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ABSTRACT
Deception and Moving Target Defense techniques are two types of
approaches that aim to increase the cost of the attacks by providing
false information or uncertainty to the attacker’s perception . Given
the growing number of these strategies and the fact that they are not
all effective against the same types of attacks, it is essential to know
how to select the best one to use depending on the environment and
the attacker. We therefore propose a model of attacker/defender
confrontation in a computer system that takes into account the
asymmetry of the players’ perceptions. To simulate attacks on
our model, a basic attacker scenario based on the main phases
of the Cyber Kill Chain is proposed. Analytically determining an
optimal solution is difficult due to themodel’s complexity. Moreover,
because of the large number of possible states in the model, Deep
Q-Learning algorithm is used to train a defensive agent to choose
the best defensive strategy according to the observed attacker’s
actions.

CCS CONCEPTS
• Security and privacy→ Network security; Systems security; •
Computing methodologies→ Machine learning; Modeling and
simulation.
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1 INTRODUCTION
It is widely acknowledged that in cybersecurity, there is an asym-
metry between the attacker and the defender. Indeed, the attacker
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chooses when and how they will try to penetrate or compromise a
network or a machine. The attacker can therefore collect informa-
tion about their target and come back later to compromise it, while
it is very difficult for the defender to assess the threats they face.

To reduce this advantage of the attacker, several approaches have
been proposed. The first existed long before computer systems and
is at the basis of the warfare strategy. It is called deception. It
consists in preventing the attacker from obtaining real information
about a system by providing them false information in order to
make their reconnaissance phase inefficient and thus reduce the
probability of successful attacks. This can be done by several means
such as perturbation, obfuscation or the use of honeypots [22].
Today, deception strategies have developed a lot. Some surveys list
and classify existing deception techniques and strategies [12, 13, 20].

Another approach to reduce the attacker’s advantage is Moving
Target Defense (MTD). The objective of MTD is to eliminate the
attacker’s time advantage due to the static nature of network in-
frastructures. This consists of changing the attack surface as well
as the exploration surface to make any attack more difficult. This
approach is sometimes considered as a deception strategy. How-
ever, while the objective of deception strategies is to provide false
information to the attacker, the objective of MTD strategies is to
prevent the use of previously obtained information, i.e., to make
the information previously obtained by the attacker no longer valid.
MTD strategies have been the subject of many research articles.
Previous surveys have examined existingMTD strategies, each with
its own criteria for analysis and classification [6, 26, 32].

There are many deception and MTD techniques in the literature.
However, each of them is not effective against the same types of at-
tacks and permanently maintaining a deception strategy has a cost.
It is therefore necessary to be able to choose the most appropriate
strategy according to the environment and actions of the attacker.

To address this issue, models for the interactions between the at-
tacker and the defence in a cyber environment have been proposed.
A large part of these models is based on game theory (See Section
2). This enables to obtain some theoretical results such as mixed-
strategy or pure-strategy Nash equilibrium of the game. However,
in general, these models are too basic and do not allow to represent
well the complexity of an attacker/defender confrontation, in par-
ticular by considering the perception of the different players and
the multiplicity of possible states for a computer system.

However, Reinforcement Learning (RL) and more precisely Deep
Reinforcement Learning (DRL) has emerged to enable the training
of agents in complex environments. This allows for agents to obtain
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approximations to optimal solutions in models that a formal resolu-
tion can’t obtain because of their complexity. Moreover, model-free
RL algorithms allow to obtain solutions without using the transi-
tion probabilities associated with a Markov Decision Process (MDP).
DRL also makes it possible to find solutions in models where the
number of states or the space of actions can be very large.

This article proposes solutions to the issues outlined above. We
summarize our contributions of this work as follows:
• An attacker-defender model considering the asymmetry of
the players’ perception and the difference in kind between
MTD and deception strategies.
• An attack scenario integrating Cyber Kill Chain (CKC) stages
and based on the attacker’s perception.
• Use Deep Q-Learning in the model to optimize the choice of
defense strategy against an attacker
• Experiments to measure the performance of the defense
strategy in the model

The remainder of the paper is organized as follows. In Section 2,
we discuss related works about modeling a confrontation between
defender and attacker in a computer system along with the strategy
selection of each player. In Section 3, our attacker/defender model
considering the perception of each player is presented. We describe
how the confrontation game works. The attacker’s scenario is then
introduced in Section 4. In Section 5, we discuss the use of a DRL
algorithm to train agents on our model to find an optimal defender
strategy. In Section 6, we provide the data required for the experi-
ments, the results obtained and an analysis of them.

2 RELATEDWORKS
2.1 Game Modeling
To model deception, the perception of the different players must be
considered. A common approach is to use game theory to model
the interactions between players. There are several types of games
to achieve this. We present the most common types of games and
some of their uses in the context of protecting a computer system
using deception.

