by M : N = Tr(M N ) = i,j M ij N ij its inner product, and by |M | the Frobenius norm of M . Here is the transpose matrice operator. Let M = (M i 1 i 2 i 3 ) ∈ R d 1 ×d 2 ×d 3 be a tensor of order 3. For p = 1, 2, 3, the p-mode product of M with a vector b = (b i ) ∈ R dp , is denoted by M • p b, and it is a tensor of order 2, i.e. a matrix defined elementwise as

M • 1 b) i 2 i 3 = d 1 i 1 =1 M i 1 i 2 i 3 b i 1 , M • 2 b) i 1 i 3 = d 2 i 2 =1 M i 1 i 2 i 3 b i 2 , M • 3 b) i 1 i 2 = d 3 i 3 =1 M i 1 i 2 i 3 b i 3 .
The p-mode product of a 3-th order tensor M ∈ R d 1 ×d 2 ×d 3 with a matrix B = (B ij ) ∈ R dp×d , also denoted by M • p B, is a 3-th order tensor defined elementwise as

M • 1 B i 2 i 3 = d 1 i 1 =1 M i 1 i 2 i 3 B i 1 , M • 2 B i 1 i 3 = d 2 i 2 =1 M i 1 i 2 i 3 B i 2 M • 3 B) i 1 i 2 = d 3 i 3 =1 M i 1 i 2 i 3 B i 3 .
Finally, the tensor contraction (or partial trace) of a 3-th order tensor M ∈ R d 1 ×d 2 ×d 3 whose dimensions d p and d q are equal is denoted as Tr p,q M . This tensor contraction is a tensor of order 1, i.e. a vector, defined elementwise as

Tr 1,2 M i 3 = d 1 =1 M i 3 , Tr 1,3 M i 2 = d 1 =1 M i 2 , Tr 2,3 M i 1 = d 2 =1 M i 1 .

Exploratory formulation of mean-field control

Let us consider a mean-field control problem where the R d -valued controlled state process X = X α is governed by the dynamics dX s = b(X s , P Xs , α s )ds + σ(X s , P Xs , α s )dW s , s ≥ 0,

with W a standard p-dimensional Brownian motion on a probability space (Ω, F, P) equipped with the filtration F = (F t ) t≥0 generated by W , and augmented with a σ-algebra G rich enough to support a uniformly distributed random variable independent of W . The control α = (α t ) t is an F-progressively measurable process with α t representing the action of the agent at time t, and valued in the action space A ⊂ R q . Here, P Xt denotes the marginal law of X t , P 2 (R d ) is the Wasserstein space of probability measures µ with a finite second order moment, i.e., M 2 (µ) 

:= |x| 2 µ(dx)
(resp. σ) is a measurable function from R d × P 2 (R d ) × A into R d (resp. R d×p ).
Throughout the paper, we make the standard Lipschitz assumptions on the coefficients b and σ to ensure the existence and uniqueness of a strong solution to the stochastic differential equation (SDE in short) (2.1) given any initial condition ξ with law µ ∈ P 2 (R d ).

The objective of a mean-field control problem on finite horizon T < ∞, is to minimize over the control α an expected total cost of the form

E T 0 e -βs f (X s , P Xs , α s )ds + e -βT g(X T , P X T ) .
Here f is a running cost function defined on R d ×P 2 (R d )×A, while g is a terminal cost function on R d × P 2 (R d ), and β ∈ R + is a given discount factor. In a model-based setting, i.e., when the coefficients b, σ, and the functions f , g are known, the solution to MFC control problem can be characterised by a forward backward SDE arising from the maximum principle (see [START_REF] Carmona | Forward Backward stochastic differential equations and controlled McKean-Vlasov dynamics[END_REF], or by a Master Bellman equation arsing from dynamic programming principle (see [START_REF] Pham | Dynamic programming for optimal control of stochastic McKean-Vlasov dynamics[END_REF]). Moreover, the optimisation over F-progressively measurable process α (open-loop control), or feedback (also called closed-loop) controls α, i.e., in the form α t = π(t, X t , P Xt ), 0 ≤ t ≤ T , for some deterministic policy π, i.e., a measurable function π : [0, T ] × R d × P 2 (R d ) → A, yields the same value function.

In a model-free reinforcement learning (RL) setting, when the coefficients are unknown, the agent can only rely on observation samples of state and reward in order to learn the optimal strategy. This is achieved by trial and error where the agent tries a policy, receive and evaluate the reward and then improve performance by repeating this procedure. A critical issue in reinforcement learning when the environment is unknown, is exploration in order to broaden search space, and a key and now common idea is to use randomised (or stochastic) policies: in a mean-field setting, this is defined by a probability transition kernel from

[0, T ] × R d × P 2 (R d ) into A, i.e., a measurable function π : (t, x, µ) ∈ [0, T ] × R d × P 2 (R d ) → π(.|t, x, µ) ∈ P(A),
the set of probability measures on A. We then say that the process α = (α t ) t is a randomised feedback control generated from a stochastic policy π, denoted by α ∼ π, if at each time t, the action α t is sampled from the probability distribution π(.|t, X t , P Xt ). Note that the sampling is drawn at each time from the σ-algebra G rich enough to support a uniformly distributed random variable independent of W . More precisely, it is defined as follows: given a probability transition kernel π, one can associate a measurable function

φ π : [0, T ] × R d × P 2 (R d ) × [0, 1]
→ A such that the law of φ π (t, x, µ, U ) is π(.|t, x, µ) where U is an uniform random variable on [0, 1]. We would then naturally define the control process by α t = φ π (t, X t , P Xt , U t ), 0 ≤ t ≤ T , for a collection of G-measurable i.i.d. uniform random variables (U t ) t , but this raises some measurability issues as (t, ω) → U t (ω) is not jointly measurable in the usual product space ([0, T ] × Ω, B [0,T ] ⊗ G, dt ⊗ P). To cope these issues, one can use the notion of Fubini extension, see [START_REF] Sun | The exact law of large numbers via fubini extension and characterization of insurable risks[END_REF]. We consider an atomless probability space ([0, T ], T , ρ) extending the usual Lebesgue measure interval space ([0, T ], B [0,T ] , dt), and a rich Fubini extension ([0, T ] × Ω, T G, ρ P) of the product space ([0, T ] × Ω, T ⊗ G, ρ ⊗ P). Then, from Theorem 1 in [START_REF] Sun | The exact law of large numbers via fubini extension and characterization of insurable risks[END_REF], there exists a T G-measurable map U : [0, T ] × Ω → [0, 1] such that the random variables U t = U(t, .) are essentially pairwise independent, and uniformly distributed on [0, 1]. Denote by F the filtration generated by (W, U), and consider the controlled process governed by

dX s = b(X s , P Xs , α s )ds + σ(X s , P Xs , α s )dW s , (2.2) 
where

α t = φ π (t, X t , P Xt , U t ) ∼ π(.|t, X t , P Xt ), 0 ≤ t ≤ T , is F-progressively measurable.
Here, to alleviate notations, we write ρ(dt) ≡ dt. Moreover, in order to encourage exploration of randomised policies, we shall substract entropy regularisers to the cost term, as adopted in the recent works by [START_REF] Wang | Reinforcement learning in continuous time and space: A stochastic control approach[END_REF], [START_REF] Guo | Entropy regularization for mean field games with learning[END_REF], by considering the Shannon differential entropy defined as

E(π(.|t, x, µ)) := - A log p(t, x, µ, a)π(da|t, x, µ),
by assuming that π(.|t, x, µ) admits a density p(t, x, µ, .) with respect to some measure ν on A. The goal of the social planner is now to minimise over randomised policies π the cost J(π) = E α∼π T 0 e -βs f (X s , P Xs , α s ) -λE π(.|s, X s , P Xs ) ds + e -βT g(X T , P X T ) , (2.3) where λ ≥ 0 is a temperature parameter on exploration. Here, the notation in E α∼π [.] means that the expectation operator is taken when the randomised feedback control α is generated from the stochastic policy π, and X = X α is driven by the dynamics (2.2).

Let us now introduce the dynamic Markovian version of the above mean-field problem. Given a stochastic policy π, an initial time-state-distribution triple

(t, x, µ) ∈ [0, T ] × R d × P 2 (R d ), and ξ ∈ L 2 (F t ; R d ) (the set of square-integrable F t -measurable random variables valued in R d ) with distribution law µ (ξ ∼ µ), we consider the decoupled state processes {X t,ξ s , t ≤ s ≤ T } and {X t,x,ξ s , t ≤ s ≤ T } given by X t,ξ s = ξ + s t b(X t,ξ r , P X t,ξ r , α r )dr + s t σ(X t,ξ r , P X t,ξ r , α r ) dW r , X t,x,µ s = x + s t b(X t,x,µ r , P X t,ξ r , α r )dr + s t σ(X t,x,µ r , P X t,ξ r , α r ) dW r , t ≤ s ≤ T, (2.4) 
where α is a randomised feedback control generated from π, i.e., α s is sampled at each time s from π(.|s, X t,x,µ T , P X t,ξ T

) .

(2.5) Since X t,ξ,ξ s = X t,ξ s a.s., the initial cost value in (2.3) when starting from some initial random

state ξ ∈ L 2 (G; R d ) with law µ is equal to J(π) = E ξ∼µ [V π (0, ξ, µ)].
We complete this section by characterizing the cost value function V π , for a given stochastic policy π, in terms of a linear parabolic partial differential equation (PDE) of mean-field type stated in the strip [0, T ] × R d × P 2 (R d ). We first introduce the coefficients associated to the dynamics and the value function, given a stochastic policy π, namely π . Before presenting the regularity assumptions, we introduce some notations regarding the Wasserstein derivative (also called L-derivative) of a real-valued smooth map U defined on P 2 (R d ). We follow the common practice of denoting by

∂ µ U (µ)(v) ∈ R d the Wasserstein derivative of U with respect µ evaluated at (µ, v) ∈ P 2 (R d ) × R d . Its ith coordinate is denoted by ∂ i µ U (µ)(v)
. We will also work with higher order derivatives. For a positive integer n, a multi-index

λ of {1, • • • , d}, a n-tuple of multi-indices γ = (γ 1 , • • • , γ n ) of {1, • • • , d} and v = (v 1 , • • • , v n ) ∈ (R d ) n , we denote by ∂ λ µ U (µ)(v) the derivative ∂ λn µ [• • • [∂ λ 1 µ U (µ)](v 1 ) • • • ](v n ). If v → ∂ λ µ U (µ)(v) is smooth, we write ∂ γ v ∂ λ µ U (µ)(v) for the derivative ∂ γn vn • • • ∂ γ 1 v 1 ∂ λ µ U (µ)(v).
We will often deal with maps that depend on additional time and space variables. In particular, we will work with the two spaces

C 2,2 (R d × P 2 (R d )) and C 1,2,2 ([0, T ] × R d × P 2 (R d ))
and refer the reader to [START_REF] Carmona | Probabilistic Theory of Mean Field Games: vol. I, Mean Field FBSDEs, Control, and Games, Mean Field game with common noise and Master equations[END_REF] Chapter 5 for more details.

