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Introduction

Life expectancy is constantly increasing in populations of industrialized countries. In France, the proportion of people over 60-years old represents 20% of the total population at the present time. This rate is expected to reach 35% by 2050 [START_REF] Robert-Bobée | Projections de population pour la France métropolitaine à l'horizon 2050[END_REF]. Well-being and autonomy of seniors are major concerns for these societies. Falls represent 84% of daily living accidents occurring for people over 65-years old [START_REF] Ricard | Plusieurs centaines de milliers de chutes chez les personnes âgées chaque année en France[END_REF] and their consequences worsen as the time before being cared increases. The death rate within 6 months is 50% for people who stayed on the floor more than one hour after falling [START_REF] Wild | How dangerous are falls in old people at home?[END_REF]. The need for an efficient solution to detect falls is then crucial.

Fall alert systems commonly used are emergency buttons. A victim must press on a button to trigger an alarm. Such systems are called active systems because it has to be activated by the victim himself.

They are totally useless if the victim is unable to press on the button for various reasons such as loss of consciousness or pain. Many types of detectors were developed with the aim of automatically detecting falls, without human intervention. These devices can be divided into three categories: wearable devices, image processing and ambient sensors [START_REF] Mubashir | A survey on fall detection: Principles and approaches[END_REF]. Wearable devices are directly worn by the users. They consist of accelerometers attached to one or several parts of the body [START_REF] Yang | A review of accelerometry-based wearable motion detectors for physical activity monitoring[END_REF]. A fall generates a strong acceleration which makes it detectable and then separable from other daily living activities (DAL) [START_REF] Lindemann | Evaluation of a fall detector based on accelerometers: A pilot study[END_REF][START_REF] Li | Accurate, fast fall detection using gyroscopes and accelerometer-derived posture information[END_REF]. However these devices are prone to a high rate of false detection alarms [START_REF] Yu | Approaches and principles of fall detection for elderly and patient[END_REF], which represents an obstacle to their industrial deployment. Another common drawback of wearable devices is the high solicitation of the users since they always have to remind to wear them. A consequence is that wearable devices are felt very intrusive and thus strengthen the feeling of loss of independence [START_REF] Brownsell | Fall detectors : do they work or reduce the fear of falling?[END_REF]. To avoid these disadvantages, other systems directly integrated in the environment of the users were proposed. The aim of these systems is to disturb as less as possible the user's daily life. Compared to wearable devices, theses systems are efficient in the limited area of the installation [START_REF] Igual | Challenges, issues and trends in fall detection systems[END_REF]. One method consists in using cameras installed in several places of the room to be monitored [START_REF] Nait-Charif | Activity summarisation and fall detection in a supportive home environment[END_REF]. A fall then can be recognized by using appropriate image processing techniques. However, video based solutions are difficult to implement in real life conditions. In fact a great number of cameras are required in order to limit the problem of occlusions caused by objects such as chairs or sofas [START_REF] Rougier | Robust video surveillance for fall detection based on human shape deformation[END_REF]. Algorithms are then very complex. Moreover, this solution remains a trouble for user's privacy since the presence of cameras increases the feeling of being observed [START_REF] Sixsmith | A smart sensor to detect the falls of the elderly[END_REF][START_REF] Fleck | Smart camera based monitoring system and its application to assisted living[END_REF]. Thus, systems which are fully invisible to the users are then preferable. Most of these ambient systems contain pressure sensors inserted under the floor [START_REF] Tzeng | Design of fall detection system with floor pressure and infrared image[END_REF]. Pressure sensors are cost efficient. However they present the disadvantage of being deformable and are then subject to mechanical wear. Other solutions were proposed such as: (i) motion detection by using Doppler Radar Sensor installed in floor or ceiling [START_REF] Liang Liu | Doppler radar sensor positioning in a fall detection system[END_REF], (ii) vibration detection caused by a human above the floor with piezoelectric sensors coupled to the floor [START_REF] Alwan | A smart and passive floor-vibration based fall detector for elderly[END_REF][START_REF] Litvak | Fall detection of elderly through floor vibrations and sound[END_REF]. These systems were tested only in laboratory conditions so far. Their implementation in real environments must be adapted to the architecture of each instrumented room [START_REF] Alwan | A smart and passive floor-vibration based fall detector for elderly[END_REF]. The development of these systems at an industrial level seems difficult for this reason.