A first type of gamementioned in the literature is the Stackelberg
Game. This is a type of game in which one player is the leader, often
the defender, and the other player is the follower, often the attacker.
The leader chooses their actions first, which is observed by the
second player who plays next. Clark et al. [8] use Stackelberg Games
to study a jamming defense. They model the interactions between
a defender and a jammer in a two-stage game. The defender will
generate a false traffic flow. The defender will seek to maximize
throughput while minimizing delay and the attacker will choose
the fraction of each flow to jam. The existence of a pure-strategy
Stackelberg equilibria is shown by the authors. Clark et al. [7]
propose to use a Stackelberg Game to analyze the interactions
between an attacker and a network with decoy nodes. The attacker
seeks to identify real nodes by looking at the response times of
the nodes and the protocols used. The defender chooses when to
randomize the IP addresses of devices in the network. This game
admits a unique threshold-based Stackelberg equilibrium. Feng
et al. [11] model defender-attacker interactions by combining a
Stackelberg game with anMDP. At the beginning of each round, the
defender chooses an MTD strategy for several periods. The attacker

chooses a state to attack. An algorithm is designed to choose the
best strategy under worst-case. Sengupta and Kambhampati [27]
propose a Bayesian Stackelberg Game to model the interactions
between an attacker who can be of different types and a system
using MTD. A Q-Learning algorithm is used to find an optimal
solution.

A second type of game often used to model the interaction be-
tween an attacker and a defender in a computer system is Signaling
Game. This is a class of two-player games of incomplete informa-
tion. A first player performs an action and transmits information
to the other player with a certain cost which will be higher if the
information is false. The second player does not know the nature
of the information they received but chooses an action based on
it. Pawlick and Zhu [21] use Signaling Games to analyze the ef-
fectiveness of HoneyPots deployments in a computer network. In
particular, they show that sometimes the usefulness of the defender
can increase when the attacker can detect the luring. La et al.[17]
propose the use of a Signaling Game to model the interactions be-
tween a defender and an attacker in a honeypot-enabled network.
This time, the attacker plays first by choosing among several types
of attacks while the defender plays second and can use HoneyPots
to trap the attacker. Çeker et al. [4] use Signaling Games to model
the interactions between an attacker and a defender whose goal
is to protect a server from Denial-of-Service (DoS) attacks while
providing a service to legitimate users. The defender can disguise a
normal system as a HoneyPot and vice versa. Rahman et al. [25]
propose a mechanism to limit Remote Operating System Finger-
printing. They use a Signaling Game to model the interactions
between the fingerprinter and its target.

Stochastic games are a type of multi-state game where the game
is played as a sequence of states. In each of state, each player will
choose an action which will have an impact on the new state of the
system. A few articles use this type of game to study the impact of
a defensive deception strategy on the perception of the attacker in
different environments [1, 14]. Anwar et al. [1] study the optimal
placement of honeypots in an attack graph in order to slow down
or prevent an attack. They are interested in the trade-off between
security cost and deception reward for the defender. Horák et al. [14]
propose the analysis of an active deception against an adversary
that seeks to infiltrate a computer network to exfiltrate data or
cause damage. They use a one-sided partially observable Stochastic
Game to study the impact of deception on the attacker’s perception.
Here, it is assumed that the defender is able to detect the attacker’s
progress while the attacker lacks information about the system and
is therefore vulnerable to deception.

2.2 Strategy Selection
Once the game is modeled, the choice of player actions must be
optimized. In game theory, some tools are available for this purpose
like Mixed Strategy Nash Equilibrium (MSNE). This is an equilib-
rium in which no player can improve their expected utility if they
are the only one to choose another strategy because each player
chooses their optimal strategy assuming that the opponent does
the same. These equilibria match with the optimal solutions when
considering the decisions of other player. This requires a good
knowledge of the opponent’s strategies and their outcomes.
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Hu et al. [15] study the selection of the best countermeasure to
maximize defense payoff. This approach uses game theory andmore
precisely signal game theory. The perfect Bayesian equilibrium is
calculated and an algorithm is proposed for the selection of the
optimal defense strategy. Experiments in a small environment are
done to show the efficiency of the proposed approach.

Some papers propose to find the Nash equilibrium to optimize
the choice of a MTD strategy [18, 31]. [31] study the selection of
the MTD strategy of a defender in a web application environment.
The confrontation between the attacker and the defender is done
through an incomplete information game. The Nash-Q Learning
algorithm is used to find this optimal strategy and its performance
is compared to other algorithms such as the Minimax-Q learning
algorithm and the Naive-Q learning algorithm in this environment.
The results of the experiments show the efficiency of the Nash-Q
learning algorithm compared to the others. L. Cheng et al. [18] use
a Markov Game to propose a model considering the multiphase
and multistage nature of the confrontation.

Tan et al. [28] make a parallel between MTD transformation
and change of the attack surface and the exploration surface. They
propose a MTD model based on a Markov robust game model.
Robust Games can reduce the dependence on prior knowledge for
the optimal strategy selection present in other models. As shown
by L. Cheng et al. [18], the use of such a model allows to take into
account the multi-stage and multi-state nature. The existence of a
robust equilibrium and an optimal solution for this model is proven
under certain conditions. An algorithm is proposed to find these
and simulations are done to show the efficiency of this approach.

Some articles propose models that are not strictly based on game
theory. As MTD strategies are often effective against one type of
attack, H. Zhang et al. [30] study the impact of usingMTD strategies
with one or multiple mutant elements against several attacks. An
algorithm based on the Genetic Algorithm is proposed to find the
most efficient combination of MTD strategies. It is shown that even
in an environment with limited resources it is still important to use
multiple mutant elements.