Having these notations at hand, we make the following regularity assumptions on the coefficients b π , σ π , the cost functions f π , g and the Shannon differential entropy 

E π . Below, π : [0, T ] × R d × P 2 (R d ) → P(A) is a fixed stochastic policy. Assumption 2.1 (i) For any h ∈ {b i π , σ i,j π , i = 1, • • • , d, j = 1, • • • , p}, the following derivatives ∂ x h(t, x, µ), ∂ 2 x h(t, x, µ), ∂ µ h(t, x, µ)(v), ∂ v [∂ µ h(t, x, µ)](v), exist for any (t, x, v, µ) ∈ [0, T ] × (R d ) 2 × P 2 (R d ),
+ |x| + M 2 (µ)). (ii) For any t ∈ [0, T ], f π (t, .), E π (t, .), g ∈ C 2,2 (R d × P 2 (R d )).
(iii) There exists some constant C < ∞, such that for any

(t, x, v, µ) ∈ [0, T ]×(R d ) 2 ×P 2 (R d ), |f π (t, x, µ)| + |E π (t, x, µ)| + |g(x, µ)| ≤ C(1 + |x| 2 + M 2 (µ) q ), |∂ x f π (t, x, µ)| + |∂ x E π (t, x, µ)| + |∂ x g(x, µ)| ≤ C(1 + |x| + M 2 (µ) q ), |∂ µ f π (t, x, µ)(v)| + |∂ µ E π (t, x, µ)(v)| + |∂ µ g(x, µ)(v)| ≤ C(1 + |x| + |v| + M 2 (µ) q ), |∂ v [∂ µ f π (t, x, µ)](v)|+|∂ 2 x f π (t, x, µ)| + |∂ v [∂ µ E π (t, x, µ)](v)| + |∂ 2 x E π (t, x, µ)| + |∂ v [∂ µ g(x, µ)](v)| + |∂ 2 x g(x, µ)| ≤ C(1 + M 2 (µ) q ),
for some q ≥ 0.

Remark 2.1 It is readily seen from the integral form of b π , Σ π , f π , E π that if for any a ∈ A, the functions (x, µ) → b(x, µ, a), σ(x, µ, a), f (x, µ, a) and the density (x, µ) → p(t, x, µ, a) of the probability measure π(da|t, x, µ) are smooth with derivatives satisfying some adequate estimates then Assumption 2.1 is satisfied. In particular, this will be the case when the coefficients b, σ are linear functions and f together with g are quadratic functions of the variables of x, R d zµ(dz) and a and if p is a Gaussian density with a smooth mean and a time-dependent covariance-matrix as in the linear quadratic framework, see Section 4.

We now have the following PDE characterisation of the cost value function V π . Proposition 2.1 Under Assumption 2.1, the function V π defined by (2.5) belongs to C 1,2,2 ([0, T ]× R d × P 2 (R d )) and satisfies the following linear parabolic PDE

L π [V π ](t, x, µ) + (f π -λE π )(t, x, µ) = 0, (t, x, µ) ∈ [0, T ) × R d × P 2 (R d ), (2.6) 
with the terminal condition V π (T, x, µ) = g(x, µ), where L π is the operator defined by

L π [ϕ](t, x, µ) = -βϕ(t, x, µ) + ∂ t ϕ(t, x, µ) + b π (t, x, µ) • D x ϕ(t, x, µ) + 1 2 Σ π (t, x, µ) : D 2 x ϕ(t, x, µ) + E ξ∼µ b π (t, ξ, µ) • ∂ µ ϕ(t, x, µ)(ξ) + 1 2 Σ π (t, ξ, µ) : ∂ υ ∂ µ ϕ(t, x, µ)(ξ) .
Remark 2.2 In particular, the above result indicates that provided the coefficients b π , Σ π , the functions f π , E π and the terminal condition g are smooth with derivatives satisfying some appropriate estimates, the solution V π to the Kolmogorov PDE (2.6) is smooth. In this sense, it preserves the regularity of the terminal condition. However, one can weaken the regularity assumption on the terminal condition (and actually of the coefficients themselves) by benefiting from the smoothness of the underlying fundamental solution (or the transition density of the associated stochastic process) under some additional non-degeneracy assumption. We refer e.g. to [START_REF] Crisan | Smoothing properties of McKean-Vlasov SDEs[END_REF], [START_REF] De Raynal | Well-posedness for some non-linear SDEs and related PDE on the Wasserstein space[END_REF], [START_REF] De Raynal | From the backward Kolmogorov PDE on the Wasserstein space to propagation of chaos for McKean-Vlasov SDEs[END_REF] in the uniformly elliptic diffusion setting and to [START_REF] Frikha | Well-posedness of some non-linear stable driven sdes[END_REF] in the case of non-degenerate stable driven SDE.

Proof. See Appendix A.1 2

Policy gradient method

We now consider a parametric family of randomised policies π θ , with densities p θ , θ ∈ Θ, Θ being a non-empty open subset of R D , for some positive integer D, and denote by J(θ) = J(π θ ) the associated cost function, viewed as a function of the parameters θ, recalling that J is defined by (2.3). The principle of policy gradient method is to minimize over θ the function J(θ) by stochastic gradient descent algorithm. In our RL setting, we aim to derive a probabilistic representation of the gradient function ∇ θ J(θ) that does not involve model coefficients b, σ, but only observation samples of state X t , state distribution P Xt , and rewards f t := f (X t , P Xt , α t ), g T := g(X T , P X T ) when taking decision α ∼ π θ .

Policy gradient representation

We make the following assumptions on the parametric family of randomised policy and coefficients.

Assumption 3.1 (i) For any h ∈ {b i π θ , σ i,j π θ , f π θ , E π θ , g, i = 1, • • • , d, j = 1, • • • , p}, any multi-indices α, β, λ of {1, • • • , d} such that 0 ≤ |α| ≤ 2, 0 ≤ |β| ≤ 1, λ being of length n, 0 ≤ n ≤ 2, any n-tuple of multi-indices γ = (γ 1 , • • • , γ n ) with 0 ≤ |γ 1 | + • • • + |γ n | ≤ 2,
denoting by h θ (t, x, µ) the value of h at (θ, t, x, µ), the following derivatives

∂ β θ ∂ α x ∂ γ v ∂ λ µ h θ (t, x, µ)(v), ∂ α x ∂ β θ ∂ γ v ∂ λ µ h θ (t, x, µ)(v), ∂ α x ∂ γ v ∂ β θ ∂ λ µ h θ (t, x, µ)(v), ∂ α x ∂ γ v ∂ λ µ ∂ β θ h θ (t, x, µ)(v), ∂ γ v ∂ α x ∂ λ µ ∂ β θ h θ (t, x, µ)(v), ∂ γ v ∂ λ µ ∂ α x ∂ β θ h θ (t, x, µ)(v), ∂ γ v ∂ λ µ ∂ β θ ∂ α x h θ (t, x, µ)(v), ∂ γ v ∂ β θ ∂ λ µ ∂ α x h θ (t, x, µ)(v), ∂ β θ ∂ γ v ∂ λ µ ∂ α x h θ (t, x, µ)(v), ∂ γ v ∂ β θ ∂ α x ∂ λ µ h θ (t, x, µ)(v), ∂ γ v ∂ α x ∂ β θ ∂ λ µ h θ (t, x, µ)(v), ∂ β θ ∂ α x ∂ γ v ∂ λ µ h θ (t, x, µ)(v), exist for any (t, θ, x, v, µ) ∈ [0, T ] × Θ × (R d ) n+1 × P 2 (R d
) and are locally Lipschitz continuous with respect to θ, x, µ, v uniformly in t ∈ [0, T ] a . Moreover, if h = b i π θ or σ i,j π θ , the aforementioned derivatives of order greater or equal to one are bounded.

(ii) The estimates of Assumption 2.1(iii) are satisfied for the family of policies {π θ , θ ∈ Θ}, locally uniformly in θ, i.e. for any θ ∈ K, K being any compact subset of Θ. Additionally, there exists some constant C < ∞, such that for any h

∈ {f π θ , E π θ }, any (t, µ, x) ∈ [0, T ] × P 2 (R d ) × R d , any v = (v 1 , v 2 ) ∈ (R d ) 2 , any θ ∈ K, K being any compact subset of Θ, any multi-index λ, |λ| = 2, any multi-index λ = (λ 1 , λ 2 ) of {1, • • • , d}, any couple of multi-indices γ = (γ 1 , γ 2 ) |∂ θ h θ (t, x, µ)| ≤ C(1 + |x| 2 + M 2 (µ) q ), |∂ θ ∂ x h θ (t, x, µ)| + |∂ x g(x, µ)| ≤ C(1 + |x| + M 2 (µ) q ), |∂ θ ∂ µ h θ (t, x, µ)(v 1 )|+|∂ µ ∂ x h θ (t, x, µ)(v 1 )|+|∂ µ ∂ x g(x, µ)(v 1 )| ≤ C(1+|x|+|v 1 |+M 2 (µ) q ), |∂ θ ∂ v 1 ∂ µ h θ (t, x, µ)(v 1 )| + |∂ θ ∂ 2 x h θ (t, x, µ)| + |∂ µ ∂ 2 x h θ (t, x, µ)(v 1 )| + |∂ γ v ∂ λ µ h θ (t, x, µ)(v)| + |∂ v 1 ∂ µ g(x, µ)(v 1 )| + |∂ 2 x g(x, µ)| + |∂ γ v ∂ λ µ g(t, x, µ)(v)| ≤ C(1 + M 2 (µ) q ),
for some q ≥ 0.

As shown in Appendix A.2, Assumption 3.1 guarantees that the derivatives

(t, θ, x, µ, v) → ∂ θ ∂ t V θ (t, x, µ), ∂ θ V θ (t, x, µ), ∂ θ ∂ x V θ (t, x, µ), ∂ θ ∂ µ V θ (t, x, µ)(v), ∂ θ ∂ 2 x V θ (t, x, µ), ∂ θ ∂ v ∂ µ V θ (t, x, µ)(v)
, where V θ (t, x, µ) := V π θ (t, x, µ) defined by (2.5) with π = π θ , exist, are continuous and satisfy suitable growth conditions.