Capacitive sensors installed under the floor is another non intrusive solution to detect human activity above the floor [START_REF] Valtonen | Capacitive indoor positioning and contact sensing for activity recognition in smart homes[END_REF][START_REF] Valtonen | TileTrack: Capacitive human tracking using floor tiles[END_REF]. Capacitive sensing is the measurement of the influence of the electric field generated by an electrode on which a voltage is applied [START_REF] Smith | Electric Field Imaging[END_REF]. As this electric field is modified by a human presence close to the sensor [START_REF] Mazzeo | Paper-based, capacitive touch pads[END_REF], it is then possible to detect a human presence above the floor and follow its activity in order to detect abnormal situations such as a fall. Unlike pressure sensors, capacitive sensors have no deformable parts. They are then much more robust and adapted for being used as floor sensors. Several fall detection systems based on this method were proposed in the last few years. In [START_REF] Rimminen | Human tracking using near field imaging[END_REF], capacitive sensors are made up of aluminum sheets (36 cm × 30 cm). In [START_REF] Steinhage | Monitoring movement behavior by means of a large area proximity sensor array in the floor[END_REF], the capacitive sensors consist in a floor mat containing conductive textile layers acting as the sensor electrodes. Due to their architecture, maintenance is expensive and time-consuming for both systems. In fact, either electronic cards or electrical connections between sensors and cards are placed directly under the floor covering. These devices are therefore fragile and can be damaged. In [START_REF] Rimminen | Detection of human movement by near field imaging : development of a novel method and applications[END_REF], it has been reported that oxidation of sensor connectors is at the origin of many false alarms. In such cases, floor covering has to be removed in order to replace the damaged components.

To avoid these drawbacks, the capacitive system presented in this paper has all its electrical parts and contacts out of the floor. Two main experimental setups are presented. The fisrt system (system 1) is an instrumented room of about 15 m², equipped with sensors directly installed in the floor. The second system (system 2) is a transportable demonstrator which size is 2.50 m × 1 m. In section 3 the systems and experimental setups are described. In section 4, data acquisition and classification methods used for fall recognition are presented. Results are discussed in section 5 before conclusion.

3 Capacitive measurement system description

Sensors

The system for detecting human falls occurring above the floor is formed by capacitive sensors integrated in the floor. Thus, the measurement system is fully invisible and respect user's privacy. Moreover, all damageable parts, i.e. electronic cards and electrical connections, are placed outside the floor in order to make maintenance operations of these devices easier.

Our capacitive sensors are made up of coated electrical wires. Coating protects sensors from corrosion, thus they can be directly integrated in the self leveling compound. Such an instrumented floor is then very close to a traditional floor. This means that the system disturbs as less as possible common maintenance operations, such as the replacement of the floor covering. It represents an important issue for health institutions (hospitals, retirement homes). Indeed, regular floor covering replacements every few years are mandatory for these types of institutions.

