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We present a study of the lower critical field, Hc1, of SrTi1−xNbxO3 as a function of carrier
concentration with the aim of quantifying the superfluid density. At low carrier concentration
(i.e. the underdoped side), superfluid density and the carrier concentration in the normal state
are equal within experimental margin. A significant deviation between the two numbers starts
at optimal doping and gradually increases with doping. The inverse of the penetration depth
and the critical temperature follow parallel evolutions as in the case of cuprate superconductors.
In the overdoped regime, the zero-temperature superfluid density becomes much lower than the
normal-state carrier density before vanishing all together. We show that the density mismatch
and the clean-to-dirty crossover are concomitant. Our results imply that the discrepancy between
normal and superconducting densities is expected whenever the superconducting gap becomes small
enough to put the system in the dirty limit. A quantitative test of the dirty BCS theory is not
straightforward, due to he multiplicity of the bands in superconducting strontium titanate.

I. INTRODUCTION

In many superconductors with an insulating parent,
the critical temperature is a non-monotonic function of
carrier concentration. The very existence of such a su-
perconducting dome raises a fundamental question. How
does the superfluid density, nS , evolve in such a context?
Does it remain equal to the concentration of electrons in
the normal state? Or does it follow the non-monotonic
variation of the critical temperature? In the case of
high-Tc cuprates, the doping dependence of the super-
fluid stiffness[1–3] has remained the subject of an intense
debate, focused on the link between critical temperature
and superfluid stiffness[4–8]. A recent subject of debate
has been the correlation between superfluid density and
critical temperature in overdoped cuprates. It has been
interpreted as incompatible with the standard Bardeen-
CooperSchrieffer (BCS) description[8] or in good agree-
ment with the dirty BCS theory[9]. However, a compar-
ison between the magnitude of nS with the normal-state
carrier concentration, nH was absent in this debate. To
the best of our knowledge, and in spite of abundant ex-
perimental data, such a textbook[10] link has never been
verified in any superconductor.

Among doped semiconductors with a superconduct-
ing ground state[11], SrTiO3[12–16] distinguishes itself.
With only 10−5 electron per formula unit (f.u.), it be-
comes a superconductor and when carrier density exceeds
0.02/f.u., it ceases to be so. The existence of this super-
conducting dome raises many questions: how does super-
conductivity persist in the dilute limit in spite of a hier-
archy inversion between Fermi and Debye temperatures?
Why does it disappear on the overdoped side despite the

steady increase in the electronic density of states? Do
plasmons play a role in binding Cooper pairs in the ex-
treme dilute limit[17, 18]? The vicinity to a ferroelec-
tric instability has motivated theoretical scenarios invok-
ing ferroelectric quantum criticality[19, 20], which have
found support in a number of recent experiments[21, 22].

On the other hand, the case of SrTiO3 offers a unique
opportunity to explore the behavior of superfluid density
when the critical temperature is not a monotonic func-
tion of carrier density. The superconducting instability
occurs in a well-documented Fermi surface in which car-
rier concentration is known with a reliable accuracy[16]
and can be tuned across orders of magnitude. Here, we
present an extensive study of the lower critical field in
SrTi1−xNbxO3 across the superconducting dome with a
focus on the relative magnitude of superfluid and normal-
carrier density. In the underdoped regime, we find that
the superfluid density extracted from the magnitude of
the lower critical field is in agreement with the carrier
concentration in the normal state. Deep in the over-
doped regime, a mismatch between the extracted super-
fluid density and the concentration of normal electrons is
detectable and steadily increases with doping. We show
that this mismatch is concomitant with the passage from
clean to dirty limit. However, we fail to achieve a quan-
titative account in the dirty limit in a single-band pic-
ture. This is most probably because the multiplicity of
the electronic bands significantly affects the nS/nH ratio.
The results have implications beyond the case of stron-
tium titanate. Comparing SrTiO3 with a dense s-wave
superconductor, namely niobium, we find that when a su-
perconductor is clean, the magnitude of the penetration
depth correlates with its carrier density. It is also in-
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structive to compare optimally-doped YBCO with these
two systems. Its reported penetration depth in the ab
plane happens to be where it is expected according to its
carrier density, the effective mass of its carriers and the
BCS theory.