We then let

∇ θ J(θ) = E[G θ (0, ξ, µ)] where G θ (t, x, µ) := ∇ θ V θ (t, x, µ).
The main result of this section provides a probabilistic representation of the gradient function G θ . Theorem 3.1 Suppose that Assumption 3.1 holds. Assume moreover that for any t, x, µ, a, the map Θ θ → p θ (t, x, µ, a) is differentiable with a derivative satisfying the following estimates: for some constant C < ∞ and some q ≥ 0, for any

(t, x, µ) ∈ [0, T ] × R d × P 2 (R d ) and any compact subset K ⊂ Θ. A sup θ∈K {|∇ θ p θ (t, x, µ, a)|(|b(x, µ, a)| + |(σσ) (x, µ, a)| + |f (x, µ, a)| + | log(p θ (t, x, µ, a))|)}ν(da) < ∞, (3.1)
a Hence, according to Clairaut's theorem, these partial derivatives are equal. and

A |∇ θ log(p θ (t, x, µ, a))| 2 |σ(x, µ, a)| 2 p θ (t, x, µ, a) ν(da) ≤ C(1 + |x| q + M 2 (µ) q ). (3.2)
Then, it holds

G θ (t, x, µ) = E α∼π θ T t e -β(s-t) ∇ θ log p θ (s, X t,x,µ s , P X t,ξ s , α s ) dV θ (s, X t,x,µ s , P X t,ξ s ) (3.3) + f (X t,x,µ s , P X t,ξ s , α s ) + λ log p θ (s, X t,x,µ s , P X t,ξ s , α s ) -βV θ (s, X t,x,µ s , P X t,ξ s ) ds + T t e -β(s-t) H θ [V θ ](s, X t,x,µ s , P X t,ξ s )ds , for any (t, x, µ, θ) ∈ [0, T ] × R d × P 2 (R d ) × Θ and ξ ∼ µ
, where H θ is the operator defined by

H θ [ϕ](t, x, µ) = E ξ∼µ ∇ θ b θ (t, ξ, µ) ∂ µ ϕ(t, x, µ)(ξ) (3.4) + 1 2 tr 1,2 ∇ θ Σ θ (t, ξ, µ) • 1 ∂ υ ∂ µ ϕ(t, x, µ)(ξ) ,
and we set b θ (t, x, µ) = A b(x, µ, a) π θ (da|t, x, µ), Σ θ (t, x, µ) = A (σσ )(x, µ, a) π θ (da|t, x, µ).
Here

∇ θ Σ θ = ( ∂Σ ij θ ∂θ k ) i,j,k ∈ R d×d×D
is a tensor of order 3, and we used the product tensor notations • 1 recalled in the introduction. Remark 3.1 (On the martingale property of the policy gradient) The representation in Theorem 3.1 also means that the process

e -β(s-t) G θ (s, X t,x,µ s , P X t,ξ s ) + s t e -β(r-t) ∇ θ log p θ (r, X t,x,µ r , P X t,ξ r , α r ) dV θ (r, X t,x,µ r , P X t,ξ r ) + f (X t,x,µ r , P X t,ξ r , α r ) + λ log p θ (r, X t,x,µ r , P X t,ξ r , α r ) -βV θ (r, X t,x,µ r , P X t,ξ r ) dr + s t e -β(r-t) H θ [V θ ](r, X t,x,µ r , P X t,ξ r )dr, t ≤ s ≤ T is a martingale, for any given α ∼ π θ . Proof. See Appendix A.3 2 
In the next section, we show how the probabilistic representation formula of the gradient function G θ provided by Theorem 3.1 can be used to design two actor-critic algorithms for learning optimal cost function and randomised policy by relying on samples of the actions, states and state distributions.

Actor-critic Algorithms

Actor-critic (AC) methods combine policy gradient (PG) and performance evaluation (PE). Compared to most existing works on RL for mean-field problems, mainly based on Q-learning (see e.g. [START_REF] Carmona | Model-free mean-field reinforcement learning: mean-field MDP and mean-field Q-learning[END_REF], [START_REF] Elie | On the convergence of model free learning in mean field games[END_REF], [START_REF] Gu | Mean field controls with Q-learning for cooperative MARL: convergence and complexity analysis[END_REF]) we do not assume that the agent (the social planner) has at disposal a simulator for the state distribution, but instead will estimate the distribution of the population from the observation of the state of the representative player and by updating the distribution along repeated episodes. More precisely, for each episode i = 1, 2, . . . , N , from the observation of the state X i t k of a representative player i at time t k , we update the state distribution according to

µ i t k = (1 -ρ i S )µ i-1 t k + ρ i S δ X i t k , (3.5) 
where (ρ i S ) i is a sequence of learning parameters in (0, 1), e.g. ρ i S = 1/i. It is expected from the propagation of chaos, that when the number of episodes N goes to infinity, µ N t k converge to the limiting distribution P Xt k of the population. Notice that a similar estimation procedure was recently proposed in [START_REF] Angiuli | Unified reinforcement Q-learning for mean field game and control problems[END_REF] in the context of a MFC control problem in discrete time with finite state and action spaces over an infinite horizon.

In addition to the family of randomised policies (t, x, µ) → π θ (da|t, x, µ) = p θ (t, x, µ)ν(da), with parameter θ, we are given a family of functions

(t, x, µ) → J η (t, x, µ) on [0, T ]×R d ×P 2 (R d ),
with parameter η, aiming to approximate the optimal cost value function. AC algorithm is then updating alternately the two parameters to find the optimal pair (θ * , η * ), hence determining the approximate optimal randomised policy and the associated cost value function. On the one hand, the loss function in the PE step for learning J η , for fixed policy π θ , is based on the martingale formulation of the process

e -βt J η (t, X x,µ t , P X ξ t ) + t 0 e -βr f (X x,µ r , P X ξ r , α r ) + λ log p θ (r, X x,µ r , P X ξ r , α r ) dr, 0 ≤ t ≤ T ,
and on the other hand, the objective (here a cost) function in the PG step for learning π θ , for fixed J η , is based on the martingale formulation of the process

e -βt G θ (t, X x,µ t , P X ξ t ) + t 0 e -βr ∇ θ log p θ (r, X x,µ r , P X ξ r , α r ) dJ η (r, X x,µ r , P X ξ r ) (3.6) + f (X x,µ r , P X ξ r , α r ) + λ log p θ (r, X x,µ r , P X ξ r , α r ) -βJ η (r, X x,µ r , P X ξ r ) dr + H θ [J η ](r, X x,µ r , P X ξ r )dr, 0 ≤ t ≤ T .
Here, we denote X x,µ = X 0,x,µ (resp. X ξ = X 0,ξ ) when the initial time of the flow is t = 0. We emphasise that these loss functions are minimised by training samples of the state trajectories X x 0 ,ξ t , actions α ∼ π θ , estimation µ t of P X ξ t according to (3.5), and observation of the associated running and terminal costs.

We first develop AC algorithms in the offline setting where all state trajectories are sampled. In this case, given θ, the proposed loss function for the PE step is

L P E (η) = E α∼π θ T 0 e -β(T -t) g(X T , P X T ) + T t e -β(r-t) f (X r , P Xr , α r ) + λ log p θ (r, X r , P X r , α r ) dr -J η (t, X t , P Xt ) 2 dt ,
which leads, after time discretisation of [0, T ] on the grid {t k = k∆t, k = 0, . . . , n}, and by applying stochastic gradient descent (SGD) with learning rate ρ E , to the following update rule:

η ← η + ρ E n-1 k=0 e -β(n-k)∆t g tn + n-1 =k e -β( -k)∆t f t + λ log p θ (t , X t , µ t , α t ) ∆t -J η (t k , X t k , µ t k ) ∇ η J η (t k , X t k , µ t k )∆t,
where we set f t = f (X t , P Xt , α t ), as the output running cost at time t , for an input state X t l , action α t , = 0, . . . , n -1, and g T = g(X T , P X T ) the terminal cost for an input X T . Given η, the learning in the PG step relies on the gradient representation (3.3), and (after time discretisation) leads to the update rule

θ ← θ -ρ G Ĝθ , with Ĝθ = n-1 k=0 e -βt k ∇ θ log p θ (t k , X t k , µ t k , α t k ) J η (t k+1 , X t k+1 , µ t k+1 ) -J η (t k , X t k , µ t k ) + f t k + λ log p θ (t k , X t k , µ t k , α t k ) -βJ η (t k , X t k , µ t k ) ∆t + H θ [J η ](t k , X t k , µ t k )∆t.
The pseudo-code is described in Algorithm 1.

Algorithm 1: Offline actor-critic mean-field algorithm

Input data: Number of episodes N , number of mesh time-grid n (↔ time step ∆t = T /n), learning rates ρ i S , ρ i E , ρ i G for the state distribution, PE and PG estimation, and function of the number of episodes i. Parameter λ for entropy regularisation. Functional forms J η of cost value function, p θ of density policies. Initialisation: µ t k : state distribution on R d , for k = 0, . . . , N , parameters η, θ. for each episode i = 1, . . . , N do Initialise state X 0 ∼ µ 0 for k = 0, . . . , n -1 do Update state distribution:

µ t k ← (1 -ρ i S )µ t k + ρ i S δ Xt k Generate action α t k ∼ π θ (.|t k , X t k , µ t k )
Observe (e.g. by environment simulator) state X t k+1 and cost

f t k If k = n -1, update terminal state distribution: µ tn ← (1 -ρ S )µ tn + ρ S δ Xt n , and observe terminal cost g tn k ← k + 1 end Compute ∆ η = n-1 k=0 e -β(n-k)∆t g tn + n-1 =k e -β( -k)∆t f t + λ log p θ (t , X t , µ t , α t ) ∆t -J η (t k , X t k , µ t k ) ∇ η J η (t k , X t k , µ t k )∆t Ĝθ = n-1 k=0 e -βt k ∇ θ log p θ (t k , X t k , µ t k , α t k ) J η (t k+1 , X t k+1 , µ t k+1 ) -J η (t k , X t k , µ t k ) + f t k + λ log p θ (t k , X t k , µ t k , α t k ) -βJ η (t k , X t k , µ t k ) ∆t + H θ [J η ](t k , X t k , µ t k )∆t. Critic Update: η ← η + ρ i E ∆ η ; Actor Update: θ ← θ -ρ i G Ĝθ end Return: J η , π θ
We next develop AC algorithm for online setting where only past sample trajectory is available, and so the parameters (θ, η) are updated in real-time incrementally. In this case, given a policy π θ , we consider at each time step t k , k = 0, . . . , n -1, a loss function for PE given by

L P E t k (η) = E α∼π θ J η (t k+1 , X t k+1 , P Xt k+1 ) -J η (t k , X t k , P Xt k ) + f (X t k , P Xt k , α t k ) + λ log p θ (t k , X t k , P Xt k , α t k ) -βJ η (t k , X t k , P Xt k ) ∆t 2 .
Concerning PG, we note that when θ is an optimal parameter, we should have G θ = 0.

Therefore, from the martingale condition in (3.6), this suggests to find θ such that at any time t k , k = 0, . . . , n -1

E α∼π θ ∇ θ log p θ (t k , X t k , P Xt k , α t k ) J η (t k+1 , X t k+1 , P Xt k+1 ) -J η (t k , X t k , P Xt k ) + f (X t k , P Xt k , α t k ) + λ log p θ (t k , X t k , P Xt k , α t k ) -βJ η (t k , X t k , P Xt k ) ∆t + H θ [J η ](t k , X t k , µ t k )∆t = 0.
The pseudo-code is described in Algorithm 2.