Geometry of sensors is designed to allow the measurement of various capacitances which confers different sensitivity maps and thus different signals for the same event. One sensor includes two nearby electrodes, one enclosing the other, and a third distant electrode. An illustration of one sensor is given by Figure 1. If C ij is the capacitance between electrodes i and j, the capacitive tensor [START_REF] Lucas | Analytical capacitive sensor sensitivity distribution and applications[END_REF] of the sensor illsutrated in Figure 1 is
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with C ii = j =i C ij + C iG where C iG represents capacitance between electrode i and the ground. The ground is defined as every conductor or dielectric with high permittivity and high dimensions, whose electric potential is constant within the time of acquisition. The concrete floor for instance can be considered as an electrical ground in a common room [START_REF] Jonassen | Human body capacitance: static or dynamic concept?[END_REF]. For measuring the capacitive tensor, a voltage is first applied on electrode 1 while the two remaining electrodes are grounded. Then the amount of charges induced by the electric field is measured on each sensor electrode. Those amount of charges are directly proportional to capacitances. This operation is repeated three times by applying the voltage alternatively to each of the sensor electrode. Considering [START_REF] Robert-Bobée | Projections de population pour la France métropolitaine à l'horizon 2050[END_REF], two different types of capacitances are measured: self capacitances and mutual capacitances. Mutual capacitance C ij (i = j) represents the capacitance between electrodes i and j. It is obtained when measuring the amount of charges on electrode j, when i is held to a voltage while all the other electrodes are grounded. Self capacitance C ii is obtained when measuring the amount of charges on electrode i, when i is polarized while all the other electrodes are grounded. It is thus the sum of all capacitors attached to electrode i. Contrary to mutual capacitances, C ii contains thus an information on the electrode ground coupling.

Measurement unit

An electronic system dedicated to the measurement of the amount of charges on each electrode of the sensor has been developed. Charge-transfer technique is used in order to obtain a high sensitivity [START_REF] Huang | Design of sensor electronics for electrical capacitance tomography[END_REF][START_REF] Hu | Further analysis of charge/discharge capacitance measuring circuit used with tomography sensors[END_REF].

Figure 2 shows a schematic of the circuit. The circuit contains a compensating system with a known capacitance C 0 . Switches J 1 open and close alternatively at a frequency f . When switches J 1 are closed, the capacitance C ij is loaded to voltage V . At the same time C 0 is loaded to negative voltage V 0 . Depending on the values of C 0 and V 0 , the charges loading C ij and C 0 balance each other. It is thus possible to detect very small variation of C ij with respect to C 0 . The resulting voltages measured at output of integrators are

V s1 = -I 12 R ′ = -2f R ′ (C ij V -C 0 V 0 ) and V s2 = -I 34 R ′ = -2f R ′ (C 0 V 0 -C ij V ). (2) 
The value of C 0 and V 0 are chosen during an automatic calibration phase. Thereby, a change of C ij , typically due to a human presence for instance, will induce a variation of charges flowing to integrators V s1 and V s2 . This compensating system is a crucial element of the circuit, as it allows to ensure a high sensitivity without any saturation of electronics. In order to evaluate the ability of the system to detect the presence of a person nearby the sensors, the signal to noise ratio has been evaluated. During this test, a person is standing up on the floor onto one sensor. Sensors are 1 cm underneath the top of floor, and the person was wearing sneakers with 2 cm thick soles. The person's feet are then 3 cm above the sensors. Signal variations measured on self capacitance C 11 are reported in Figure 3. During acquisitions 1 to 20, the floor is empty. The person stands up onto the sensor from acquisitions 21 to 40. Signal to noise ratio is

V V0 - - + + J1 J1 J1 J2 J2 J2 Cij C0 C ′ C ′ R ′ R ′ Vs2 Vs2 I34 I12
SN R = signal RM S noise , (3) 
where signal corresponds to the average variation of the measured signal due to the presence of the person, and where the noise is

RM S noise = 1 n n i=1 x i - 1 n n i=1 x i 2 , (4) 
with n the number of acquisitions and x i the value of the acquisition i.

RM S noise is 0.07 V (0.05 pF) for acquisitions 1 to 20. The average value of the signal when the floor is empty is 1.73 V, and it is 2.36 V when the person is present on the floor. So one obtains signal = 0.63 V (0.44 pF). Considering (3), the signal to noise ratio is about 9. property makes the measurement system more convenient and economical valuable compared to systems presented in [START_REF] Rimminen | Detection of human movement by near field imaging : development of a novel method and applications[END_REF][START_REF] Steinhage | Monitoring movement behavior by means of a large area proximity sensor array in the floor[END_REF]. Five sensors have been installed in the room.

