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In this present work we derive a very interesting quadruple integral containing the logarithmic and quotient rational with square root functions over the interval 0 ≤ x < ∞, 0 ≤ y < ∞, 0 ≤ z < ∞, 0 ≤ t < ∞. Special cases are derived in terms of special functions and fundamental constants. All the results in this work are new.

Significance Statement

In 1990 Carlite [5] proposed an interesting definite quadruple integral listed on page 273 problem 67-20, soliciting solutions from fellow scientists. In this work we extend the original integral proposed by Carlite by including the logarithmic function and deriving a new integral transform in terms of the Incomplete Gamma function. This new transform will then be used to derive other quadruple definite integrals. We are able to derive one of the integral formulae stated in the work by Carlite.

Introduction

In this paper we derive the definite quadruple integral given by (2.1)

1 0 1 0 1 0 1 0 t -m x m-1 y 1-m z m log k axz ty √ 1 -t 2 √ 1 -x 2 1 -y 2 √ 1 -z 2 dxdydzdt
where the parameters k, a, m are general complex numbers and 0 < Re(m) < 1. This definite integral will be used to derive special cases in terms of special functions and fundamental constants. The derivations follow the method used by us in [1]. This method involves using a form of the generalized Cauchy's integral formula given by (2.2)

y k Γ(k + 1) = 1 2πi C
e wy w k+1 dw. where C is in general an open contour in the complex plane where the bilinear concomitant has the same value at the end points of the contour. We then multiply both sides by a function of x, y, z and t, then take a definite quadruple integral of both sides. This yields a definite integral in terms of a contour integral. Then we multiply both sides of Equation (2.2) by another function of y and take the infinite sum of both sides such that the contour integral of both equations are the same.

Definite Integral of the Contour Integral

We use the method in [1]. The variable of integration in the contour integral is r = w + m. The cut and contour are in the first quadrant of the complex rplane. The cut approaches the origin from the interior of the first quadrant and the contour goes round the origin with zero radius and is on opposite sides of the cut. Using a generalization of Cauchy's integral formula we form the quadruple integral by replacing y by log axz ty and multiplying by

t -m x m-1 y 1-m z m √ 1 -t 2 √ 1 -x 2 1 -y 2 √ 1 -z 2 then taking the definite integral with respect to x ∈ [0, 1], y ∈ [0, 1], z ∈ [0, 1] and t ∈ [0, 1] to obtain (3.1) 1 Γ(k + 1) 1 0 1 0 1 0 1 0 t -m x m-1 y 1-m z m log k axz ty √ 1 -t 2 √ 1 -x 2 1 -y 2 √ 1 -z 2 dxdydzdt = 1 2πi 1 0 1 0 1 0 1 0 C a w w -k-1 t -m-w x m+w-1 y -m-w+1 z m+w √ 1 -t 2 √ 1 -x 2 1 -y 2 √ 1 -z 2 dwdxdydzdt = 1 2πi C 1 0 1 0 1 0 1 0 a w w -k-1 t -m-w x m+w-1 y -m-w+1 z m+w √ 1 -t 2 √ 1 -x 2 1 -y 2 √ 1 -z 2 dxdydzdtdw = - 1 2πi C π 2 a w w -k-1 4(m + w -1)(m + w) dw
from equation (3.226.1) in [START_REF] Gradshteyn | Tables of Integrals, Series and Products[END_REF] and using the reflection formula (8.334.3) in [START_REF] Gradshteyn | Tables of Integrals, Series and Products[END_REF] for the Gamma function. We are able to switch the order of integration over x, y, z, t, u and v using Fubini's theorem for multiple integrals see page 178 in [START_REF] Gelca | Putnam and Beyond[END_REF], since the integrand is of bounded measure over the space

C × [0, 1] × [0, 1] × [0, 1] × [0, 1].

The Incomplete Gamma Function

The incomplete gamma functions equation (8.4.13) in [START_REF]NIST Digital Library of Mathematical Functions[END_REF], γ(a, z) and Γ(a, z), are defined by

(4.1) γ(a, z) = z 0 t a-1 e -t dt and (4.2) Γ(a, z) = ∞ z t a-1 e -t dt
where Re(a) > 0. The incomplete gamma function has a recurrence relation given by

(4.3) γ(a, z) + Γ(a, z) = Γ(a)
where a ̸ = 0, -1, -2, ... The incomplete gamma function is continued analytically by (4.4) γ(a, ze 2mπi ) = e 2πmia γ(a, z) and

(4.5) Γ(a, ze 2mπi ) = e 2πmia Γ(a, z) + (1 -e 2πmia )Γ(a)
where m ∈ Z, γ * (a, z) = z -a Γ(a) γ(a, z) is entire in z and a. When z ̸ = 0, Γ(a, z) is an entire function of a and γ(a, z) is meromorphic with simple poles at a = -n for n = 0, 1, 2, ... with residue (-1) n n! . These definitions are listed in Section 8.2(i) and (ii) in [START_REF]NIST Digital Library of Mathematical Functions[END_REF]. The incomplete gamma functions are particular cases of the more general hypergeometric and Meijer G functions see section (5.6) and equation (6.9.2) in [?]. Some Meijer G representations we will use in this work are given by; (2.4) and (2.6a) in [START_REF] Milgram | The Generalized Integro-Exponential Function[END_REF]. We will also use the derivative notation given by;