Algorithm 2: Online actor-critic mean-field algorithm

Input data: Number of episodes N , number of mesh time-grid n (↔ time step ∆t = T /n), learning rates ρ i S , ρ i E , ρ i G for the state distribution, PE and PG estimation, and function of the number of episodes i. Parameter λ for entropy regularisation. Functional forms J η of cost value function, p θ of density policies. Initialisation: µ t k : state distribution on R d , for k = 0, . . . , n, parameters η, θ.

for each episode i = 1, . . . , N do Initialise state X 0 ∼ µ 0 for k = 0, . . . , n -1 do Update state distribution: µ t k ← (1 -ρ i S )µ t k + ρ i S δ Xt k Generate action α t k ∼ π θ (.|t k , X t k , µ t k )
Observe (e.g. by environment simulator) state X t k+1 and cost

f t k If k = n -1, update terminal state distribution: µ t k+1 ← (1 -ρ i S )µ t k+1 + ρ i S δ Xt k+1
, and observe terminal cost g t k+1 Compute

δ η = J η (t k+1 , X t k+1 , µ t k+1 ) -J η (t k , X t k , µ t k ) + f t k + λ log p θ (t k , X t k , µ t k , α t k ) -βJ η (t k , X t k , µ t k ) ∆t ∆ η = δ η ∇ η J η (t k , X t k , µ t k ) ∆ θ = δ η ∇ θ log p θ (t k , X t k , µ t k , α t k ) + H θ [J η ](t k , X t k , µ t k )∆t, with the constraint that when k = n -1, J η (t k+1 , X t k+1 , µ t k+1 ) = g t k+1 . Critic Update: η ← η + ρ i E ∆ η ; Actor Update: θ ← θ -ρ i G ∆ θ k ← k + 1 end end Return: J η , π θ
Remark 3.2 (About the choice of actor and critic parametric functions) In the Actorcritic algorithms, we have to specify a parametric family of randomised policies π θ , and a parametric family of critic functions J η . In general, for critic functions, one can consider cylindrical neural network functions in the form

J η (t, x, µ) = Ψ(t, x, < ϕ, µ >), (t, x, µ) ∈ [0, T ] × R d × P 2 (R d ), (3.7) 
where Ψ is a feedforward neural network from [0, T ] × R d × R k into R, and ϕ is another feedforward neural network from R d into R k (called latent space), and we use the notation < φ, µ > := φ(x)µ(dx). The set of parameters η is the union of the parameter sets for the two neural networks Ψ and ϕ. This choice is motivated by the density property of the set of cylindrical functions, i.e. functions in the form (3.7) with continuous functions Ψ and ϕ, with respect to continuous functions on [0, T ] × R d × P 2 (R d ) as shown in [START_REF] Guo | Itô's formula for flow of measures on semimartingales[END_REF], and the universal approximation property of feedforward neural networks on finite-dimensional space, see [START_REF] Hornik | Multilayer feedforward networks are universal approximators[END_REF].

Concerning the policies, notice that when the temperature parameter for exploration λ is zero, the optimal policy is of pure (non randomised) feedback form as a function of (t, x, µ). When λ > 0, the optimal policy is in general truly randomised, and the larger is λ, the larger is the exploration in the sense that the variance of the randomised policy increases. We can then take for the parametric family of randomised policies, for example Gaussian distributions:

π θ (.|t, x, µ) = N m(t, x, µ); ϑ(λ) ,
where m is a cylindrical neural network function on [0, T ]×R d ×P 2 (R d ) valued in A ⊂ R m , and ϑ(.) is a given symmetric matrix-valued function, nondecreasing w.r.t. λ, with ϑ(λ) positivedefinite for λ > 0, and ϑ(0) = 0.

In some particular mean-field models, we may know a priori the structural form of the optimal value function and optimal randomised policy, and this suggests alternately some specific form for the parametric family of actor and critic functions. This is typically the case of the linear quadratic model, as presented in the next section.

Remark 3.3

The above actor-critic algorithms involve the computation of the term H θ [J η ] at each time t k , and along the observed state X t k and estimated state distribution µ t k . This additional term, compared to the actor-critic algorithms designed in [START_REF] Jia | Policy gradient and actor critic learning in continuous time and space: theory and algorithms[END_REF] for standard stochastic control without mean-field interaction, involves the operator H θ defined in (3.4). In the separable form case, namely when the coefficients of the mean-field process are in the form

b(x, µ, a) = b(x, µ) + C(a), (σσ )(x, µ, a) = Σ(x, µ) + F (a),
where C and F are known functions from A into R d , resp. R d×d , we notice that

∇ θ b θ (t, x, µ) = ∇ θ C θ (t, x, µ), with C θ (t, x, µ) := C(a)π θ (da|t, x, µ), ∇ θ Σ θ (t, x, µ) = ∇ θ F θ (t, x, µ), with F θ (t, x, µ) := F (a)π θ (da|t, x, µ),
are known functions, and consequently also the function H θ [J η ]. Another important case where the term H θ [J η ] is a known computable function is given in the linear quadratic framework as presented in the next section.

The linear quadratic case

We focus on the important class of MFC control problem with linear state dynamics and quadratic reward, namely

       b(x, µ, a) = Bx + B μ + Ca, σ(x, µ, a) = γ + Dx + D μ + F a, f (x, µ, a) = x Qx + μ Qμ + a N a + 2a Ix + 2a Ī μ + 2M.x + 2H.a, g(x, µ) = x P x + μ P μ + 2L.x, (4.1) 
for

(x, µ, a) ∈ R d × P 2 (R d ) × R m , where we denote by μ = xµ(dx), B, B, D, D are constant matrices in R d×d , C, F are constant matrices in R d×m , γ is a constant in R d , N is a symmetric matrix in S m + , I, Ī ∈ R m×d , Q, Q, P , P are symmetric matrices in S d , with Q ≥ 0, P ≥ 0, M , L ∈ R d , H ∈ R m .
In this case, the optimal value function to this LQ MFC problem with entropy regularisation when minimizing over randomised controls a functional cost as in (2.5), is given by

v(t, x, µ) = (x -μ) K(t)(x -μ) + μ Λ(t)μ + 2Y (t).x + R(t),
where K (valued in S d ), Λ (valued in S d ), Y valued in R d , and R valued in R, are solutions to a system of ordinary differential equations on [0, T ] given in (B.1). Moreover, the optimal randomised control is of feedback form with Gaussian distribution:

π * (.|t, x, µ) = N -S(t) -1 U (t)x + (W (t) -U (t))μ + O(t) ; λ 2 S(t) -1 ,
where

S(t) = N + F K(t)F, O(t) = H + C Y (t) + F K(t)γ U (t) = I + C K(t) + F K(t)D, W (t) = I + Ī + C Λ(t) + F K(t)(D + D).
This is an extension of the mean-field LQ control without entropy and control randomization, and the proof that adapts arguments in [START_REF] Basei | A Weak Martingale Approach to Linear-Quadratic McKean-Vlasov Stochastic Control Problems[END_REF] is reported in Appendix B.

In a RL setting, the coefficients of the LQ model (4.1) are unknown, thus K, Λ, Y , and R cannot be solved from the system of ODEs, and S, O, U , and W are also unknown. We shall then employ our RL algorithms to solve the LQ problem in a model-free setting. In view of the above structure of the optimal value function and randomised policy, we parametrise the cost value function by

J η (t, x, µ) = (x -μ) K η (t)(x -μ) + μ Λ η (t)μ + 2Y η (t).x + R η (t), (4.2) 
for some parametric functions K η , Λ η , Y η , R η on [0, T ], with parameters η ∈ R p . On the other hand, we parametrise the randomised policies by

π θ (.|t, x, µ) = N φ θ 1 (t)x + φ θ 2 (t)μ + φ θ 3 (t); Σ θ (t) , (4.3) 
for some parametric functions φ θ 1 , φ θ 2 , φ θ 3 , Σ θ on [0, T ], with parameter θ ∈ R q . The parametric functions K η , Λ η , Y η , R η , and φ θ 1 , φ θ 2 , φ θ 3 , Σ θ , could be in general neural networks on [0, T ], but depending on the examples, we could take more specific forms, as discussed in the next section.

For parametrisation of the cost value function and randomised policies as in (4.2), (4.3), we see that

∂ µ J η (t, x, µ)(x ) = -2K η (t)(x -μ) + 2Λη μ, and so ∂ x ∂ µ J η (t, x, µ)(x ) = 0, ∇ θ b θ (t, x, µ) = C∇ θ φ θ 1 (t) • 2 x + C∇ θ φ θ 2 (t) • 2 μ + C∇ θ φ θ 3 (t)
and then

H θ [J η ](t, x, µ) = 2 (∇ θ φ θ 1 (t) + ∇ θ φ θ 2 (t)) • 2 μ + ∇ θ φ θ 3 (t) C -K η (t)(x -μ) + Λ η μ ,
which only involves, up to the knowledge of C, known functions of (t, x, µ). Notice also that when φ θ 1 = -φ θ 2 , and φ θ 3 ≡ 0 (see below the example of mean-field systemic risk), then H θ [J η ] ≡ 0.

Numerical examples

Example 1: mean-field systemic risk

We consider a mean-field model of systemic risk introduced in [START_REF] Carmona | Mean field games and systemic risk[END_REF]. This fits into a LQ MFC with

B = -B > 0, C = 1, γ > 0, D = D = F = 0 I = -Ī > 0, Q + Q = 0, N = 1 2
, M = H = L = 0, P + P = 0, and Q ≥ 2I 2 . We also take X 0 ∼ N (0, 1). In this case, the solution to the system of ODEs (B.1) yields the analytic expression:

R(t) = γ 2 2 ln cosh( √ ∆(T -t)) + B + 2I + 2P √ ∆ sinh( √ ∆(T -t)) - γ 2 2 ( B + 2I)(T -t) - λ(T -t) 2 log(2πλ) with √ ∆ = ( B + 2I) 2 + 2Q -4I 2
, and Λ = Y = 0, while the optimal randomised policy is given by π(.|t, x, µ) = N φ(t)(x -μ); λ , with φ(t) = -2(K(t) + I).

In view of these expressions, we shall use critic function as

J η (t, x, µ) = K η (t)(x -μ) 2 + R η (t),
for some parametric functions K η and R η on [0, T ] with parameters η, and actor functions as

π θ (.|t, x, µ) = N φ θ (t)(x -μ); λ , i.e. log p θ (t, x, µ, a) = - 1 2 log(2πλ) - a -φ θ (t)(x -μ) 2 2λ ,
for some parametric function φ θ on [0, T ] with parameter θ. As shown in Section 4, we notice that H θ [J η ] = 0. We shall test with two choices of parametric functions:

1. Exact parametrisation: 2. Neural networks: for K η , R η and φ θ , with time input.

         K η (t) = -1 2 η 3 -η 1 sinh(η 1 (T -t))+η 2 cosh(η 1 (T -t)) cosh(η 1 (T -t))+η 2 sinh(η 1 (T -t)) , R η (t) = η 4 ln cosh(η 1 (T -t)) + η 2 sinh(η 1 (T -t)) -η 3 η 4 (T -t) -λ(T -t) 2 log(2πλ) φ θ (t) = θ 3 -θ 1 sinh(θ 1 (T -t))+θ 2 cosh(θ 1 (T -t)) cosh(θ 1 (T -t))+θ 2 sinh(θ 1 (T -t)) , (5.1 
We implement our actor-critic algorithms with a simulator of X for coefficients equal to

T = 1, γ = 1, B = -B = 0.6, I = 0.4, P = Q = 1,
The simulator for X is based on the real mean-field model:

dX t = B(E[X t ] -X t ) + α t dt + γdW t . Since α ∼ π θ , we note that E[α t ] = φ θ (t)(E[X t ] -E[μ t ]) = 0. We deduce that under such α, dE[X t ] = 0, hence E[X t ] = E[X 0 ].
From the above mean-field dynamics of X, we deduce that

X t k+1 -E[X 0 ] = e -B∆t (X t k -E[X 0 ]) + α t k 1 -e -B∆t B + γ t k+1 t k e -B(t k+1 -s) dW s e B∆t (X t k -E[X 0 ]) + α t k 1 -e -B∆t B + γe -B∆t ∆W t k .
The cost is simulated according to

f t k = Q(X t k -E[X 0 ]) 2 + 1 2 α 2 t k + 2α t k I(X t k -E[X 0 ]), g T = P (X T -E[X 0 ]) 2 .
We first present the numerical results of our offline Algorithm 1 when using the exact parametrisation (5.1). The derivatives w.r.t. to η of K η , R η , hence of J η , as well as the derivative w.r.t. θ of log p θ have explicit analytic expressions that are implemented in the updating rule of the actor-critic algorithm.