System 1: Instrumented room

A variant of system 1 (system 1'), has been made in the same room with a distance between sensors of 25 cm instead of 40 cm.

System 2: Demonstrator

A transportable system equipped with the same type of capacitive sensors has been made. Three sensors, 25 cm from each other are integrated in a self leveling compound poured on a plasterboard. Dimensions of the system is 2.50 m × 1 m. The system is reinforced by a wood support to reduce bending as much as possible during transportation. Thereby the capacitive floor is about 10 cm above the room floor. A photography of the system is shown in Figure 5: Photography of the transportable system (system No. 2).

Typical measurements

The capacitive tensor of a sensor with N electrodes includes N (N -1)/2 independent capacitances. Since the ground is considered as an electrode, the measurement system proposed is formed by N = 4 electrodes for each sensor. Thus, we can measure at most 6 independent capacitances for each sensor. Figure 6 shows the variations of the measured capacitances for system 1 in response to a human presence. Each spike on the curves corresponds to a human presence above the sensor. One can see that C 23 is almost insensitive to human presence and remains constant. Indeed, C 23 is the capacitance between electrodes 2 and 3, when 2 is polarized and both electrodes 1 and 3 are grounded. In this configuration electrode 1 acts as a shield that shunts electric field lines between electrodes 1 and 2. As a result C 23 does not vary much. Finally there are 5 relevant capacitances. To evaluate the ability of the system to detect a fall, measurements were performed with a person in different postures. Figure 7 shows histograms of capacitance changes measured with the system 1 using the same person in two different postures: Standing up (55 measurements) and Lying down straight on the back (47 measurements). The person is 1.8-m tall and is wearing sneakers whose soles are about 2 cm thick.

The histograms suggest that the information provided by the measurements allows a good separability of the postures. In particular, for capacitances C 11 and C 12 , the two postures are fully separated. 

Influence of the environment

The analysis of measurements obtained in the instrumented room (system 1) and with the demonstrator (system 2) show that the two systems have different behaviors.

A typical example can be observed on capacitance C 13 . Figure 8 shows histograms of capacitance changes for Lying down on the back measurements and Standing up measurements, obtained with system 1 (left) and with system 2 (right). Two main differences can be seen between the two systems. First, the amplitude of capacitance changes is much higher with the system 2. Variations range from -0.8 V up to 0.4 V with system 2, whereas they range from -0.05 V up to 0.15 V with system 1. This difference is mainly due to stronger ground couplings in system 1, as sensors are directly integrated inside the room floor. An important part of electric field lines between electrodes 1 and 3 is then shunted to ground.

Inversely in system 2, sensors are about 10 cm above the room floor, so much more electric field lines are generated between the electrodes. The second difference between the two systems concerns the distribution of Lying down on the back measurements and Standing up measurements. In system 2, the direction of the capacitance variation is clearly different in both situations: C 13 increases for Standing up measurements and it decreases for Lying down on the back measurements. This means that the polarity of C 13 variation is a crucial information to detect a person lying down on the floor. In system 1 the change of C 13 is very different, since there are negative and positive C 13 variations for both Lying down on the back measurements and Standing up measurements. These differences are explained by considering the capacitive couplings occurring in the system. When O is entering the vicinity of electrodes, two phenomena occur: (i) a part of the electric field lines between 1 and 3 is shunted by O, as a consequence C 13 decreases (shunt mode), (ii) coupling between O and electrodes is stronger, as a consequence C 13 increases (transmit mode). Thus, the polarity of C 13 variation depends on the relative importance of these two phenomena [START_REF] Paradiso | Musical applications of electric field sensing[END_REF]. In the system . 2, the shunt mode is always dominant for a person standing up. Conversely, the transmit mode is dominant for a person lying down. Consequently, the discrimination between these two situations is very efficient for system 2. Multiple parameters have an influence on capacitive couplings shown in Figure 9: distance between electrodes, conditions of ground coupling of the electrodes and the object, and distance between object and electrodes. In the case of the two systems studied, two main differences in their structures can explain the great differences observed. The first difference concerns ground couplings. In system 1, sensors are integrated directly inside the floor. Then ground couplings of electrodes and objects are much higher than in system 2, which is elevated few centimeters above the floor. The second difference concerns the distance between sensors. The distance between each sensor is respectively 40 cm and 25 cm for systems 1 and 2. As capacitive couplings exist between two distant sensors, this distance has an important role in the signal behavior.