However, as a model becomes more complex, finding equilibria
becomes increasingly and computationally intractable. Equilibria
as Nash equilibria do not consider past behavior of players which
often lead to predict future behavior. Moreover, the fact that the
optimal solution found is often a mixed strategy makes its practical
use difficult. DRL proposes to obtain an approximate pure strategy
of the best strategy while limiting the computational cost. It also
allows to find an approximation of the optimal solution in models
that are not based on game theory [19].

Chai et al. [5] propose to use DRL to improve MOTAG [16],
a MTD mechanism to counter Distributed DoS (DDoS) attacks.
MOTAG uses proxies to transmit traffic between legitimate users
and protected servers. By using these proxies, it is able to isolate
the external attacker from the innocent clients while shuffling the
client/proxy assignments. DQ-MOTAG provides a self-adaptive
shuffle period adjustment ability based on reinforcement learning.
Experiments show the efficiency of the method used.

T. Eghtesad et al. [10] propose to find an optimal MTD strat-
egy in the model proposed by Prakash and Wellman [23]. For this
purpose, a two-player general-sum game between the adversary

and the defender is created. In this model, the attacker and the de-
fender oppose each other for the control of servers, the mechanism
of server compromise is simplified. A compact representation of
the memory for each player is proposed and enables to act better
in the partially observable environment. This paper succeeds in
solving this game using a multi-agent RL framework based on the
double oracle algorithm which allows to find mixed-strategy Nash
equilibrium in games.

S. Wang et al. [29] study the deployment policy for deception
resources and especially the position of these resources. A model
is proposed to represent the attacker/defender confrontation and
the attacker’s strategy is provided. A Threat Penetration Graph
(TPG) is used to preselect the locations of deception resources. A
Q-learning algorithm is provided to find the optimal deployment
policy. A real-world network environment is used to demonstrate
the effectiveness of the proposed method.

The problem with games such as signaling games is that they
are generated with two players who each has two possible actions.
These are games with incomplete information taking into account
the asymmetry of the players’ perceptions but do not support mul-
tiple sources of deception as there could be in a computer system.
Moreover, this type of game is not adapted to model a multi-state
and multi-stage situation. Other Bayesian games take into account
multistate and multistage characteristics but to our knowledge, in
the literature, there is no game modeling that takes into account
the different perceptions of the players and that allows to take into
account both the effects of deception and the effects of MTD strate-
gies on a computer system. Another difficulty is to find an optimal
solution in a cyber environment model where the number of states
can be very large. The use of Deep Reinforcement Learning will
help to address this problem.

3 CONFRONTATION MODEL
In this section, we present our model of a computer system with
several types of potential vulnerabilities. A single machine is mod-
eled but we could model a network of machines in a similar way.
We will come back to this in the Section 6.4. Our modeling takes
into account the perception of the players and the actions allowed
for each of them are real-world actions, so the attacker can launch
scans and attacks on different types of vulnerabilities while the
defender can deploy Deception or MTD strategies. Due to their
different characteristics, these strategies will have a different ef-
fect on the environment. MTD strategies will affect the attacker’s
prior knowledge, while deception strategies will provide false infor-
mation to the attacker’s scans. Deception strategies are deployed
over several time-step but are not deployed permanently because
maintaining a deception strategy has a cost.

In Section 3.1, we present the main components of the model.
We define the different states of the game in Section 3.2 and the
observations of the two players in Section 3.3. The game process
is presented in Section 3.4 and the reward system in Section 3.5.
These sections are useful to understand how DRL is used in this
context (see Section 5).
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3.1 Environment
In this section, we define our attacker/defender model using player
perception. For this, we consider a machine, an attacker and a
defender. The attacker seeks to compromise the machine while the
defender seeks to defend it by using MTD and deception strategies.
The machine will be modeled by a vector of vulnerabilities V and
by a compromise score C . For each available vulnerability i , if it
is present on the machine then V [i] = 1 otherwise V [i] = 0. The
compromise index C is between 0 and 1. If the machine is not
compromised then C is 0. Its score can then evolve to 1 meaning
that the machine is fully compromised.

3.1.1 Attacker. A first player of the model is the attacker whose
goal is to compromise the machine. For this, they have several
actions available: a GlobalScan, Scans or Attacks. For each vulnera-
bility in V , present or not on the machine, a scan and an attack are
available. To each of these actions is associated a DI score indicat-
ing the information damage, a DC score indicating the compromise
damage and a Cost indicating the cost of this action. The com-
promise damage of Scans is zero while the information damage is
higher for Scan actions than for Attack actions. The greater the in-
formation damage for an action against a certain vulnerability, the
faster it will be for the attacker to acquire the information needed
to exploit it with an attack. In contrast, if a vulnerability is not
present on the machine, a large DI score for an action will make it
faster to remove that vulnerability from potential vulnerabilities.
In addition to these available actions, there is a Global Scan that
scans all vulnerabilities at once. In return, the information obtained
on each vulnerability by a GlobalScan is lower than for a singular
Scan.