Here we used the following parameters: µ t k was initialized at 0; the number of episodes was N = 2100; the time horizon was T = 1 and the time step ∆t = 0.02. The values of the model parameters were as described above. The learning rates (ρ S , ρ E , ρ G ) and λ were taken as ρ S = 0.2 constant, and at iteration i, 

ρ E (i) = (0.01, 0.1, 0.01, 0.2) if i ≤ 500 (0.1, 0.1, 0.1, 0.1) if 500 < i ≤ 21000 ρ G (i) =              (0.
λ(i) =        0.1 if i ≤ 8000, 0.01 if 8000 < i ≤ 14000, 0.001 if 14000 < i ≤ 21000
Moreover, after i = 14000 iterations, we also increase the size of the minibatch from 20 to 40.

In Table 1, we give the learnt parameters for the critic and actor functions, to be compared wih the exact value of the parameters. In Figure 1, we see that, even though the parameters η and θ (shown with full lines) are slightly different from the true optimal values (shown in dashed lines), the functions K, R and φ are matched almost perfectly.

η 1 η 2 η 3 η 4 θ 1 θ 2 θ 3 exact 1.
We also display one realization of the control and of the cost. These are based on evaluating the control and the cumulative cost along one trajectory of the state. We first simulate 10 4 realizations of a Brownian motion. Based on this, we generate trajectories for one 10 4 population of agents using the learnt control and one population of 10 4 agents using the optimal control. For the population that uses the learnt control, the control is given by the mean of the actor, namely, φ θ (t)(x -μ). In the dynamics, the cost and the control, the mean field term is replaced by the empirical mean of the corresponding population at the current time. We can see that the trajectories of control (resp. cost) are very similar. Top: learned parameters of critic (left) and associated critic functions K η , R η (right) vs optimal parameters and associated functions. Middle: learned parameters of actor (left) and associated actor function φ θ vs optimal parameters and associated function. Bottom: one realization of the control (left) and one realization of the cost (right) vs the optimal ones, respectively along a state trajectory controlled by the learnt control and a state trajectory controlled optimally (both using the same realization of the Brownian motion).
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Next, we present in Figure 2 and Figure 3 the numerical results of our online Algorithm 2 when using neural networks. In this case, the derivatives w.r.t. to η of K η , R η , hence of J η , as well as the derivative w.r.t. θ of log p θ are computed by automatic differentiation. We use neural networks with 3 hidden layers, 10 neurons per layer and tanh activation functions. We take n = 30, N = 15000 iterations, batch size 500 (10000 for the law estimation in the simulator), constant learning rates 10 -3 , except ω S = 1. We change λ along episodes: λ = 0.1 for the first 3334 ones, then 0.01 for the next 3333 ones, then 0.001 until the end. Finally, we test in Table 2 the learnt policies from the exact and NN parametrisation by computing the associated initial expected social costs. We simulate 10 populations, each consisting of 10 4 agents. All the agents use the control function with the parameters learnt by the algorithm. For the dynamics, the cost and the control, the mean field term is replaced by the empirical mean of the corresponding population at the present time step. For each population, we compute the social cost. We then average over the 10 populations in order to get a Monte Carlo estimate of the social cost. We report in the table the value of this average social cost, the standard deviation over the 10 populations, and the relative error between the average social cost and the optimal cost computed by the formula K η * 0 Var(X 0 ) + R η * 0 with the optimal parameter η * . 

Initial cost (

Example 2: optimal trading

We consider an optimal trading problem where the inventory is governed by

dX t = α t dt + γdW t ,
and we aim to minimize over randomised trading rate α ∼ π the cost functional

E T 0 α 2 t + 2Hα t -λE(π t )dt + P Var(X T ) .
where γ > 0, H > 0 is the transaction price per trading, P > 0 is a risk aversion parameter, and λ > 0 is the temperature parameter. This model fits into the LQ framework, and the solution to the system of ODEs (B.1) is given by

K(t) = P 1 + P (T -t) , R(t) = γ 2 log(1 + P (T -t)) -H 2 + λ 2 log(πλ) (T -t),
Λ = Y ≡ 0, while the optimal randomised policy is given by

π(|t, x, µ) ∼ N -K(t)(x -μ) -H; λ 2 .
In a RL setting, the coefficients σ, H and P are unknown, and we use critic function as

J η (t, x, µ) = K η (t)(x -μ) 2 + R η (t),
for some parametric functions K η and R η on [0, T ] with parameters η, and actor functions as

π θ (.|t, x, µ) = N φ θ (t)(x -μ) + φ θ 3 (t); λ 2 , i.e. log p θ (t, x, µ, a) = - 1 2 log(πλ) - a -φ θ (t)(x -μ) -φ θ 3 (t) 2 λ ,
for some parametric functions φ θ , φ θ 3 on [0, T ] with parameter θ. Given such family of parametric actor/critic functions, we have

H θ [J η ](t, x, µ) = -2CK η (t)(x -μ)∇ θ φ θ 3 (t).
We shall test with two choices of parametric functions:

1. Exact parametrisation:

       K η (t) = η 1 1+η 1 (T -t) R η (t) = η 2 log(1 + η 1 (T -t)) -η 3 + λ 2 log(πλ) (T -t) φ θ (t) = - θ 1 1+θ 1 (T -t) , φ θ 3 (t) = -θ 2 ,
(5.2)

with parameters η = (η 1 , η 2 , η 3 ) ∈ (0, ∞) 3 , θ = (θ 1 , θ 2 ) ∈ (0, ∞) 2
, so that the optimal solution in the model-based case corresponds to (η * 1 , η * 2 , η * 3 ) = (P, γ 2 , H 2 ), and (θ * 1 , θ * 2 ) = (P, H).

2.

Neural networks: for K η , R η , φ θ , and φ θ 3 with time input. Actually, we take for φ θ 3 a constant function. We first present the numerical results of our offline Algorithm 1 when using the exact parametrisation (5.2). The derivatives w.r.t. to η of K η , R η , hence of J η , as well as the derivative w.r.t. θ of log p θ , and H θ [J η ] have explicit analytic expressions that are implemented in the updating rule of the actor-critic algorithm. Here we used the following parameters: the learning rates (ρ S , ρ E , ρ G ) and λ were taken as ρ S = 0.2 constant, and at iteration i, ρ E (i) = (0.05, 0.05, 0.05

) if i ≤ 8000 (0.05, 0.05, 0.01) if 8000 < i ≤ 20000 ρ G (i) =        (0.005, 0.005) if i ≤ 8000 (0.001, 0.001) if 8000 < i ≤ 13000 (0.0005, 0.0005) if 8000 < i ≤ 13000 and 
λ(i) =        0.1 if i ≤ 8000, 0.01 if 8000 < i ≤ 13000 0.001 if 13000 < i ≤ 20000
µ t k was initialized at 0; the number of episodes was N = 20000; the time horizon was T = 1 and the time step ∆t = 0.02. The values of the model parameters are: P = 3, H = 2, γ = 1, and X 0 ∼ N (1, 1).

In Table 3, we give the learnt parameters for the critic and actor function to be compared with the exact values, when using the learnt policy with learnt empirical distribution from the algorithm.

η 1 η 2 η 3 θ 1 θ 2 exact 3 1 4 
3 2 learnt 2.9864 0.9637 3.9154 3.0161 2.0016 Table 3: Learnt vs exact parameters of the critic and actor functions.

In Figure 4, we see that the parameters and, hence, the functions K, R and φ are matched almost perfectly. We also display one realization of the control and of the cost. These are based on evaluating the control and the cumulative cost along one trajectory of the state. We first simulate 10 4 realizations of a Brownian motion. Based on this, we generate trajectories for one 10 4 population of agents using the learnt control and one population of 10 4 agents using the optimal control. For the population that uses the learnt control, the control is given by the mean of the actor, namely, φ θ (t)(x -μ) + φ θ 3 (t). In the dynamics, the cost and the control, the mean field term is replaced by the empirical mean of the the corresponding population at the current time. We can see that the trajectories of control (resp. cost) are very similar. Top: learned parameters of critic (left) and associated critic functions K η , R η (right) vs optimal parameters and associated functions. Middle: learned parameters of actor (left) and associated actor function φ θ vs optimal parameters and associated function. Bottom: one realization of the control (left) and one realization of the cost (right) vs the optimal ones, respectively along a state trajectory controlled by the learned control and a state trajectory controlled optimally (both using the same realization of the Brownian motion).

Next, we present in Figure 5 and Figure 6 the numerical results of our online Algorithm 2 when using neural networks. In this case, the derivatives w.r.t. to η of K η , R η , hence of J η , as well as the derivative w.r.t. θ of log p θ are computed by automatic differentiation. We use neural networks with 3 hidden layers, 10 neurons per layer and tanh activation functions. We take n = 30, N = 15000 iterations, batch size 300 (10000 for the law estimation in the simulator), constant learning rates 10 -3 , except ω S = 1. Again, we change λ along episodes: λ = 0.1 for the second 3334 ones, then 0.01 for the next 3333 ones, then 0.001 until the end. Finally, we test in Table 4 the learnt policies from the exact and NN parametrisation by computing the associated initial expected social costs. We simulate 10 populations, each consisting of 10 4 agents. All the agents use the control function with the parameters learnt by the algorithm. For the dynamics, the cost and the control, the mean field term is replaced by the empirical mean of the corresponding population at the present time step. For each population, we compute the social cost. We then average over the 10 populations in order to get a Monte Carlo estimate of the social cost. We report in the table the value of this average social cost, the standard deviation over the 10 populations, and the relative error between the average social cost and the optimal cost computed by the formula K η * 0 Var(X 0 ) + R η * 0 with the optimal parameter η * . 

A Proofs of some representation results

A.1 Proof of Proposition 2.1

Step Denoting by P the probability measure on C([0, ∞), R d ) (the space of continuous functions defined on [0, ∞) taking values in R d ) induced by the unique solution to the SDE (A.1) and by P(t) its marginal at time t, its infinitesimal generator is given by

Lπ t ϕ(x) = d i=1 A b i (x, P(t), a) π(da|t, x, P(t))∂ x i ϕ(x) + 1 2 d i,j=1 A
(σσ ) i,j (x, P(t), a) π(da|t, x, P(t))∂ 2 x i ,x j ϕ(x).

Now, coming back to the dynamics of the McKean-Vlasov SDE (2.4), we importantly point out that since at each time s, the action α s is sampled from the probability distribution π(.|s, X t,ξ s , P X t,ξ s

) independently of W , the infinitesimal generator at time t of (2.4) is exactly given by Lπ t . Hence, it follows from the uniqueness of the martingale problem associated to Lπ that X t,ξ and Xt,ξ have the same law b .