The comparison between systems 1 and 1' gives information about the influence of the distance between sensors on the signal for the same ground coupling. Figure 10 shows that the behavior of C 13 strongly depends of the distance d between sensors. When d = 25 cm, the behavior of C 13 is closer to the one observed in system 2 (see Figure 8). This means in a general way, C 13 tends to increase for a person standing up and to decrease for a person lying down. However the discrimination is less clear than for system 2. Then a lower ground coupling improves again strongly the differentiation.All conditions are then favorable in system 2 for a good differentiation between a person standing up and Lying down. This is due to: (i) the elevation of the sensors with regard to the floor, which decreases all couplings with ground, (ii) a distance between sensors d = 25 cm, which improves the discrimination between situations.

Fall detection methods

The system must be able to recognize falls of people automatically. Classification techniques are used to separate measured signals and detect that someone fell on the floor.

Statistical classification

Statistical classification is used to sort objects into different categories called classes. An object i is defined as a vector of variables x i . In the case of our study, one coefficient of the measured capacitive tensor this database has been satisfying enough for using the system 2 as a demonstrator as explained in section 3.4.

Data separation

Two models of classifiers have been used for separating Falls and Non-falls situations: k-nearest neighbors method and least square method.

4.3.1 K-nearest-neighbor method (k-nn)

For an object to sort, k-nn method attributes the class which is the most represented amongst its k-nearest neighbors stored in the database. The euclidean distance is used to define the distance between an object and its neighbors. Two parameters have to be estimated with this method: the number k of the nearest neighbors and the number of variables to consider.

Least square method

Least square method is a linear classification method. This means that the defined classifier is under the form f (x i ,θ)=x i θ. A linear method is advantageous because the model is simple so it requires a small amount of calculation time. It facilitates real time applications such as fall detection. Least square method defines the vector θ which minimizes the least square error

E(θ) = 1 N (Xθ -Y) T (Xθ -Y)
where N is the number of learning examples X is the learning matrix (N rows × M columns with M the number of variables)

Y is the vector containing the label of each example (i.e. the value arbitrarily attributed to the corresponding class)

Variable selection

In order to proceed to variable selection, Gram-Schmidt process has been applied to the databases. This method selects the variable which is the most correlated with the vector of labels. The most relevant variable is the one which maximizes the following value:

cos 2 (x k ,y p ) = ( T x k y p ) 2 ( T x k x k )(y p y p )
where x k is the vector containing the N examples of the k-th variable and y p is the vector of labels.

Then the process is repeated with the remaining variables, in the susbspace orthogonal to the last selected variable.

Results and discussion

Each method presented above has been used for building up classifiers from the collected databases. For system 1 with the k-nn method, using only two variables gives a validation rate very close to the one obtained when using all variables. Using only one variable reduces however significantly the validation rate from 90.4% to 77.7%. By comparison, using all of the variables instead of two improves only the results by about 1%. For least square method, the difference between one, two or all variables is much smaller, about 2.5%. In the case of system 1 the most relevant variable for separating classes Falls and Non-Falls is the self capacitance C 11 . This capacitance depends directly on the area of the electrode 1 which is covered by a person. The second one is the mutual capacitance C 13 between the two distant electrodes 1 and 3.