(4.6) Γ(a, z) = Γ(a) -G 1,1 1,2 z 1 a, 0 and (4.7) Γ(a, z) = G 2,0 1,2 z 1 0, a from equations
(4.8) ∂Γ(a, z) ∂a = Γ(a, z) log(z) + G 3,0 2,3 z
1, 1 0, 0, a from equations (2.19a) in [START_REF] Milgram | The Generalized Integro-Exponential Function[END_REF], (9.31.3) in [START_REF] Gradshteyn | Tables of Integrals, Series and Products[END_REF] and equations (5.11.1), (6.2.11.1) and (6.2.11.2) in [START_REF] Yudell | The Special Functions and Their Approximations[END_REF], and (6.36) in [START_REF] Chaudhry | On a class of incomplete gamma functions with applications[END_REF].

Incomplete gamma function in terms of the contour integral

In this section, we will once again use Cauchy's generalized integral formula, equation (2.2), and take the infinite integral to derive equivalent sum representations for the contour integrals. We proceed using equation (2.2) and replace y by log(a) + y and multiply both sides by e (m-1)y and simplify. Next, multiply both sides by 1 4 π 2 ae -my then take the definite integral over y ∈ [0, ∞) and simplify in terms of the incomplete gamma function to obtain (5.1)

- 1 4(m -1)k! π 2 a 1-m log k (a)(-((m -1) log(a))) -k (Γ(k + 1, log(a) -m log(a)) -kΓ(k)) + (1 -m) -k Γ(k + 1) = - C π 2 a w w -k-1 4(m + w -1) dw 
We repeat this process by replacing m by m + 1 then taking the infinite integral over y ∈ [0, ∞) to get (5.2)

1 4mk! π 2 a -m log k (a)(-m log(a)) -k (Γ(k + 1, log(a) -(m + 1) log(a)) -kΓ(k)) + (-m) -k Γ(k + 1) = 1 2πi C π 2 a w w -k-1 4(m + w) dw
Next we add equations (5.1) and (5.2) then simply to obtain

(5.3) 1 4 π 2 a -m log k+1 (a)(aE -k (log(a) -m log(a)) -E -k (-m log(a))) + Γ(k + 1) a(1 -m) -k-1 + log k (a) log(a)(-m log(a)) -k-1 + a(-((m -1) log(a))) -k m -1 + (-m) -k m = - 1 2πi C π 2 k! a w w -k-1 4(m + w -1)(m + w) dw
from equation (3.382.4) in [START_REF] Gradshteyn | Tables of Integrals, Series and Products[END_REF] where |arg(m)|< π, Re(log(a)) > 0.

Definite Integrals in Terms of the Incomplete gamma function

In this section we will evaluate definite integrals in terms of the Incomplete Theorem 6.1. For all k, a, m ∈ C, 0 < Re(m) < 1 then, (6.1)

1 0 1 0 1 0 1 0 t -m x m-1 y 1-m z m log k axz ty √ 1 -t 2 √ 1 -x 2 1 -y 2 √ 1 -z 2 dxdydzdt = 1 4 π 2 a -m log k+1 (a)(aE -k (log(a) -m log(a)) -E -k (-m log(a))) + Γ(k + 1) a(1 -m) -k-1 + log k (a) log(a)(-m log(a)) -k-1 + a(-((m -1) log(a))) -k m -1 + (-m) -k m
and after simplifying the right-hand side we get (6.2)

1 0 1 0 1 0 1 0 t -m x m-1 y 1-m z m log k axz ty √ 1 -t 2 √ 1 -x 2 1 -y 2 √ 1 -z 2 dxdydzdt = - 1 4 π 2 a -m log k+1 (a)(E -k (-m log(a)) -aE -k (log(a) -m log(a)))
Proof. The right-hand sides of relations (3.1) and ( 5.3) are identical; hence, the left-hand sides of the same are identical too. Simplifying with the Gamma function yields the desired conclusion. □ Example 6.2. The degenerate case.

(6.3)

1 0 1 0 1 0 1 0 t -m x m-1 y 1-m z m √ 1 -t 2 √ 1 -x 2 1 -y 2 √ 1 -z 2 dxdydzdt = π 2 4m -4m 2
Proof. Use Equation (6.2) and set k = 0 and simplify using entry (2) in Table below (64:12:7) in [START_REF] Oldham | An Atlas of Functions: With Equator, the Atlas Function Calculator[END_REF]. □ Example 6.3.