We thus conclude that V π can be written as

V π (t, x, µ) = E T t e -β(s-t) (f π -λE π )(s, Xt,x,µ s , P Xt,ξ s ) ds + e -β(T -t) g( Xt,x,µ T , P Xt,ξ T ) . (A.3)
Step 2: We know, see e.g. [START_REF] Crisan | Smoothing properties of McKean-Vlasov SDEs[END_REF] or [START_REF] Chassagneux | A probabilistic approach to classical solutions of the master equation for large population equilibria[END_REF], that Assumption 2.1(i) guarantees the existence of a modification of Xt,x,µ such that:

• The map x → Xt,x,ξ s is P-a.s. twice continuously differentiable,

• for any x ∈ R d , 0 ≤ t ≤ s, and any p ≥ 1, the map

P 2 (R d ) µ → Xt,x,µ s ∈ L p (P) is differentiable and the map R d v → ∂ µ Xt,x,µ s (v) ∈ L p (P) is differentiable,
• for any p ≥ 1, the derivatives

(t, x, µ, v) → ∂ x Xt,x,µ s , ∂ 2 x Xt,x,µ s , ∂ µ Xt,x,µ s (v), ∂ v [∂ µ Xt,x,µ s ](v) ∈ L p (P) are continuous.
Moreover, the following estimates hold for n = 1, 2 and any p ≥

1 sup 0≤t≤s≤T,(x,v)∈(R d ) 2 ,µ∈P 2 (R d ) ∂ n x Xt,x,µ s L p (P) + ∂ µ Xt,x,µ s (v) L p (P) + ∂ v ∂ µ Xt,x,µ s (v) L p (P) < ∞.
We thus deduce that the functions x → f π (s, Xt,x,µ ) are P-a.s. twice continuously differentiable with derivatives that belong to L p (P), for any p ≥ 1, uniformly in x, µ and t ∈ [0, s]. The dominated convergence theorem eventually guarantees that x → V π (t, x, µ) is twice continuously differentiable with

∂ x i V π (t, x, µ) = E T t e -β(s-t) d k=1 ∂ x k (f π -λE π )(s, Xt,x,µ s , P Xt,ξ s )∂ x i ( Xt,x,µ s ) k ds + e -β(T -t) d k=1 ∂ x k g( Xt,x,µ T , P Xt,ξ T )∂ x i ( Xt,x,µ T ) k , (A.4)
b This was formally shown by law of large numbers in [START_REF] Wang | Reinforcement learning in continuous time and space: A stochastic control approach[END_REF] in the standard diffusion case. and

∂ 2 x i ,x j V π (t, x, µ) = E T t e -β(s-t) d k, =1 ∂ 2 x k ,x (f π -λE π )(s, Xt,x,µ s , P Xt,ξ s )∂ x i ( Xt,x,µ s ) k ∂ x j ( Xt,x,µ s ) ds + e -β(T -t) d k, =1 ∂ 2 x k ,x g( Xt,x,µ T , P Xt,ξ T )∂ x i ( Xt,x,µ T ) k ∂ x j ( Xt,x,µ T ) + T t e -β(s-t) d k=1 ∂ x k (f π -λE π )(s, Xt,x,µ s , P Xt,ξ s )∂ 2 x i ,x j ( Xt,x,µ s ) k ds + e -β(T -t) d k=1 ∂ x k g( Xt,x,µ T , P Xt,ξ T )∂ 2 x i ,x j ( Xt,x,µ T ) k .
It follows from the above expression and again the dominated convergence theorem that 

(t, x, µ) → ∂ x i V π (t, x, µ), ∂ 2 x i ,x j V π (t,
∂ i µ [h(s, Xt,x,µ s , P Xt,ξ s )](v) = d k=1 ∂ x k h(s, Xt,x,µ s , P Xt,ξ s )∂ i µ [( Xt,x,µ s ) k ](v) + E d k=1 ∂ k µ h(s, Xt,x,µ s , P Xt,ξ s )( X t,v,µ s )∂ x i ( X t,v,µ s ) k + R d E d k=1 ∂ k µ h(s, Xt,x,µ s , P Xt,ξ s )( X t,x ,µ s )∂ i µ [( X t,x ,µ s ) k ](v) µ(dx ), ∂ i µ [g( Xt,x,µ T , P Xt,ξ T )](v) = d k=1 ∂ x k g( Xt,x,µ T , P Xt,ξ T )∂ i µ [( Xt,x,µ T ) k ](v) + E[ d k=1 ∂ k µ g( Xt,x,µ T , P Xt,ξ T )( X t,v,µ T )∂ x i ( X t,v,µ T ) k ] + R d E[ d k=1 ∂ k µ g( Xt,x,µ T , P Xt,ξ T )( X t,x ,µ T )∂ i µ [( X t,x ,µ T ) k ](v)] µ(dx ),
(A.5) where ( X t,x,µ s ) s∈[t,T ] stands for a copy of ( Xt,x,µ s ) s∈[t,T ] defined on a copy ( Ω, F, P) of the original probability space (Ω, F, P). Under Assumption 2.1, it follows from the above identities that

(t, x, µ, v) → ∂ µ [h(s, Xt,x,µ s , P Xt,ξ s )](v), ∂ µ [g( Xt,x,µ T , P Xt,ξ T )](v) ∈ L p (P), p ≥ 1, are continuous and satisfy |∂ µ [h(s, Xt,x,µ s , P Xt,ξ s )](v)| ≤ K(1 + | Xt,x,µ s | + |v| + M 2 (P Xt,ξ s ) q )(1 + |∂ µ Xt,x,µ s (v)|) ≤ K(1 + | Xt,x,µ s | + |v| + M 2 (µ) q )(1 + |∂ µ Xt,x,µ s (v)|),
and

|∂ µ [g( Xt,x,µ T , P Xt,ξ T )](v)| ≤ K(1 + | Xt,x,µ T | + |v| + M 2 (P Xt,ξ T ) q )(1 + |∂ µ Xt,x,µ T (v)|) ≤ K(1 + | Xt,x,µ T | + |v| + M 2 (µ) q )(1 + |∂ µ Xt,x,µ T (v)|),
where we used the fact that M 2 (P Xt,ξ 

|∂ v ∂ µ [h(s, Xt,x,µ s , P Xt,ξ s )](v)| ≤ K(1 + | Xt,x,µ s | + |v| + M 2 (µ) q ), |∂ v ∂ µ [g( Xt,x,µ T , P Xt,ξ T )](v)| ≤ K(1 + | Xt,x,µ T | + |v| + M 2 (µ) q ).
Coming back to (A.3) and using the above estimates together with the dominated convergence theorem allows to conclude that µ → 

V π (t, x, µ) is L-differentiable and that v → ∂ µ V π (t, x, µ)(v) is differentiable. Moreover, both derivatives ∂ µ V π (t, x, µ)(v), ∂ v ∂ µ V π (t, x, µ)(v)
{|∂ µ V π (t, x, µ)(v)| + |∂ v ∂ µ V π (t, x, µ)(v)|} ≤ K(1 + |x| + |v| + M 2 (µ) q ). (A.6)
We thus conclude that V π ∈ C 0,2,2 ([0, T ] × R d × P 2 (R d )).

Step 3: Let us now prove that (t, x, µ)

→ V π (t, x, µ) ∈ C 1,2,2 ([0, T ] × R d × P 2 (R d )).
From the Markov property satisfied by the SDE (A.1), stemming from its strong well-posedness, for any 0 ≤ h ≤ t, the following relation is satisfied

V π (t -h, x, µ) = e -βh E t t-h e -β(s-t) (f π -λE π )(s, Xt-h,x,µ s , P Xt-h,ξ s )ds + e -βh E V π (t, Xt-h,x,µ t , P Xt-h,ξ t ) .
Now, combining the fact that V π (t, .) ∈ C 2,2 (R d × P 2 (R d )) with (A.6) guarantees that one may apply Itô's rule, see e.g. Proposition 5.102 [START_REF] Carmona | Probabilistic Theory of Mean Field Games: vol. I, Mean Field FBSDEs, Control, and Games, Mean Field game with common noise and Master equations[END_REF]. We thus obtain

h -1 (V π (t -h, x, µ) -V π (t, x, µ)) = e -βh h -1 t t-h e -β(s-t) E (f π -λE π )(s, Xt-h,x,µ s , P Xt-h,ξ s ) ds + e -βh h -1 E V π (t, Xt-h,x,µ t , P Xt-h,ξ t ) -V π (t, x, µ) + h -1 (e -βh -1)V π (t, x, µ) = e -βh h -1 t t-h e -β(s-t) E (f π -λE π )(s, Xt-h,x,µ s , P Xt-h,ξ s ) ds + e -βh h -1 t t-h E L[V π ](t, Xt-h,x,µ s , P Xt-h,ξ s ) ds + h -1 (e -βh -1)V π (t, x, µ), (A.7)
where

Lπ [ϕ](t, x, µ) = b π (t, x, µ) • D x ϕ(t, x, µ) + 1 2 Σ π (t, x, µ) : D 2 x ϕ(t, x, µ) + E ξ∼µ b π (t, ξ, µ) • ∂ µ ϕ(t, x, µ)(ξ) + 1 2 Σ π (t, ξ, µ) : ∂ υ ∂ µ ϕ(t, x, µ)(ξ) .
Letting h ↓ 0 in (A.7), from the continuity and quadratic growth of f π , E π as well as the continuity of L[V π ](t, .), we deduce that t → V π (t, x, µ) is left-differentiable on (0, T ). Still from the continuity of f π , E π and L[V π ], we eventually conclude that it is differentiable on [0, T ) with a derivative satisfying

∂ t V π (t, x, µ) -βV π (t, x, µ) + Lπ [V π ](t, x, µ) + (f π -λE π )(t, x, µ) = 0.
The proof is now complete.

A.2 Differentiability of the parametric critic function

Under the standard assumption that the coefficients b π θ (t, .), σ π θ (t, .) are Lipschitz-continuous on R d × P 2 (R d ) uniformly in t ∈ [0, T ] and θ ∈ Θ, the system of SDEs (2.4) admits a unique strong solution when α ∼ π θ . We will denote by (X t,ξ s (θ), X t,x,ξ s (θ)) the solution taken at time s. We will also use the more compact notation

X t,ξ s (θ) = ξ + s t p j=0 g j θ (r, X t,ξ r (θ), P X t,ξ r (θ) ) dW j r X t,x,µ s (θ) = x + s t p j=0 g j θ (r, X t,x,µ r (θ), P X t,ξ r (θ) ) dW j r , t ≤ s ≤ T, with g 0 θ (t, x, µ) = b π θ (t, x, µ), g j θ (t, x, µ) = σ .,j π θ (t, x, µ), dW r = (dW 0 r , • • • , dW p r ) with dW 0 r = dr. Lemma A.1 Under Assumption 3.1, the derivatives (t, θ, x, µ, v) → ∂ θ ∂ x Xt,x,µ s (θ), ∂ x ∂ θ Xt,x,µ s (θ), ∂ θ ∂ 2 x Xt,x,µ s (θ), ∂ 2 x ∂ θ Xt,x,µ s (θ), ∂ θ [∂ µ Xt,x,µ s (θ)](v), ∂ µ ∂ θ Xt,x,µ s (θ)(v), ∂ θ ∂ v [∂ µ Xt,x,µ s (θ)](v), ∂ v [∂ µ ∂ θ Xt,x,µ s (θ) 
](v) ∈ L p (P) exist and are locally Lipschitz continuous for all p ≥ 1.