Other variables are associated with the attacker and allow mea-
suring the attacker’s progress in compromising the machine. We
define two vectors pV and perceivedpV containing for each vul-
nerability v in V , respectively, a score measuring the amount of
real information the attacker has about this vulnerability and a
score measuring the amount of information the attacker thinks
they have about this vulnerability. If perceivedpV [v] = 0.5, the
attacker has no information about the vulnerability v . The closer
perceivedpV [v] is to 1, the more information the attacker has about
the vulnerability v and the more they think the machine has it. The
closer perceivedpV [v] is to 0, the more information the attacker
has about the vulnerability v and the more they think the machine
has not it. perceivedpV and pV are not necessarily equal. If the
attacker is deceived, then these two vectors may not be equal. Since
pV represents a real amount of information, if the machine is vul-
nerable to a vulnerability v then pV [v] will be between 0.5 and 1
and if it is not then pV [v]will be between 0 and 0.5. The variableCa
measures the state of compromise of the machine perceived by the
attacker. An assumption of our model will be C = Ca . This means
that the deception will not be about the status of compromise but
will focus on the information needed for attacks. Another variable
will be the phase of the CKC in which the attacker is located. This
one can take three values (0,1 or 2) because we will consider only
3 phases of the CKC to make the model simpler: Reconnaissance,
Intrusion and Pivilege Escalation/Exploitation. This parameter will
be updated at each step according to the values of pV ,Ia and Ca .

It is considered that some attacks will only be available at certain
phases of the CKC.

Finally, two other variables will measure the attacker’s overall
knowledge of themachine. The first one is System Info Perception Ia
(See Equation 1) which measures the overall amount of information
perceived by the attacker about the observable vulnerabilities of
the machine. This means that in CKC 0 and 1, we do not consider
vulnerabilities that can only be used in CKC 2. The second is Useful
System Info Perception Iua (See Equation 2) which measures the
amount of useful information for attacks perceived by the attacker
on the observable vulnerabilities of the machine.

Ia =
2
K

∑
v ∈V

max(0; 0.5 − |V [v] − pV [v]|)) (1)

Iua =
2
K

∑
v ∈V

max(0;perceivedpV [v] − 0.5) (2)

where K is the number of available attack strategies considered in
the model.

3.1.2 Defender. The second player will be the defender. Their goal
is to prevent the machine from being compromised while mini-
mizing the cost to achieve this goal. Among its possible actions,
there are MTD strategies and deception strategies. The defender can
also choose not to use any actions. MTD strategies will influence
the knowledge already acquired by the attacker. Indeed, if the at-
tacker has collected information about the system and the defender
successfully uses a MTD strategy then some of the information
acquired by the attacker will become incorrect.

On the other hand, deception strategies do not modify the va-
lidity of the information already obtained by the attacker. They
provide the attacker with erroneous information. If the attacker
acquires information about the system in the steps following the
use of a deception strategy, this information may be erroneous and
thus deceive the attacker.

Each of the possible strategies is associated with a cost that con-
siders the difficulty to implement it and the software or hardware
resources needed to do so.

3.1.3 Model parameters. A table E f f defines for each action of
the defender its effectiveness against an attacker’s strategy. This
value includes both the ability to prevent an attack and the ability
to prevent information about the system from being obtained. We
will come back to this in Section 6.1.

In our model, the defender does not necessarily detect all attacks.
It detects themwith the probability PDetection which is a parameter
to be specified in the model. To simplify, it’s the same for all attacks.
In addition, when an attacker takes an action, the defender can
detect which potential vulnerability has been targeted but is not
able to distinguish a scan from an attack. This will have an effect
on the defender’s observations.

Deception strategies do not necessarily achieve their objectives.
There is a probability of deception success (See Equation 3) depend-
ing on the attacker’s information about the machine and the phase
of the CKC:

PDeception = exp(−λDeception · (CKC + 1) · (Ia + 0.3)) (3)
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Moreover, the attacks are not necessarily a success. The probabil-
ity of success of an attack targeting a vulnerability on the machine
against a defense strategy (See Equation 4) depends on the attacker’s
knowledge of the targeted vulnerability and the effectiveness of
the defensive strategy against the attack.

PAttack (A,D) = V [A] · exp(−
λAttack · (E f f (A,D) + 0.3)
max(0.01; (pV [A] − 0.5) · 2)

) (4)

where A represents an attacker’s action and D represents a de-
fender’s action.

If the vulnerability is absent from the machine then the proba-
bility of success of the attack is zero. λDeception and λAttack are
parameters that will calibrate the above probabilities to make them
more consistent with the real environment we want to model. Sim-
ilarly, the value of certain offsets in these probabilities could also
be adjusted to better reflect the values of a real situation.

3.2 States of the game
Our model uses a discrete time scale. The game is a succession of
stages. At each stage, the game is characterized by its state. In a
given time step t, the state of the game is :

st = ⟨V ,C,pV ,CKC⟩ (5)

Each of these parameters has been defined previously.

3.3 Observations
For each of the players, the attacker and the defender, we will define
the observations. These are the information held by each player
that can be used at each time step of the game to choose a strategy.

The state of the game for the attacker is defined by the tupleOa :

Oa = ⟨perceivedpV ,Ca⟩ (6)

This provides to the attacker both information about the vulnera-
bilities of the machine and about the state of compromise of the
machine.