The validation is 100% with system 1' with both classification methods. Having better results with system 1' was expected as we noticed in Figure 10 that having a distance of 25 cm instead of 40 cm between each sensor allows a better separation of Falls and Non-Falls situations.

For system 2 the validation is still 100% when using only the most relevant variable. This variable is the capacitance C 13 , selected by Gram-Schmidt process. This confirms that the polarity of C 13 variation is a sufficient relevant information for separating Falls and Non-Falls situations with system 2 (see section 3.6).

Conclusion

This paper presents a new fall detection system based on capacitive sensors integrated in the floor. Maintenance of the system is made easy by having all the electronic parts out of the floor. Databases were acquired on two experimental setups: an instrumented room and a transportable demonstrator. Two main environmental parameters showed significant influence on sensor signals: [START_REF] Robert-Bobée | Projections de population pour la France métropolitaine à l'horizon 2050[END_REF] the distance between sensors and (2) the strength of ground couplings. Appropriate statistical classification techniques were used to sort data. For both systems, validation rates of Falls and Non-Falls situations were better than 92%, by using the k-nearest-neighbor method or the least square method.

Two options are currently studied in order to make the system efficient independently of the environment. The first is by adjusting the geometry of the system, i.e. the distances between electrodes and between sensors. The second consists in doing on-line learning. This way the database is constantly updated and then adapted for each new environment.

The system has to be tested with more cases which are likely to cause false alarms, such as having several persons together in the same room, or cleaning the floor with water. Taking into account dynamical parameters of the signal will surely further improve the separation between Falls and Non-Falls situations.
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 1 Figure 1: Arrangement of the electrodes of a capacitive sensor integrated in the floor.

Figure 2 :

 2 Figure 2: Schematic of the charge-transfer circuit used to measure small variations of C ij .

  Sensors described in section 3.1 have been integrated in a dedicated room which size is 5 m × 3 m. The equipped floor is illustrated in Figure4. It consists in longitudinal sensors separated from each other by 40 cm. This distance corresponds roughly to the width of a human body lying straight down on the floor.

Figure 3 :Figure 4 :

 34 Figure 3 : Signal measured on capacitance C 11 when a person goes on the sensor. The person is above the sensor from acquisition 21 to 40.

Figure 5 .

 5 photography of the system is shown in Figure 5. This system was used as a demonstrator in Bostik's Global Innovation Forum held in Paris (France) in November 2013, and during the Festival of Science held in Elite School of Industrial Physics and Chemistry (ESPCI) in October 2015. It is able to detect and display in real time different situations: (i) the presence or absence of a person on the demonstrator, (ii) the posture of the person, i.e. lying down or standing up, (iii) the movements of the person above the floor.

8 Figure 6 :

 86 Figure 6: Capacitance changes of system 1 in response to a human presence.

Figure 7 :

 7 Figure 7: Histograms of capacitance changes for system 1 with a person lying down on the back (in blue) or standing up (in red).

Figure 8 :

 8 Figure 8: Histograms of capacitance changes measured on C 13 for a person lying down on the back or standing up with the system 1 (left) and with the system 2 (right).

Figure 9

 9 Figure 9 shows capacitive couplings to be taken into account when an object O is coming close to electrodes 1 and 3. Represented couplings are: • C 1O , C 3O : couplings between each electrode and the object • C 1T , C 3T : couplings between each electrode and the ground • C OT : coupling between the object and the ground • C ′ 13 : coupling between the electrodes

Figure 9 :

 9 Figure 9: Schematic of capacitive couplings in presence of a nearby object.

Figure 10 :

 10 Figure10: Histograms of capacitance changes measured on C13 for a person lying down on the back and standing up with system 1 (left) and with system 1' (right).