Proof. The proof of the existence and continuity of the derivatives of the flow X t,x,ξ s (θ) with respect to the parameters x, µ, v and θ is rather standard but quite mechanical and actually follows similar lines of reasonings as those employed for the proof of Theorem 3.2 in [START_REF] Crisan | Smoothing properties of McKean-Vlasov SDEs[END_REF]. We thus omit it.

2 With the same notations as Lemma A.1, under Assumption 3.1, taking h θ = f π θ , E π θ or g(x, µ), we deduce from the above result that the derivatives

(t, θ, x, µ, v) → ∂ θ ∂ x [h θ (s, Xt,x,µ and ∂ θ l ∂ i µ [h θ (s, Xt,x,µ s (θ), P Xt,ξ s (θ) )](v) = d j=1 ∂ θ l ∂ xj h θ (s, Xt,x,µ s (θ), P Xt,ξ s (θ) )∂ i µ ( Xt,x,µ s (θ)) j + d j,k=1 ∂ 2 xj ,x k h θ (s, Xt,x,µ s (θ), P Xt,ξ s (θ) )∂ i µ ( Xt,x,µ s (θ)) j ∂ θ l ( Xt,x,µ s (θ)) k + d j,k=1 E [∂ µ ∂ xj h θ (s, Xt,x,µ s (θ), P Xt,ξ s (θ) )] k ( X t,ξ s (θ))∂ θ l ( X t,ξ s (θ)) k ∂ i µ ( Xt,x,µ s (θ)) j + d j=1 ∂ xj h θ (s, Xt,x,µ s (θ), P Xt,ξ s (θ) )∂ θ l ∂ i µ ( Xt,x,µ
with the same law as Xt,ξ s . Then, starting from the expression of V θ in (A.3) (with π = π θ ), the dominated convergence theorem guarantees that the derivatives (t, θ, x, µ, v)

→ ∂ θ ∂ x V θ (t, x, µ), ∂ x ∂ θ V θ (t, x, µ), ∂ θ ∂ 2 x V θ (t, x, µ), ∂ 2 x ∂ θ V θ (t, x, µ), ∂ θ ∂ µ V θ (t, x, µ)(v), ∂ µ ∂ θ V θ (t, x, µ)(v), ∂ θ ∂ v ∂ µ V θ (t, x, µ)(v), ∂ v ∂ µ ∂ θ V θ (t,
x, µ)(v) exist and are locally Lipschitz continuous. Hence, from Clairaut's theorem, we deduce that

∂ θ ∂ x V θ (t, x, µ) = ∂ x ∂ θ V θ (t, x, µ), ∂ θ ∂ 2 x V θ (t, x, µ) = ∂ 2 x ∂ θ V θ (t, x, µ), ∂ θ ∂ µ V θ (t, x, µ)(v) = ∂ µ ∂ θ V θ (t, x, µ)(v) and ∂ θ ∂ v ∂ µ V θ (t, x, µ)(v) = ∂ v ∂ µ ∂ θ V θ (t, x, µ)(v) for all t, x, µ, θ, v.
Moreover, from Assumption 3.1 and Lemma A.1, there exist q and C such that for any t, x, µ, v and any θ ∈ K, K being a compact subset of Θ

|∂ θ V θ (t, x, µ)| ≤ C(1 + |x| 2 + M 2 (µ) q ), (A.8) |∂ θ ∂ x V θ (t, x, µ)| + |∂ θ ∂ µ V θ (t, x, µ)(v)| ≤ C(1 + |x| + |v| + M 2 (µ) q ), (A.9) and |∂ θ ∂ 2 x V θ (t, x, µ)| + |∂ θ ∂ v ∂ µ V θ (t, x, µ)(v)| ≤ C(1 + |v| + M 2 (µ) q ). (A.10)
Now, differentiating with respect to θ both sides of (2.6), we deduce that θ → ∂ t V θ (t, x, µ) is differentiable with a derivative ∂ θ ∂ t V θ (t, x, µ) being continuous with respect to t, x, µ, θ. Also, taking π = π θ and differentiating with respect to θ both sides of the identity of (A.7) (using Lemma A.1 together with the estimates (A.8), (A.9), (A.10) and the dominated convergence theorem to differentiate the right-hand side therein) and then passing to the limit as h ↓ 0, we get that t → ∂ θ V θ (t, x, µ) is differentiable with a derivative ∂ t ∂ θ V θ (t, x, µ) being continuous with respect to t, x, µ, θ. We thus conclude that the two derivatives ∂ θ ∂ t V θ (t, x, µ) and ∂ t ∂ θ V θ (t, x, µ) coincide for all t, x, µ, θ.

A.3 Proof of Theorem 3.1

Step 1: We start from the PDE characterisation of V θ in Proposition 2.1 that we write as

A L a θ [V θ ](t, x, µ) + f (x, µ, a) + λ log p θ (t, x, µ, a) π θ (da|t, x, µ) = 0, (A.11)
where

L a θ [ϕ](t, x, µ) = -βϕ(t, x, µ) + ∂ t ϕ(t, x, µ) + b(x, µ, a) • D x ϕ(t, x, µ) + 1 2 σσ (x, µ, a) : D 2 x ϕ(t, x, µ) + E ξ∼µ b θ (t, ξ, µ) • ∂ µ ϕ(t, x, µ)(ξ) + 1 2 Σ θ (t, ξ, µ) : ∂ υ ∂ µ ϕ(t, x, µ)(ξ) , recalling that b θ (t, x, µ) = A b(x, µ, a) π θ (da|t, x, µ), Σ θ (t, x, µ) = A (σσ )(x, µ, a) π θ (da|t, x, µ).
For any fixed t, x, µ, we now differentiate w.r.t. θ ∈ Θ both sides of (A.11) to get a new system of linear PDEs satisfied by G θ . In particular, using the identity

∇ θ L a θ [V θ ](t, x, µ) = L a θ [G θ ](t, x, µ) + H θ [V θ ](t, x, µ),
feedback control generated from a stochastic policy π ∈ Π, denoted by α ∼ π, if at each time t, the action α t is sampled (according to the σ-algebra G) from the probability distribution π(.|t, X t , P Xt ). The dynamics X = X α follows a linear mean-field dynamics with or (ii) I + Ī = 0, F = 0, Q + Q ≥ 0, P + P ≥ 0, P > 0.

The solution to the LQ mean-field control problem with entropy regulariser is then given by the following theorem: is solution on [0, T ] to the system of Riccati equations: Proof of Theorem B.1. We adapt the arguments in [START_REF] Basei | A Weak Martingale Approach to Linear-Quadratic McKean-Vlasov Stochastic Control Problems[END_REF] to our case with randomised controls and entropy regulariser.

                                   K(t
Step 1. Let us consider the function defined on [0, T ] × R d × P 2 (R d ) by w(t, x, µ) = w(t, x, μ), where w is defined on [0, T ] × R d × R d by w(t, x, x) = (x -x) K(t)(x -x) + x Λ(t)x + 2Y (t) x + R(t),

for some functions (to be determined later) K, Λ, Y and R on [0, T ], and valued on S d + , S d + , R d , and R. Fix (t 0 , x 0 , µ 0 ) ∈ [0, T ] × R d × P 2 (R d ), and ξ 0 ∈ L 2 (F t 0 ; R d ) ∼ µ 0 . Given π ∈ Π with density p, and a randomised control α ∼ π, we consider the process S α t := e -β(t-t 0 ) w(t, X t 0 ,x 0 ,µ 0 t , Xt 0 ,µ 0 t ) + t t 0 e -β(s-t 0 ) f (X t 0 ,x 0 ,µ 0 s , Xt 0 ,µ 0 s , α s ) + λ R m log p t (a) p t (a)da ds, for t 0 ≤ t ≤ T , where we set p t (a) = p(t, X t 0 ,x 0 ,µ 0 t , P X t 0 ,ξ 0 t , a), and Xt 0 ,µ 0 t := E α∼π [X t 0 ,ξ 0 t ] which follows the dynamics:

d Xt = B Xt + C ᾱt )dt,
with ᾱt := E α∼π [α t ].

Step 2. We apply Itô's formula to S α t for α ∼ π, and take the expectation to get where we omit the dependence on t 0 , x 0 , µ 0 of X and X to alleviate notations. By applying Itô's formula to w(t, X t , Xt ), recalling the quadratic forms of w, f , and using the linear dynamics of X and X, we obtain similarly as in [START_REF] Basei | A Weak Martingale Approach to Linear-Quadratic McKean-Vlasov Stochastic Control Problems[END_REF] (after careful but straightforward computations): where we used in the last equality the fact that α ∼ π, and set φ t (a) := a S(t)a + 2a χ t with χ t := U (t)(X t -Xt ) + Û (t) Xt + O(t).

dE
E α∼π [D α t ] = E α∼π (X t -Xt ) K(t
Step 3. Let φ be a quadratic function on R m : φ(a) = a Sa + 2a χ for some positive-definite matrix S ∈ S m + , and χ ∈ R m , and denote by D 2 (R m ) the set of square integrable density functions on R m , i.e., the set of nonnegative measurable functions p on R m s.t. Step 4. Notice that under (H1), the matrix S(t) = N + F K(t)F is positive-definite for K ≥ 0, and p t (.) ∈ D 

1 2 <

 2 ∞, equipped with the Wasserstein distance W 2 , and the coefficient b

  b π (t, x, µ) = A b(x, µ, a)π(da|t, x, µ), Σ π (t, x, µ) = A (σσ )(x, µ, a)π(da|t, x, µ), f π (t, x, µ) = A f (x, µ, a)π(da|t, x, µ), E π (t, x, µ) = -A log p(t, x, µ, a)π(da|t, x, µ), and let σ π := Σ 1/2

  ) with parameters η = (η 1 , η 2 , η 3 , η 4 ) ∈ R 4 + , and θ = (θ 1 , θ 2 , θ 3 ) ∈ R 3 + , so that the optimal solution in the model-based case corresponds to η * 1 = √ ∆, η * 2 = B + 2I + 2P , η * 3 = B + 2I, η * 4 = γ 2 /2, and θ * 1 = √ ∆, θ * 2 = B + 2I + 2P , θ * 3 = B.

Figure 1 :

 1 Figure1: Convergence of the learnt value function and policy with exact parametrisation for the offline Algorithm 1. Top: learned parameters of critic (left) and associated critic functions K η , R η (right) vs optimal parameters and associated functions. Middle: learned parameters of actor (left) and associated actor function φ θ vs optimal parameters and associated function. Bottom: one realization of the control (left) and one realization of the cost (right) vs the optimal ones, respectively along a state trajectory controlled by the learnt control and a state trajectory controlled optimally (both using the same realization of the Brownian motion).

Figure 2 :

 2 Figure 2: Learnt critic cost function with neural networks for the online Algorithm 2. Left panel: Neural network functions K η , R η vs optimal one. Right panel: Neural network function φ θ vs optimal one.

Figure 3 :

 3 Figure 3: Learnt actor policy function with neural networks for the online Algorithm 2. Left panel: One realization of the control vs the optimal non-randomised one with λ = 0 Right panel: Plot of one realization of t → J η (t, Xt, PX t ), respectively along a state trajectory controlled by the learnt policy and a state trajectory controlled optimally (both using the same realization of the Brownian motion).