II. EXPERIMENTAL

We measured the lower critical field, Hc1, with Hall
probes realized using a high-mobility AlGaAs/GaAs het-
erostructure with a two-dimensional electron gas (2DEG)
160 nm below the surface. The 2DEG has a mobility of
320.000 cm2/Vs and a carrier density of 2 1011cm2 at
liquid helium temperature. The devices were fabricated
using electron beam lithography and 250V argon ions to
define the mesa. As shown in the inset of Fig.1.a, each
probe is a 5×5 µm2 square, 100 µm spaced from its im-
mediate neighbor.

Such a device can monitor local magnetization at mi-
cron scale and was used before to study vortex avalanches
in superconducting niobium[23]. Similar Hall micro-
probes have been used before to measure Hc1 in heavy-
fermion[24] and in iron-based[25] superconductors.

The Hall resistance of a 2DEG probe yields the local
magnetic field, B :

Rxy,probe = B2/ne (1)

Here n is the carrier density of the electron gas. In our
case with 1/ne ∼ 0.3Ω/G, we could easily resolve very
small variations in magnetic field. We checked that the
1/ne coefficient does not change with temperature below
1 K. To measure Hc1, the sample is laid on the array as
depicted in the inset of Fig.1a. At low field, the sam-
ple is in the Meissner state and the probes below do not
feel any magnetic field, which is screened by the sample.
When the first vortex penetrates the sample, the micro-
probe detects a rise in the measured magnetic field. The
field value at which it occurs gives the penetration field
Hp. The data for one sample at one temperature, pre-
sented in Fig.1a, illustrates how clearly one can detect
Hp. Each isothermal curve was obtained by two sets of
sweeps from zero to positive and from zero to negative
fields. Between the two sweeps the sample was heated
up to a temperature significantly larger than the criti-
cal temperature and back to the measuring temperature.
The intrinsic lower critical field, Hc1 is proportional Hp.
In the case of a platelet, the geometrical factor is:

Hc1 =
1

tanh(
√

0.36t/w)
Hp (2)

Where t and w are respectively the thickness and the
width of the slab [26]. This geometrical factor is given
for each sample in Table I.

We monitored the Hall resistance of several probes in
the proximity of the sample edges. Our data is based

on a probe located below the sample and about 150 µm
distant from the edge. We chose this option to avoid two
phenomena, which can disrupt an accurate determina-
tion of Hc1. Vortices can penetrate by the corner of the
sample below Hp[27]. Therefore, the sample corners are
to be avoided. On the other hand, vortex pinning may
generate a non-uniform distribution of magnetic field[28].
Like a previous study[29], the probe was located close to
the edge in order to avoid this. The sharpness of the in-
crease in Rxy,probe at Hp in our data indicates that these
phenomena do not contaminate our measurements.

A perfect surface may forbid the flux lines to penetrate
the sample and thus artificially increase the penetration
field[30]. Experimentally, this surface barrier effect will
be manifested as a slow increase above Hp and then a
sharp rise when the barrier is overcome[27]. Such effect
is absent from our data (see Fig.1a). Most probably, this
is because the surface roughness of our samples is of the
same order as the penetration depth[31].

Another experimental challenge is the presence of
residual and Earth magnetic field. Their magnitude are
not negligible compared to the lower critical field mea-
sured here. We compensated them by applying a small
magnetic field. As seen in Fig.1, the magnitude of Hp was
identical for the two field polarities. The small asymme-
try for the most overdoped sample quantifies the limits
of our compensation method.

Still using the Hall probes, we were also able to quan-
tify the upper critical field of our samples. At a given
fixed field, Happ, when the temperature is decreased be-
low Tc(Happ) the sample start to expel the magnetic field.
Thus, for a probe under the sample, the signal will be
constant at T > Tc(Happ) and then start to drop in the
superconducting phase. By repeating this measurement
at several fixed fields, we can finally extract the field
dependency of Tc, or the other way around, the temper-
ature dependency of Hc2. In practice, for applied field
larger than 10 Oe, the expelled field is two or three orders
smaller than the applied one. Hence, the drop we want to
observe in Rxy,probe is below the resolution of the range
we have to use to not get a saturation of the signal. We
consequently measured the difference between the signals
of two probes, one under the sample and another outside
of it, in order to cancel the large and uninteresting signal
from the applied field. This method give us directly a
signal proportional to the magnetic susceptibility.