On the other hand, the defender has information about the dif-
ferent vulnerabilities that have been targeted by the attacker in
the past if the attacks have been detected. They also have informa-
tion about the defense strategies used in the past. The state of the
machine for the defender is defined by the tuple Od :

Od = ⟨last_attacks, last_de f enses,
times_since_last_attack,
times_since_last_de f ense,
attack_counts⟩

(7)

where
• last_attacks is a vector that contains for the last k time steps,
if detected, the vulnerabilities targeted by the attacker in
One-Hot encoding i.e. each element of the vector is 1 if the
corresponding attack has been detected and 0 otherwise.
• last_de f enses is a vector that contains for the last k time
steps, the strategies used by the defender in One-Hot encod-
ing.
• times_since_last_attack is a vector containing for each vul-
nerability the number of time steps elapsed since the last
action (Scan or Attack) detected from the attacker on it.

• times_since_last_de f ense is a vector containing for each
defense strategy the number of time steps elapsed since its
last use.
• attack_counts is a vector containing for each vulnerability
the total number of detected actions of the attacker on it.

k is a parameter to be defined of the model. It represents the number
of time steps considered in the last_attacks and last_de f enses
vectors of the observations.

3.4 Course of a game step
In this section, we will explain how the game proceeds. For that, we
will introduce the Information Gathering function (See Algorithm
1). It corresponds to the unfolding of an information gathering
strategy of the attacker and its impact on the model. It will modify
the attacker’s information held on the vulnerabilities by considering
the decoy strategies set up by the defender.

This function is called at different moments of the game as for ex-
ample when the attacker performs a scan, a global scan or an attack
that fails. Indeed, it is considered that even when an attack fails,
the attacker still gets information about the targeted vulnerability.

This Information Gathering function takes as parameter the
vulnerability targeted by the attacker AND µ a parameter quan-
tifying the potential impact of the information gathering on the
vulnerability information. Indeed, the larger µ is, the more pV and
perceivedpV will be modified by the information gathering. In the
algorithms, V [AA] is short for V [v] where v is the vulnerability
targeted by the attack or scan AA. It is the same for pV [AA] and
perceivedpV [AA].

Algorithm 2 provides the pseudocode of the unfolding of a game
timestep given the actions chosen by the defender and by the at-
tacker. To summarize its operation, the first part is to check if the
strategy of the defense is a MTD strategy. If this is the case, then
pV evolves in this way. Then the nature of the attacker’s action is
checked. If it is an individual scan, then the Information Gathering
function is used with a rather high µ, i.e. a strong potential impact
of the information gathering. If it is a Global Scan, then we do
the same but for all the available vulnerabilities and with lower
µ. If not, we look to see if it is an attack. If it is and the attack is
successful, then we update V , pV , perceivedpV and C . If not, we
use the Information Gathering function with a low µ.

This process will repeat itself to form an episode. An episode is
a sequence of states, actions and rewards that ends in a final state.
In our model, an episode ends if the machine is compromised or if
the number of time steps exceeds 100 because we consider that the
attacker will be dissuaded or discouraged from attacking and will
stop the attack.

3.5 Reward
To optimize the defender’s strategy selection at each step, we need
to define a utility functionUD that specifies the defender’s objective.
Its objective is to make the compromise of the machine as long as
possible and thus to minimize the information held by the attacker
on it as well as the level of compromise of it. UD is defined as
follows:

UD = w · (1 − IA) + (1 −w) · (1 −C) (8)
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Algorithm 1Model - Information gathering
Input Attacker Action AA, µ
for each Defender Strategy D used in the last k steps do
if E f f (D,AA) > 0 then

Compute Deception Probability
if Deception is a Success then
newpV ← pV [AA]−(V [AA]−pV [AA]) ·µ ·E f f (D,AA)/2
if V [AA] = 1 then
pV [AA] ←max(1/2;newpV )

else
pV [AA] ←min(1/2;newpV )

end if
varppV ← (V [AA]−perceivedpV [AA])µ ·E f f (D,AA)/2

perceivedpV [AA] ← perceivedpV [AA] −varppV
else
newpV ← pV [AA] + (V [AA] − pV [AA]) · µ · DI [AA] · 3
if V [AA] = 1 then
pV [AA] ←max(1/2;newpV )

else
pV [AA] ←min(1/2;newpV )

end if
perceivedpV [AA] ← pV [AA]

end if
end if

end for
if no efficient deception strategy is used then
pV [AA] ← pV [AA] + (V [AA] − pV [AA]) · µ · DI [AA] · 3
perceivedpV [AA] ← pV [AA]

end if

w is a numeric parameter to give more weight to the information
or to the compromise in the defender’s utility function.

The cost of each strategy also has its influence. The reward given
to the defender at time t is given by:

r tD = UD −Cost[DA] (9)

whereUD is the Defender Utility at time t andCost[DA] is the cost
of the defender action used at time t.

The defender seeks to maximize the total reward over an entire
episode.

4 ATTACKER SCENARIO
Now that we have presented our Attacker/Defender model, we will
present our attacker scenario. Indeed, we will train our defender to
react to the attacker’s actions to make the machine’s compromise
as long as possible. We therefore need an attack scenario for the
attacker. This is based on a simplified version of the Cyber Kill
Chain. Only three steps of the CKC are considered, the same as those
used for the model (See Section 3.1.1): Reconnaissance, Intrusion
and Exploitation or Privilege Escalation.