Figure 4 :

 4 Figure4: Convergence of the learnt value function and policy with exact parametrisation for the offline Algorithm 1. Top: learned parameters of critic (left) and associated critic functions K η , R η (right) vs optimal parameters and associated functions. Middle: learned parameters of actor (left) and associated actor function φ θ vs optimal parameters and associated function. Bottom: one realization of the control (left) and one realization of the cost (right) vs the optimal ones, respectively along a state trajectory controlled by the learned control and a state trajectory controlled optimally (both using the same realization of the Brownian motion).

Figure 5 :

 5 Figure 5: Learnt critic cost function with neural networks for the online Algorithm 2. Left panel: Neural network function K η vs optimal one. Right panel: Neural network function R η vs optimal one.

Figure 6 :

 6 Figure 6: Learnt actor policy function with neural networks (NN) for the online Algorithm

1 : 2 π

 12 For a fixed policy π, we introduce the non-linear McKean-Vlasov SDE with dynamics , as well as its associated decoupled SDE with dynamics Xt,x,µ s 2.1(i), the coefficients b π and σ π are Lipschitz-continuous and with at most linear growth with respect to the variable x and µ locally uniformly in time. Hence, the SDEs (A.1)-(A.2) admit a unique strong solution.

s) ≤ K( 1 +

 1 M 2 (µ)), for any s ∈ [t, T ], for the last inequality. Similarly, it follows from (A.5) and the dominated convergencetheorem that v → ∂ µ [h(t, Xt,x,µ s , P Xt,ξ s )](v), ∂ µ [g( Xt,x,µ T , P Xt,ξ T )](v)are continuously differentiable with derivatives being continuous with respect to their entries and satisfying

  are continuous with respect to their entries and satisfy sup t∈[0,T ]

  coefficients b(x, µ, a) = b(x, μ, a), σ(x, µ, a) = σ(x, μ, a) in the form b(x, x, a) = Bx + B x + Ca, σ(x, x, a) = γ + Dx + Dx + F a, for (x, µ, x, a) ∈ R d × P 2 (R d ) × R d × R m , where we denote by μ = xµ(dx), B, B, D, D are constant matrices in R d×d , C, F are constant matrices in R d×m , γ is a constant in R d .Given a stochastic policy π ∈ Π, we consider the functional cost V π with entropy regulariser defined in (2.5) with quadratic functions f (x, µ, a) = f (x, μ, a) and g(x, µ) = ḡ(x, μ):f (x, x, a) = x Qx + x Qx + a N a + 2a Ix + 2a Ī x + 2M.x + 2H.a, ḡ(x, x) = x P x + x P x + 2L.x,whereN is a symmetric matrix in S m + , I, Ī ∈ R m×d , Q, Q, P , P are symmetric matrices in S d , M , L ∈ R d , H ∈ R m ,assumed to satisfy the conditions:(H1) (i) There exists δ > 0 s.t. N ≥ δI m , P ≥ 0, Q -I N -1 I ≥ 0. or (ii) n = m = 1, I = 0, F = 0, Q ≥ 0, P > 0.(H2) (i) There exists δ > 0 s.t. N ≥ δI m , P + P ≥ 0, (Q + Q) -(I + Ī) N -1 (I + Ī) ≥ 0.

Theorem B. 1

 1 Let Assumptions (H1)-(H2) hold. Then, the value function is equal tov(t, x, µ) := inf π∈Π V π (t, x, µ) = (x -μ) K(t)(x -μ) + μ Λ(t)μ + 2Y (t) x + R(t), for (t, x, µ) ∈ [0, T ] × R d × P 2 (R d ), where the quadruple (K, Λ, Y, R) valued in (S d + , S d + , R d , R)

  ) -βK(t) + Q + K(t)B + B K(t) + D K(t)D -(I + C K(t) + F K(t)D) (N + F K(t)F ) -1 (I + C K(t) + F K(t)D) = 0, Λ(t) -βΛ(t) + Q + Λ(t) B + B Λ(t) + D K(t) D -Î + C Λ(t) + F K(t) D (N + F K(t)F ) -1 Î + C Λ(t) + F K(t) D = 0 Ẏ (t) -βY (t) + M + B Y (t) + D K(t)γ -( Î + C Λ(t) + F K(t) D) (N + F K(t)F ) -1 (H + C Y (t) + F K(t)γ) = 0 Ṙ(t) -βR(t) + γ K(t)γ + λm 2 log(2π) -λ 2 log| λ 2det(N +F K(t)F ) | -(H + C Y (t) + F K(t)γ) (N + F K(t)F ) -1 (H + C Y (t) + F K(t)γ) = 0 (B.1)with the terminal condition (K(T ), Λ(T ), Y (T ), R(T )) = (P, P , L, 0), where we set Î := I + Ī, B := B + B, D := D + D, Q := Q + Q, P := P + P . Moreover, the optimal stochastic policy follows a Gaussian distribution:π * (.|t, x, µ) = N -S(t) -1 U (t)x + ( Û (t) -U (t))μ + O(t) ; λ 2 S(t) -1 , (B.2)where we setS(t) := N + F K(t)F, O(t) := H + C Y (t) + F K(t)γ U (t) := I + C K(t) + F K(t)D, Û (t) := Î + C Λ(t) + F K(t) D.Remark B.1 Conditions (H1) and (H2) ensure the existence and uniqueness of a solution (K, Λ) to the matrix Riccati equation in (B.1) satisfying K ≥ 0, Λ ≥ 0 (hence S(t) -1 is welldefined). Given (K, Λ), the equations for (Y, R) are simply linear ODEs.

  R m p(a)da = 1, and R m |a| 2 p(a)da < ∞. Let us consider the cost functional on D 2 (R m ) defined by C φ (p) := R m [φ(a) + λ log p(a)]p(a)da.Then, the minimizer of C φ is achieved with p * ∈ D 2 (R m ) given byp * (a) = exp -1 λ φ(a) R m exp -1 λ φ(a) da , a ∈ R m . (B.5)Indeed, by considering the Lagrangian function associated to this minimization problemL φ (p, ν) = C φ (p) -ν R m p(a)da -1 = R m φ(a) + λ log p(a) -ν p(a)da + ν, for (p, ν) ∈ D 2 (R m)×R, we see that the minimization over p is obtained pointwisely, i.e. inside the integral over a ∈ R m , hence leading to the first-order equations:φ(a) + λ log p * (a) -ν * + λ = 0, a ∈ R m , a∈R m p * (a)da = 1.This yields the expression of p * in (B.5), which is actually the density of a Gaussian distributionπ * = N -S -1 χ; λ 2 S -1 . (B.6)The infimum of C φ is then equal toinf p∈D 2 (R m ) C φ (p) = C φ (p * ) = -χ S -1 χ -

Table 1 :

 1 Learnt vs exact parameters of the critic and actor functions.

	8221 1.8660	1.4	0.5	1.8221 1.8660	0.6
	learnt 1.4197 2.0536 0.9997 0.4824 1.6204 1.9167 0.3660

Table 2 :

 2 Initial costs when following learnt policies vs optimal ones

	Std dev.) Rel. error

Table 4 :

 4 Initial social costs when following learnt policies vs optimal one.

	Social cost (Std dev.) Rel. error

  x, µ) are continuous. Similarly, note that under the current assumption, the functions µ → h(t, Xt,x,µ where h ∈ {f π , E π }, are L-differentiable with derivatives satisfying

	g( Xt,x,µ T	, P Xt,ξ	s	, P Xt,ξ s	),

T

),

  α∼π [S α t ] = e -β(t-t 0 ) E α∼π [D α = -β w(t, X t , Xt ) + d dt E α∼π [ w(t, X t , Xt )] + f (X t , Xt , α t ) + λ

	t ]dt,		(B.3)
	with		
	D α t	R m	(log p t (a))p t (a)da,

  D Xt + 2 Ẏ (t) -βY (t) + M + B Y (t) + D K(t)γ X t + Ṙ(t) -βR(t) + γ K(t)γ + α t S(t)α t + 2α t U (t)(X t -Xt ) + Û (t) Xt + O(t) + λ R m (log p t (a))p t (a)da = E α∼π (X t -Xt ) K(t) -βK(t) + Q + K(t)B + B K(t) + D K(t)D (X t -Xt ) D Xt + 2 Ẏ (t) -βY (t) + M + B Y (t) + D K(t)γ X t + Ṙ(t) -βR(t) + γ K(t)γ[φ t (a) + λ log p t (a)]p t (a)da , (B.4)

	+ X
	+
	R m

) -βK(t) + Q + K(t)B + B K(t) + D K(t)D (X t -Xt ) + X t Λ(t) -βΛ(t) + Q + Λ(t) B + B Λ(t) + D K(t) t Λ(t) -βΛ(t) + Q + Λ(t) B + B Λ(t) + D K(t)

  2 (R m ) a.s. for t ∈ [t 0 , T ]. From (B.4) and (B.7), we then have for all π ∈ Π,E α∼π [D α t ] = E α∼π (X t -Xt ) K(t) -βK(t) + Q + K(t)B + B K(t) + D K(t)D (X t -Xt ) D Xt + 2 Ẏ (t) -βY (t) + M + B Y (t) + D K(t)γ X t + Ṙ(t) -βR(t) + γ K(t)γ + C φt (p t ) ≥ E α∼π (X t -Xt ) K(t) -βK(t) + Q + K(t)B + B K(t) + D K(t)D -U (t) S(t) -1 U (t) (X t -Xt ) + X t Λ(t) -βΛ(t) + Q + Λ(t) B + B Λ(t) + D K(t) D -Û (t) S(t) -1 Û (t) Xt + 2 Ẏ (t) -βY (t) + M + B Y (t) + D K(t)γ -O(t) S(t) -1 Û (t) X t+ Ṙ(t) -βR(t) + γ K(t)γ -O(t) S(t) -1 O(t) -

	+ X						
	λm 2	log(2π) -	λ 2	log|	λ 2det(S(t))	|.	(B.8)

t Λ(t) -βΛ(t) + Q + Λ(t) B + B Λ(t) + D K(t)

Left up panel: NN φ θ vs optimal one. Right up panel: NN φ θ 3 vs optimal one. Bottom panel: (left) One realization of the control vs the optimal non-randomised one with λ = 0, and (right) one realization of the cost t → J η (t, Xt, PX t ) , respectively along a state trajectory controlled by the learnt policy and a state trajectory controlled optimally (both using the same realization of the Brownian motion).
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Therefore, by taking (K, Λ, Y, R) solution to (B. [START_REF] Angiuli | Unified reinforcement Q-learning for mean field game and control problems[END_REF], we see that the r.h.s. of (B.8) vanishes, which means that for all π ∈ Π, E α∼π [D α t ] ≥ 0. Moreover, from (B.6), the equality in (B.8) holds true for the choice of π * ∈ Π as defined in (B.2), and thus

From (B.3), this means that the function t → E α∼π [S α t ] is nondecreasing on [t 0 , T ] for any π ∈ Π, and constant on [t 0 , T ] for π = π * . By definition of S α , V π , and noting that w(T, x, x) = ḡ(x, x) from the terminal condition on (K, Λ, Y, R), it follows that

for any π ∈ Π, with equality in (B.9) for π = π * . We conclude that

= (x 0 -μ0 ) K(t 0 )(x 0 -μ0 ) + μ0 Λ(t 0 ) μ0 + 2Y (t 0 ) x 0 + R(t 0 ).