We measured six SrTi1−xNbxO3 samples (Source:
CrysTec GMbH) with labeled niobium concentrations of
0.2, 0.8, 1, 1.4, 2 and 2 %. Two slabs were cut from
each sample: one to measure resistivity and Hall effect
and one for the magnetometry measurement of approxi-
mate size 1 × 1 × 0.5 mm3 (except for one sample with
a thickness of 1 mm). We performed resistivity tem-
perature sweeps from T = 300 to 2 K at zero field and
Hall effect field sweeps from H = 0 to ±12 T at T = 2
K via a Quantum Design Physical Property Measure-
ment System (PPMS). The extracted ρ0 and nH values
are listed in Table I. Similar samples were studied pre-
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FIG. 1. a: Typical field dependence of the Hall resistivity
of a microprobe with a superconducting sample above. The
measured signal, directly proportional to the local magnetic
field, suddenly rises when the first vortex penetrates the sam-
ple. The sharpness indicates the absence of surface-barrier
effects or gradual vortex leak from sample corners[27]. The
inset shows, in false colors, a picture of the array of Hall mi-
croprobes used for this experiment and a scheme of how a
sample is mounted on the array of probes. b: Raw data for
the nH = 2.1 1020 cm−3 sample at different temperatures.

viously using multiple experimental techniques, such as
electrical resistivity[32], thermal conductivity[33], ther-
moelectric response[34] and specific heat[33]. Thanks to
their high mobility, quantum oscillations can be detected
in a moderate magnetic field[16, 34]. Their Nb content
was checked by secondary ion beam mass spectroscopy
(SIMS)[33].

x
nH ρ0(2K) Hc1

Hp(1020cm−3) (µΩ.cm)
0.002 0.41 49 2.32
0.08 1.9 53 2.64

1 2.1 71 2.57
1.4 2.6 109 2.37
2 3.2 56 1.78
2 3.5 45 2.28

TABLE I. Sample characterization: Hall number, low-
temperature resistivity and the geometrical coefficient ex-
tracted from width and thickness in order to extract the lower
critical field using Eq.2.

III. RESULTS

We measured the lower critical field Hc1 of all six sam-
ples and the upper critical field Hc2 of three of them.
These two sets of data allowed us to extract the Ginzburg
parameter, κ. The penetration depth, λ can be com-
puted using κ and Hc1. The penetration depth combined
with effective mass yields superfluid density, which is the
quantity we wish to put under scrutiny.

A. Lower critical field Hc1

For each sample, we performed measurements at differ-
ent temperatures extending from Tbase ∼ 30− 50 mK up
to Tc and above, and extracted Hp(T ). The raw data for
nH = 2.1 1020 cm−3 is shown in Fig.1b. The measured lo-
cal field, B, can be used to extract magnetization through
M = B/µ0−H. In all six samples, magnetization is pro-
portional to -H at low field, sharply drops at Hp and
decreases smoothly afterwards (See Fig.2). Supercon-
ducting slabs with a small Ginzburg parameter typically
behave in this way[35]. For each temperature, Hp is taken
to be the magnetic field at which M deviates significantly
from -H (See Fig.2). The temperature dependence of
±Hp for opposite orientations of magnetic field in the six
samples is shown in the same figure. The small difference
between +Hp and -Hp indicates that residual (including
Earth) magnetic field has been compensated in a satis-
factory manner.

The temperature dependence of Hc1 for all six sam-
ples is exposed in Fig.3. We note that the temperature
dependence of Hc1 is somewhat different among different
samples. The observed variety in the temperature de-
pendence of lower critical field in different samples may
be a consequence of multigap superconductivity, which
is known to produce additional structure in the temper-
ature dependence of Hc1[36]. One may expect that the
curvature of Hc1 is set by the way disorder tunes the con-
tribution of different bands. This variety in the temper-
ature dependence has little effect on the extraction of a
reliable Hc1(0), which is the purpose of the present study.
We note an agreement between our data and what was
reported in an early study on the lower critical field of
two SrTi1−xNbxO3 samples near optimal doping[37]. As
one can see in Fig.3b, the doping dependence of Hc1 and
Tc are similar to each other, both presenting a dome-like
structure.