To compromise the machine, the attacker will have to go through
each of these phases. Actions available to the attacker will depend
on the phase in which they are. Indeed, for example, if the attacker
is in the third phase of the CKC, then it means that they have
infiltrated the machine and therefore there may be new potential

Algorithm 2 Model - Run one step
Input Attacker Action AA, Defender Action DA
if DA isMTD then
for each Vulnerability v do
if E f f (DA,v) > 0 then

µ ← 1/4
pV [v] ← pV [v] − (pV [v] − 0.5) · µ · E f f (DA,v)

end if
end for

end if
if AA is Scan then

µ ← 1/2
Run Information Gathering with AA, and µ

end if
if AA is GlobalScan then

µ ← 1/4
for each available Scan A do

Run Information Gathering with AA, and µ
end for

end if
if AA is Attack then

Compute Attack Success Probability
if Attack is Successful then
C ← C + DC[AA]

V [AA],pV [AA],perceivedpV [AA] ← 0
CA ← C

else
µ ← 1/4
Run Information Gathering with AA, and µ

end if
end if

vulnerabilities reachable only from inside the machine. Moving
from one phase to another of the CKC requires certain prerequisites
which for this example scenario can be found in the Table 1.

4.1 Attacker Strategy Selection
At each step, the attacker will have to choose an action among those
available. For this purpose, we use a very common function in game
theory reffered to as utility function. This function associates with
each available action a utility representing the satisfaction of the
player to choose this action. The attacker will then choose the
action that maximizes this function.

In our case, the satisfaction depends on the objective of the at-
tacker and thus on the phase of the CKC in which they are. Indeed,
for example, in the recognition phase, it is the collection of infor-
mation and therefore the scans that are promoted while in the
intrusion phase it is the attacks that are promoted. To this end,
some parameters of the utility function will depend on the phase
of the CKC in which the attacker is (see Table 1)

The utility function is not the same depending on the type of
action of the attacker (See Table 2). Each parameter influences the
utility function in a different way. Indeed, the largerw2 is, the more
information damage will be promoted in the utility and therefore
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the more scans will be promoted. The largerw3 is, the more compro-
mise damage will be promoted in the utility and therefore the more
attacks will be promoted. The largerw1 is, the more the attacker
will try to fill their lack of information about the global system. In
this case, it is rather the Global Scan that will be promoted.

The cost of each attacker strategy also has its influence. The
reward given to the attacker at time t is given by:

r tA = UA −Cost[AA] (10)

whereUA is the Defender Utility at time t and Cost[AA] is the cost
of the attacker action used at time t.

The attacker will choose at each step the action that maximizes
the reward they can get.

5 STRATEGY SELECTION OPTIMIZATION
In this section, we will present the approach used to find an optimal
policy. A policy is a function that associates with each state of the
game the action that the agent will take in this state. Because of
the complexity of the game, the large number of possible states and
the stochastic nature of the rewards and transitions between states,
it is difficult to find an optimal policy analytically. That is why we
decide to use Deep Q-Learning algorithm [19].

Firstly, we define the discounted return at time t for the defender:

Gt = r
t+1
D + γr t+2D + · · · + γT−1rTD (11)

where we consider the episodes as finished, T is the length of the
episode andγ is a discount factor that balances the weights between
future and current rewards.

A policy is a function that takes as input a state S and returns
the probability of using each action in this state. We also define the
Q-function Qπ (s,a) which returns the value of taking action a in
state s under policy pi:

Qπ (s,a) = Eπ [Gt |st = s,at = a] (12)

= Eπ [r
t+1
D + γGt+1 |st = s,at = a] (13)

The optimal state-action value fonction is:

Q∗(s,a) =maxπQπ (s,a) (14)

= E[r t+1D + γmaxa′Q∗(s
′,a′)|s,a, st+1 = s

′] (15)

This equation is called Bellman Optimality Equation [19].

CKC Phases Prerequisites Weights

Reconnaissance Ø
w1 = 0.2
w2 = 0.6
w3 = 0.2

Intrusion
Iua > 0.3 w1 = 0.2
OR ANY w2 = 0.4

perceivedpV [i] > 0.8 w3 = 0.4
Exploitation

C > 0.3
w1 = 0.4

OR w2 = 0.1
Privilege Escalation w3 = 0.5

Table 1: Prerequisites and weights of the utility function for
each CKC phase.

Strategy Attacker UtilityUA(AA)

Scan w1 · (0.5 − |perceivedpV [AA] − 0.5|)+
(w2 · DI [AA] +w3 · DC[AA]) · perceivedpV [AA]

Attack (w2 · DI [AA] +w3 · DC[AA]) · perceivedpV [AA]

Global ∑
Ai is ScanU (Ai )/2Scan

Table 2: Attacker utility according to the type of attacks

In our context, a state s corresponds to the defender’s perception
of the state of the game, i.e. its observations Od .

Temporal Difference Learning offers an iterative process that
updates the Q-values for each state-action pair based on the Bellman
Optimality Equation. This process converges to the optimal Q-
function.

Q(s,a) = (1 − α) ·Q(s,a) + α(r t+1D + γmaxa′Q(st+1,a
′)) (16)

where α is a learning rate.
In classic Reinforcement Learning, a table is used to store the

mapping between the pair state, action and their corresponding
Q-value. In Deep Reinforcement Learning, a neural network is used
for this. The input of the neural network is the state, and the output
is the estimated Q-value of each action in this state.

We use the Deep Q-Learning algorithm (DQN) of Mnih et al. [19]
with a replay buffer and a target network to train our model.