(6.4)

1 0 1 0 1 0 1 0 √ y √ z √ t √ 1 -t 2 √ x √ 1 -x 2 1 -y 2 √ 1 -z 2 log exz ty dxdydzdt = π 2 eE 1 1 2 -E 1 -1 2 4 √ e
Proof. Use equation (6.2) and set k = -1, a = e, m = 1/2 and simplify. □ Example

1 0 1 0 1 0 1 0 √ y √ z √ t √ 1 -t 2 √ x √ 1 -x 2 1 -y 2 √ 1 -z 2 log -xz ty dxdydzdt = - 1 2 iπ 2 Ci π 6.4. (6.5) 
Proof. Use equation (6.2) and set k = -1, a = -1, m = 1/2 and simplify. □ Example 6.5.

(6.6)

1 0 1 0 1 0 1 0 t -m x m-1 y 1-m z m a + log xz ty k √ 1 -t 2 √ 1 -x 2 1 -y 2 √ 1 -z 2 dxdydzdt = - 1 4 π 2 a k+1 e -am (E -k (-am) -e a E -k (a -am))
Proof. Use equation (6.2) and replace a → e a and simplify. □ Example 6.6. (6.7)

1 0 1 0 1 0 1 0 √ y √ z √ t √ 1 -t 2 √ x √ 1 -x 2 1 -y 2 √ 1 -z 2 log xz ty + iπ 2 dxdydzdt = - iπ 2 2Ci π 4 -2Si π 4 + π 4 √ 2 
Proof. Use equation (6.6) and replace k = -1, a = πi/2, m = 1/2 and simplify. □ Example 6.7. (6.8)

1 0 1 0 1 0 1 0 √ y √ z √ t √ 1 -t 2 √ x √ 1 -x 2 1 -y 2 √ 1 -z 2 log xz ty + 2iπ dxdydzdt = 1 4 iπ 2 (π -2Si(π))
Proof. Use equation (6.6) and replace k = -1, a = 2πi, m = 1/2 and simplify.

□

Example 6.8. (6.9)

1 0 1 0 1 0 1 0 √ y √ z √ t √ 1 -t 2 √ x √ 1 -x 2 1 -y 2 √ 1 -z 2 log xz ty + iπ 3 dxdydzdt = - 1 16 iπ πCi π 2 - 2 
Proof. Use equation (6.6) and replace k = -3, a = πi, m = 1/2 and simplify.

□

Example 6.9. (6.10)

1 0 1 0 1 0 1 0 t -m x m-1 y 1-m z m √ 1 -t 2 √ 1 -x 2 1 -y 2 √ 1 -z 2 π 2 a 2 + log 2 xz ty dxdydzdt = - 1 8a iπe -iπam -e iπa E 1 (-ia(m -1)π) + E 1 (-iamπ) +e 2iπam e -iπa E 1 (ia(m -1)π) -E 1 (iamπ)
Proof. Use equation (6.6) and replace k = -1, a = aπi then form a second equation by replacing a → -a and take their difference. □ Example 6.10. (6.11)

1 0 1 0 1 0 1 0 √ y √ z √ t √ 1 -t 2 √ x √ 1 -x 2 1 -y 2 √ 1 -z 2 log 2 xz ty + 4π 2 dxdydzdt = - 1 8 π(π -2Si(π))
Proof. Use equation (6.10) and set a = 2, m = 1/2 and simplify. □ Example 6.11. (6.12)

1 0 1 0 1 0 1 0 √ y √ z √ t √ 1 -t 2 √ x √ 1 -x 2 1 -y 2 √ 1 -z 2 log 2 xz ty + π 2 dxdydzdt = πCi π 2 2 
Proof. Use equation (6.10) and set a = 1, m = 1/2 and simplify. □ Example 6.12. (6.13)

1 0 1 0 1 0 1 0 √ y √ z √ t √ 1 -t 2 √ x √ 1 -x 2 1 -y 2 √ 1 -z 2 log xz ty + iπ 3/2 dxdydzdt = 1 4 4 √ -1π 3/2 E 3 2 - iπ 2 + E 3 2 iπ 2 
Proof. Use equation ( 6 Proof. Use equation (6.6) take the first partial derivative with respect to k, a and set k = 1/2, a = πi, m = 1/2 and simplify. □

Conclusion

In this paper, we have presented a method for deriving a new quadruple definite integral transform along with some interesting definite integrals similar to those published by problem (67-20) in [START_REF] Carlite | Problems in Applied Mathematics Selections from SIAM Review[END_REF], using contour integration. The results presented were numerically verified for both real and imaginary and complex values of the parameters in the integrals using Mathematica by Wolfram.

  gamma function, Sine Si(a), Cosine Ci(a) and the Fresnel C(a) integrals. The formulae used in this section are given in equations (7.11.6), (8.5.1), (8.21.1), (8.21.2), (8.21.10) and (8.21.11) in [4].
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 61 and set k = -3/2, a = πi, m = 1/2 and simplify. -1)(π -2i log(π))