B. Upper critical field Hc2

We managed to measure the upper critical field Hc2 for
three of our samples with carrier densities nH = 2.1, 3.2,
and 3.5 1020 cm−3 , with the methods explained Part I.
The signal difference between one probe under the sample
and one far from, proportional to the magnetic suscepti-
bility ξ, is flat at high temperature and start to drop at Tc
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α).

as seen in the upper panels of figure 4. The field depen-
dence of Tc allows us to plot the temperature dependence
of Hc2 depicted in the lower panel of figure 4. We then
proceeded to fit the data points with the Werthamer,
Helfand and Hohenberg (WHH) function [38] in order to
extract the value in the T = 0 limit. Those fits give the
values reported in Table III.

The upper critical field is set by the superconducting
coherence length, Ξ, while the lower critical field is set
by the magnetic penetration depth, λ. Roughly speak-
ing, at Hc1 the whole magnetic flux is contained by a sin-
gle vortex of radius λ. A more elaborate treatment take
into consideration energy corrections due to the internal
structure of the vortex and the Ginzburg parameter κ,
the ratio of the penetration depth over the superconduct-
ing coherence length. When κ is large, the ratio Hc1/Hc2

is given with negligible error by the following approxima-
tion [10, 39, 40]:

Hc1

Hc2
=

ln(κ) + 0.5

2κ2
(3)

Noting that Hc2 = φ0/2πξ
2, where φ0 is the quan-

tum of magnetic flux, this leads to the following relation
between Hc1 and λ :

Hc1 =
φ0

4πλ2
(ln(κ) + 0.5) (4)

This widely- used expression is to be used with caution
given its implicit assumption of a large κ. The question is
particularly relevant in the case of SrTi1−xNbxO3 where
the κ is relatively low. Harden and Arp [41] made nu-
merical calculations for κ values ranging from 0.3 to 100.
They found that when κ = 5, Hc2/Hc1 = 22.44, which
is to be compared with tHc2/Hc1 = 23.74 deduced from
Eq. 3. This represents an error of 6%. At κ = 10 the
same comparison yields an error of 1.4%. Therefore, if
the ratio Hc1/Hc2 ratio plugged in to Eq. 3 yields a
κ larger than 5, then we can legitimately use Eq. 4 to
extract the penetration depth, λ.

From the measured bulk Hc2 in three of our samples
(combined with unpublished AC susceptibility data in
the case of nH = 2.6 1020 cm−3 sample [42]), we ex-
tracted κ. When carrier concentration is low and the
system is in the clean limit κ ' 8.5. It increases to 17
at high concentration when the mean-free-path shortens
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and pulls down the coherence length. This allowed us
to extract the penetration depth from Hc1 using Eq. 3.
Since κ > 5, our use of Eq. 4 is legitimate.

IV. DISCUSSION

A. Penetration depth

The superfluid density and the penetration depth are
intimately linked through the London equation[10]:

λ−2 = µ0e
2 ns
m?

(5)

The doping dependency of λ−2 is shown in Fig.5. It
also presents a dome-like structure, reminiscent of the
case of cuprates[6]. Uemura and co-workers[1] were the
first to notice that the correlation between the superfluid
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susceptibility ξ. The lower panel shows the temperature de-
pendence of the upper critical fields Hc2 extracted from the
upper panels. The lines are WHH fits [38] to the data points.

stiffness (∝ ns

m? ) and the critical temperature in cuprates.