This algorithm uses many hyperparameters that must be defined
before learning. They are in the Table 3.

Parameter Value
Weight in Defender Utility 0.3
k for Defender Observations 3

Exploration Fraction 0.1
Target Update Interval 5000
Neural Network Layers [256x256]

Replay Buffer Size 1000000
Activation Function Tanh
Train Frequence One episode

Batch Size 32
Learning Rate 0.0005

Discounted Factor 0.99
Table 3: List of model parameters and DQN hyperparame-
ters

6 EXPERIMENTS
6.1 Data for Experiments
In Sections 3 and 4, we describe our model and a basic scenario for
the attacker. Several parameters are required for the experiments.
First, concerning the machine, we need to define the vulnerabilities
considered in the model. These are not Common Vulnerablities and
Exposures (CVEs), they are rather families of vulnerabilities. Then,
for each of them, we have to define the damage in Information
and in value of Compromission as well as their cost in the case
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of a scan or an attack. These values have been defined arbitrarily
based on information from Mitre CAPEC [3] and Mitre CVE [9].
Table 4 shows the data used in the experiments concerning the
vulnerabilities and the attack strategies. We have selected a set
of known vulnerability families that can be separated into two
categories: those accessible from outside the machine and those
requiring local access on the machine. For simplicity, we consider
that the costs of the scans are the same. The same goes for the cost
of the attacks.

required
Vulnerability Type CKC phase Cost DI DC

Identity Scan 0 0.2 0.3 0
Spoofing Attack 1 0.3 0.15 0.4
Traffic Scan 0 0.2 0.2 0
Injection Attack 1 0.3 0.1 0.4

Brute Force Scan 0 0.2 0.2 0
Attack 1 0.3 0.1 0.4

Command Scan 0 0.2 0.4 0
Injection Attack 1 0.3 0.2 0.4
Code Scan 0 0.2 0.3 0

Injection Attack 1 0.3 0.15 0.4
Privilege Scan 2 0.2 0.2 0
Abuse Attack 2 0.3 0.1 0.6

Authentication Scan 2 0.2 0.1 0
Bypass Attack 2 0.3 0.05 0.6
Privilege Scan 2 0.2 0.2 0
Escalation Attack 2 0.3 0.1 0.6

Table 4: List of considered vulnerabilities

Concerning the defender, we consider eight possible defense
strategies: four MTD and four deception strategies. They can be
found in the Table 5 with the cost of each strategy.

Strategy
Number Strategy Type Cost

0 IP Random MTD 0.1
1 Port Random MTD 0.2
2 Rekeying Keys Random MTD 0.1
3 Language Random MTD 0.3
4 Honey Service Deception 0.4
5 Honey Credentials/Accounts Deception 0.3
6 Honey Process Deception 0.2
7 Honey Files/Logs Deception 0.2

Table 5: Considered defense strategies

Another essential element in the experiments is the table of
efficiencies of the defensive strategies against the actions of the
attacker mentioned in the Section 3.1.3 and shown in the Table 6.
These are chosen arbitrarily based on our knowledge of the different
strategies, but one way to improve the model could be to use data
from real experiments.

6.2 Implementation
The experiments were done on an Intel Core i7-9750H CPU with
an NVIDIA GeForce RTX 2070 graphics card.

Our model has been implemented in an OpenAi Gym environ-
ment [2]. Stable Baselines3 is a python library providing the imple-
mentation of Reinforcement Learning algorithms [24]. We use it to
train our agents on the model.

We sought to optimize the hyperparameters used to train our
agents. For this, we trained the model with many different parame-
ters. The model parameters and the hyperparameters finally used
for the tests are located in the Table 3.

6.3 Results
We trained agents in different environments with different param-
eters. We have measured the influence of the parameters on the
performance of our trained agents. Shown in Figure 1 are the train-
ing curves of different defenders for different values of λattack .
We can thus compare the influence of the probability of attack
success with the performance of the agents. Our model includes a
significant uncertainty, so the reward has a large variance.

Figure 1: Learning curve of different agents in different
environments with different λattack and λDeception = 0.5,
PDetection = 1

In Figure 2 we compare the performance of our DQN-trained
agent with the performance of agents using only one defensive
strategy or randomly choosing the defensive strategy. We evaluate
each strategy over 1000 episodes. We compare the average episode
reward for each strategy but also the average episode length.

The agent trained with the DQN performs better than the other
"naive" strategies in terms of both episode reward and episode
length. This means that our agent is able to use its observations
to deduce a defense strategy to use. Moreover, we can observe the
influence of strategy costs in the reward because for some strategies
the episode length is higher than for others but the corresponding
reward is lower. For example, IP Random Strategy has a higher
reward than Honey Service but a shorter episode length.