  corresponds to one variable. Each one of the studied postures corresponds to one class. Classification methods are made out of mathematical functions called classifiers, which sort objects to the predefined classes. A classifier is build from a set of measurements containing several objects of each class. In our study the class of each object of the database is known during the building of the classifier. This type of classification is called supervised classification. The classifier consists in defining the function f (x i ,θ) and the set of parameters θ, which give an optimal separation between classes. These parameters are obtained by validation techniques. The simpliest way is to split the database into two subsets: a learning set and a validation set. Values of θ are then arbitrarily fixed. A classifier is defined during the learning phase, by using the objects contained in the learning set. Then this classifier is tested with all the objects of the validation set. The validation rate is the percentage of objects correctly sorted by the classifier during the validation phase. This process is repeated several times with new values of θ. Finally we keep the vector θ which gives the best validation rate. This method is strongly dependent on the composition of the training and validation sets. In fact the validation rate changes if the subsets are modified.

Table 2

 2 shows the validation rate for the separation of classes Falls and Non-Falls for both systems.All of the 5 measured capacitances were used for classification. Results were obtained by using cross validation with 3 folds.

		System No. 1:	System No. 2:
		Validation rate	Validation rate
		(Falls Vs	(Lying down on
		Non-Falls)	the back Vs
			Standing up with
			shoes)
	k-nearest neighbors 91.5% (3 nearest	100% (1 nearest
		neighbors)	neighbor)
	least square	92.6%	100%

Table 2 :

 2 Validation rate by using all of the five measured variables For system 1, the best validation rate is 92.6%, and is obtained with least square method. Results

		System 1: Validation rate	System 2: Validation rate	System 1': Validation rate
		(Falls Vs Non-Falls)	(Lying down on the back Vs	(Lying down on the back Vs
				Standing up with shoes)	Standing up with shoes)
		1 variable	2 variables	1 variable	2 variables	1 variable	2 variables
	K-NN 77.7% (K=3) 90.4% (K=3)	100% (K=1) 100% (K=1)	100% (K=1) 100% (K=1)
	LS	83.5%	89.9%	100%	100%	100%	100%

are much better on system . 2: the validation rate is 100% with each method for separating the two classes. System 2 is expected to give better results for two reasons: (i) the database comprises only the two situations which are easiest to separate (Lying down on the back Vs Standing up with shoes), (ii) the environment of the system No. 2 is more favorable for an efficient separation of signals, as explained in section 3.6. Despite the small size of the database, system 2 has shown very satisfying performances over a broad range of situations. Situations not contained in the database such as Standing up with socks or Several persons standing up at the same time were recognized as Non-Falls situations as well.

Table

3

shows validation rates by using only the most relevant variable selected by Gram-Schmidt process, then by adding the second one.

Table 3 :

 3 Validation rate by using only the most or the two most relevant variables
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Cross-validation is a validation technique in which each object of the database is used during both training and validation phases. The database is divided into L sets called folds. The learning and validation processes are repeated L times, using only 1 fold for the validation phase and the L -1 remaining folds for the learning phase. The validation fold changes each time. The global validation rate is the average of the validation rates of each iteration.

One set of measurements has been built up for each of the experimental setups presented in paragraphs 3.3 and 3.4. shoes while grounded have been chosen to simulate a human in contact with a grounded metallic object (such as a bed in hospitals), which has a strong influence on capacitive measurements. The database is composed of 510 measurements in total. Details of measurements are shown in Table 1.

Data generation

For system 1', the database is composed of 36 situations in the posture Standing up with shoes, and 15 situations in the posture Lying down on the back. Only capacitances corresponding to the polarization of electrode 

System 2: transportable demonstrator

The database built up with system 2 contains two different postures: Lying down on the back and Standing up with shoes. Each situation contains 50 examples. This set of measurements is much reduced compared to the one collected with system 1. However it has been very efficient for defining a reliable classifier. So