B. Comparison with other superconductors

The penetration depth of optimally-doped strontium
titanate is 870nm. Let us now compare this with
two other superconductors (Fig.4b). In niobium, it is
31.5nm[43]. Given the large difference in their carrier
concentration, this is not surprising. The figure com-
pares λ(nH) for these two systems with what is expected
according to Eq. 5, and assuming nH = ns. One can
see that the data points fall close to their expected po-
sition. It is instructive to compare the measured λab
in optimally-doped YBCO (103 nm[44]) with these two
systems. As seen in Fig. 4b, assuming the carrier den-
sity given by the Hall coefficient in the vicinity of op-
timal doping[45] (See table II for details), this value of
the penetration depth is what is expected in this system.
This confirms a key expectation of the BCS theory : Ab-
sent disorder, what sets the magnitude of the penetration
depth in a given superconductor is its carrier density (and
not its critical temperature). As far as we know, such an
experimental verification of this expectation by a com-
parison of densities across two orders of magnitude was
not done before.
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System
Tc λ m? nS nH

(K) (nm) (me) (1020cm−3) (1020cm−3)
STO 0.3 952 4.2 1.3 2.1
Nb 9.3 31.5[43] 1.5-4[46] 520 620[47]

YBCO 89 103[44] 3.6[48] 96 50[45]

TABLE II. Penetration depth, superfluid density, normal-
state carrier-density in three superconductors. Note that in
the case of YBCO, the largest effective mass[48] was mea-
sured at p=0.15, below optimal doping (p=0.18) and it is the
in-plane penetration depth, λab, which is considered.

C. Disorder

Disorder can reduce superfluid density through two
distinct mechanisms. The first mechanism is relevant to
all superconductors. The energy scale of Drude metallic
conductivity, ~/τ , increases with increasing disorder and
decreasing scattering time, τ . When the superconducting
gap, ∆, is much larger than this energy scale, the con-
densate density and the density of normal quasi-particles
are comparable. In the opposite limit (when ~/τ � ∆),
a small fraction of normal-state charge carriers have sub-
gap energies and one expects ns � nH [49, 50].

Quantitatively the superfluid density can be described
by the following equation [49, 50]:

ns '
2m?

πe2

∫ 2∆/~

0

dωσ1(ω) (6)

Where σ1(ω) is the real part of the optical conductivity.
If we assume that σ1(ω) behave as a Lorentzian of width
1/τ and zero frequency value σ0 = ne2τ/m? as described
by the Drude model we can simply integrate Eq.6:

ns '
2n

π
arctan

(
2π∆τ

~

)
(7)

Note that in the dirty limit (i.e. ∆τ → 0), leading to the
Homes law which states that ns/m

? ∝ σ0Tc [2, 3].
Another distinct disorder-driven mechanism is specific

to nodal superconductors like cuprates and is associated
with non-magnetic pair breaking. Note that in both
cases, the crucial parameter is ratio of ~/τ to ∆. Since ex-
periments indicate that n-doped SrTiO3 is s-wave[33, 51],
only the first mechanism is relevant here.

D. Superfluid density

According to band calculations[52], metallic strontium
titanate has three distinct bands. This was confirmed
by an extensive study of quantum oscillations[16], find-
ing new frequencies emerging above two critical doping
levels. Early tunneling studies[15] and more recent ther-
mal conductivity measurements[33] detected two distinct
gaps. The cyclotron masses of the three bands are differ-
ent. The lower band (or the outer sheet of the Fermi sur-
face) is heavier (m?

1 = 3.85±0.35) compared to the higher
bands (m?

2,3 = 1.52 ± 0.25). These numbers are consis-
tent with what was found by ARPES (1.5me and 6me)
at a higher concentration[53]. In our window of interest,
three-fourth of all carriers reside in the lower band[16].
The electronic specific heat, γ = 1.55 mJ mol−1 K−2

(at nH = 2.6 1020 cm−3) is known. Assuming that all
carriers reside in one band, one obtains m? = 4.2me[33].

Let us assume a single band with an effective mass of
4.2 me and nH extracted from ( Hall coefficient, which
is close to the total number of carriers residing in dif-
ferent Fermi surface pockets and detected by quantum
oscillations[16]. The results can be seen in Fig.6a, which
shows the ratio of the extracted ns over the normal state
carrier density nH for our six samples. As seen in this
figure, the superfluid density and the normal carrier den-
sity match each other at low doping. A deviation starts
at optimal doping before drastically increasing at higher
doping levels. Thus, the superfluid stiffness (that is λ−2)
follows the doping dependence of the critical tempera-
ture, because nS becomes lower than nH in the overdoped
regime.