We compared the performances obtained by an agent trained
with the DQN in different environments. We varied the probability
of detection of attacks PDetection , λattack and λdeception . Figure 3
contains the comparison of the rewards obtained with a DQN agent
for different values of these parameters. It contains one heatmap
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Attacker Strategy Type Vulnerability 0 1 2 3 4 5 6 7

Scan

Identity Spoofing 0 0 0 0 0 1.5 0 0
Traffic Injection 1.5 1.5 0 0 0 0 0 0
Brute Force 0 0 1.5 0 0 1.5 0 0

Command Injection 0 0 0 1 1 0 0 0
Code Injection 0 0 0 1.5 1 0 0 0
Privilege Abuse 0 0 1 0 0 0 0 1.5

Authentication Bypass 0 1 0.5 0 0 1 1 1
Priv Esc: Target Programs with Elevated Privileges 0 0 0 1 1 0 1.5 1

Attack

Identity Spoofing 0 0 0 0 0 1.5 0 0
Traffic Injection 1.5 1.5 0 0 0 0 0 0
Brute Force 0 0 1.5 0 0 1.5 0 0

Command Injection 0 0 0 1 0.5 0 0 0
Code Injection 0 0 0 1.5 0.5 0 0 0
Privilege Abuse 0.5 0 1 0 0 0 0 0.5

Authentication Bypass 0.5 1 0.5 0 0 0.5 0.5 0.5
Priv Esc: Target Programs with Elevated Privileges 0.5 0 0 1 0.5 0 0.5 0.5

Table 6: Efficiency of the defensive strategies against the attacker actions

per PDetection value. Each heatmap shows the rewards obtained
for 3 different values of λattack and λdeception .

The lower the probability of detection of attacks, the lower the
rewards for the defender. This makes sense because if the defender
does not observe the attacks, they cannot choose an appropriate
strategy. λattack , which inversely influences the probability of suc-
cess of attacks, has a strong impact on the performance of our agent.
λdeception inversely impacts the probability of deception success.
The larger the value for λdeception , the lower the probability of
deception success.

The problem with the DQN algorithm is that the resulting pol-
icy is not necessarily optimal. Indeed, it may be a local optimum.
This explains some of the results in Figure 3, for example, for
PDetection = 0.8 and λattack = 0.7, the performances of the

Figure 2: Comparison of the performance of different de-
fense strategies in different environments with λattack = 0.5
and λDeception = 0.5, PDetection = 1

agent for λdeception = 0.5 are lower than for λdeception = 0.7
which is anomalous according to the explanations of the previous
paragraph.

6.4 Discussion
The proposed model is multi-state and multi-stage. It allows to
consider a large number of possible states for the system. Moreover,
the representation of the vulnerabilities in the V vector allows to
consider different types of machines such as servers or worksta-
tions which will have different types of vulnerabilities. Futhermore,
thanks to our representation of the defender’s observations, we
are able to use the attacker’s past behavior to better predict these
future actions and thus choose an optimal strategy.

Moreover, our modeling takes into account the difference in
nature betweenMTD strategies and Deception strategies. Thus they
act differently on the system. Deception and MTD strategies should
be seen as complementary. Experiments show that to counteract a
variety of potential attacks, it is necessary to have access to a variety
of defensive strategies. The experiments also show the importance
of good coordination of these strategies and the need to limit the
deployment of certain strategies to critical moments because their
cost to the system can be very high.

Regardless of the parameters used, we manage to train an agent
that performs better than the unitary strategies against our attacker
following our scenario detailed in Section 4. The advantages of
this scenario are that it is based on the perception of the attacker
and it separates remote attacks and local attacks such as privilege
escalation.

The realism of the model could be improved by using data from
experiments. To do this, we could implement several defensive
strategies on a system with known vulnerabilities in order to mea-
sure the ability of these strategies to prevent or slow down their
exploitation by an attacker. In particular, as the model is sequential,
it would be interesting to integrate the time of each action for both
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Figure 3: Comparison of the reward of the defender using a DQN agent in environments with different values of detection
probability PDetection , λattack and λdeception

the attacker and the defender in the calculation of their cost. More-
over, the effectiveness of defensive strategies against attacks should
not be static but depend on the attacker’s progress in their attacks.
Indeed, for example, the IP Random defense strategy will not be as
efficient against an attacker located outside the network or against
an attacker who already has access to the internal network.

In this paper, the model seeks to represent the confrontation
of a defender and an attacker around a single machine. However,
to better represent reality, it would be necessary to extend this
model to a network of machines. This would multiply the number
of possible actions for each player, the number of states of the
model and the number of entry points for the attacker. It would
then be necessary to consider the conflicts that can exist in the
deployment of defensive strategies on several machines. This would
allow the simulation of more realistic attack scenarios. It would
then be interesting to know if the DQN algorithm is still efficient
in a model of this type. This is ongoing research work that will be
the subject of a future article.

7 CONCLUSION
Deception and MTD strategies are two types of strategies that con-
sist in bringing false information or uncertainty to the opponent’s
perception in order to increase the cost of the attacks. In this paper,
we proposed a model of an attacker/defender confrontation in a
computer system considering the asymmetry of perceptions and
the impact of the two players’ strategies on them.We then proposed
an attacker scenario based on the CKC and using their perception.
Thanks to this, we performed simulations and trained with the DQN
algorithm a defensive agent. It is able to choose the most adapted
defensive strategies to prevent the compromise of the machine by
using the observed past actions. This simulation framework could
be used to optimize the use of MTD and Deception strategies in
real context by using data from experiments for model parameters.

Future works would then be to develop an emulation environ-
ment allowing the deployment of different MTD and deception
strategies. This would provide data such as the cost or effectiveness

of the latter. It could also allow for the training of defending DQN
agent directly on the emulation environment. Another part of the
work would be to improve the attacker scenarios. To do this, we
could try to train an attacking DQN agent based on its observation.
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