In order to document the passage to the dirty limit,
we extracted the scattering time τ from low-temperature
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Sample
nH Tc Hc1 Hc2 κ

λ ns ρ2K τ ns

nH

π∆τ
~(1020 cm−3) (mK) (Oe) (Oe) (nm) (1020 cm−3) (µΩ.cm) (ps)

STO

0.41 183 1.6 - - 1647 0.44 49 7.43 1.07 0.980
1.9 300 4.8 - - 943 1.34 53 1.50 0.70 0.326
2.1 303 4.7 240 8.2 952 1.31 71 1.34 0.62 0.294
2.6 382 6.05 480 10.5 881 1.53 109 0.52 0.58 0.144
3.2 192 2.8 210 10.5 1292 0.72 56 0.84 0.22 0.116
3.5 118 0.5 85 17 3305 0.11 45 0.95 0.03 0.081

Nb
620 9.3 K 1800 4000 0.85 31.5 520 2 10−4 5.8 0.84 38
620 9.3 K - - - 44 264 1.2 8 10−2 0.42 0.53
620 8.3 K - - - 90 63 3.9 3 10−2 0.10 0.20

TABLE III. Parameter for SrTi1−xNbxO3 , and for clean [43, 56] and dirty [54, 55] niobium.

resistivity (1/ρ0 = ne2τ/m?) and estimated the magni-
tude of the superconducting gap using the BCS relation
∆ ∼ 1.76kBTc[15, 57]. The product of the two tells us on
which side of the clean/dirty limit the system is. Note
that `/ξ = π∆τ/~. When π∆τ/~ < 1, one enters the
dirty limit. Fig.6b. compares the evolution of ns/nH
and π∆τ/~. The two quantities deviate from unity con-
comitantly, but are not proportional to each other in the
dirty limit as one may expect in the crudest conceiv-
able approximation. It is also instructive to compare
our data with available data on Nb from three differ-
ent studies[43, 54, 55]. Figure 6.c shows the variation of
ns/nH with π∆τ/~ in SrTi1−xNbxO3 and in Nb. One
can see that in both systems, as theoretically expected[3],
the clean-to-dirty crossover and the loss of superfluid den-
sity are concomitant. However, in the case of strontium
titanate, ns/nH and π∆τ/~ are not simply proportional
to each other. This is a presumably due to the inade-
quacy of a single-band approach.

E. Comparison with the interface superconductor

Let us compare our quantification of superfluid den-
sity in the bulk superconducting strontium titanate with
the case of the superconducting LaAlO3/SrTiO3 inter-
face. Bert et al.[58] studied how a gate voltage tunes the
two-dimensional superfluid density in this system. The
maximum superfluid density found was n2D

s = 3 × 1012

cm−2. This is much more dilute than the maximum
three-dimensional superfluid density found here, which is
n3D
s = 1×1020 cm−3. The two densities can be contrasted

by comparing the average distance between carriers. In
their case, the peak n2D

s corresponds to dee = 5.7nm.

In our case, n3D
s corresponds to dee = 2.15nm. In other

words, the peak density for the interface system is signif-
icantly more dilute than in the bulk system. The most
plausible explanation for this difference is the presence of
additional disorder in the interface superconductor. As
discussed above, the larger the disorder, the lower the
superfluid density.

V. SUMMARY

In summary, we found that superconducting
SrTi1−xNbxO3 has a dome-like λ−2 reminiscent of
cuprates. Comparing three different systems, one sees
that when a superconductor is clean, its λ is primarily
set by its carrier density and not by its critical temper-
ature. The density mismatch between superconducting
and normal states is concomitant with the entry to
the dirty limit. Since in all superconducting domes,
the Tc and the gap eventually vanish, the mismatch is
expected in any superconducting dome far from optimal
doping. Finally, we notice that a quantitative account of
disorder-driven loss of superfluid density needs to take
into account the multiplicity of the electronic bands and
the superconducting gaps.
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