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Abstract

According to Lidstone interpolation theory, an entire function of

exponential type < π is determined by it derivatives of even order at

0 and 1. This theory can be generalized to several variables. Here

we survey the theory for a single variable. Complete proofs are given.
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This first paper of a trilogy is devoted to Univariate Lidstone interpo-

lation; Bivariate and Multivariate Lidstone interpolation will be the

topic of two forthcoming papers.
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1. Introduction

In 1930, in a seminal paper [3], G. J. Lidstone introduced a basis

Λk(z) (k ≥ 0) of the space C[z] of polynomials in a single variable,

which has the property that any polynomial f ∈ C[z] has a finite

expansion

f(z) =
∑
k≥0

f (2k)(0)Λk(1− z) +
∑
k≥0

f (2k)(1)Λk(z),

where

f (2k) =

(
d

dz

)2k

f.

Two years later, H. Poritsky [4] J. M. Whittaker [8] extended these

expansions to entire functions of exponential type < π. In 1936,
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I.J. Schoenberg [5] proved that the only entire functions of finite ex-

ponential type which vanish at the two points 0 and 1 together with

all their derivatives of even order are the linear combinations with

constant coefficients of the functions sin(kπz), with k ∈ N. This re-

sult follows from an expansion formula for such functions which was

obtained by R.C. Buck in 1955 [2].

We recall the basic facts concerning Lidstone expansion in a single

variable. In this section z and ζ are in C. It will be convenient to use

notations which can be generalized to several variables. The classical

Lidstone polynomials [3, §6 p. 18] Λk(z) (k ≥ 0) are denoted here

Λ2k,1(z), while the polynomials Λk(1−z) are written here Λ2k,0(z). The

successive derivatives of a function f of a single variable are denoted

f ′, f ′′, . . . , f (k).

The Lidstone polynomials are introduced in Theorem 1. They are

the solution of a system of differential equations (Lemma 2). The

unicity of the expansion for an entire function of exponential type < π

(Theorem 2) is easy to prove, the existence (Theorem 3) needs more

work - both results are due to H. Poritsky and J. M. Whittaker. Next

we prove integral formulae for the Lidstone polynomials (Propositions

1 and 2), and we give proofs of the results of Buck (Proposition 3)

and Schoenberg (Corollary 2).

This paper is self contained, full proofs are given. It is an introduc-

tion to two forthcoming papers, [6] where we extend the theory to two

variables and [7] where we extend the theory to an arbitrary number

of variables.

2. Definition of the univariate Lidstone polynomials

Let us recall the definitions of the order of an entire function f :

%(f) = lim sup
r→∞

log log |f |r
log r

where |f |r = sup
|z|=r
|f(z)|

and of the exponential type of f :

τ(f) = lim sup
r→∞

log |f |r
r
·

3



If the exponential type of f is finite, then f has order ≤ 1. If f has

order < 1, then the exponential type is 0. Using Cauchy’s estimate

for the coefficients of the Taylor series together with Stirling’s formula

for n!, one deduces [8, Lemma 1] that if f has exponential type τ(f),

then for all z0 ∈ C,

lim sup
n→∞

|f (n)(z0)|1/n = τ(f).

For ζ ∈ C \ {0}, the function eζz has order 1 and exponential type |ζ|.

We denote by 2N the set of even nonnegative integers. The starting

point of the theory of Lidstone interpolation is the following.

Lemma 1. Let f be a polynomial satisfying

f (t)(0) = f (t)(1) = 0 for all t ∈ 2N. (1)

Then f = 0.

We give three proofs of this lemma, the arguments are slightly dif-

ferent and will be used again.

First proof. By induction on the total degree of the polynomial f .

If f has degree ≤ 1, say f(z) = a0z + a1, the conditions f(0) =

f(1) = 0 imply a0 = a1 = 0, hence f = 0.

If f has degree ≤ d with d ≥ 2 and satisfies the hypotheses, then f ′′

also satisfies the hypotheses and has degree < d, hence by induction

f ′′ = 0 and therefore f has degree ≤ 1.

Lemma 1 follows. �

Second proof. Let f be a polynomial satisfying (1). The assumption

f (t)(0) = 0 for all t ∈ 2N means that f is an odd function: f(−z) =

−f(z). The assumption f (t)(1) = 0 for all t ∈ 2N means that f(1− z)

is an odd function: f(1− z) = −f(1 + z). We deduce

f(z + 2) = f(1 + z + 1) = −f(1− z − 1) = −f(−z) = f(z),

hence the polynomial f is periodic, and therefore is a constant.

Since f(0) = 0, we conclude f = 0. �
4



Third proof. Assume (1). Write

f(z) = a1z + a3z
3 + a5z

5 + a7z
7 + + · · ·+ a2m+1z

2m+1 + · · ·

(finite sum). We have f(1) = f ′′(1) = f (iv)(1) = · · · = 0:

a1 +a3 +a5 +a7 + · · · +a2n+1 + · · · = 0

6a3 +20a5 +42a7 + · · · +2m(2m+ 1)a2m+1 + · · · = 0

120a5 +840a7 + · · · + (2m+1)!
(2m−3)!a2m+1 + · · · = 0

. . .
...

The matrix of this system is triangular with maximal rank. We con-

clude a1 = a3 = a5 = · · · = 0. �

The fact that this matrix has maximal rank means that a polynomial

f is uniquely determined by the numbers

f (t)(0) and f (t)(1) for t ∈ 2N.

Let T ≥ 0 be even. The space C[z]≤T+1 of polynomials of degree

≤ T + 1 has dimension T + 2. All elements f ∈ C[z]≤T+1 satisfy

f (k) = 0 for k ≥ T + 2. Lemma 1 shows that the linear map

C[z]≤T+1 −→ CT+2

f 7−→
(
f (t)(0), f (t)(1)

)
0≤t≤T, t∈2N

is injective. Hence it is an isomorphism.

Given numbers at and bt, (t ∈ 2N), where all but finitely many of

them are 0, there is a unique polynomial f such that

f (t)(0) = at and f (t)(1) = bt for all t ∈ 2N.

In particular, for each t ∈ 2N, there is a unique polynomial Λt,0 which

satisfies

Λ
(τ)
t,0 (0) = δt,τ and Λ

(τ)
t,0 (1) = 0 for τ ∈ 2N

(Kronecker symbol), and there is a unique polynomial Λt,1 which sat-

isfies

Λ
(τ)
t,1 (0) = 0 and Λ

(τ)
t,1 (1) = δt,τ for τ ∈ 2N.

Therefore:
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Theorem 1 (G. J. Lidstone (1930)). There exist two sequences of

polynomials,
(
Λt,0(z)

)
t∈2N,

(
Λt,1(z)

)
t∈2N, such that any polynomial f

can be written as a finite sum

f(z) =
∑
t∈2N

f (t)(0)Λt,0(z) +
∑
t∈2N

f (t)(1)Λt,1(z). (2)

The involution z 7→ 1− z:

0 7→ 1, 1 7→ 0, 1− z 7→ z

shows that Λt,0(z) = Λt,1(1− z).

At this point, we can make an analogy with Taylor series, where the

polynomials zm/m! satisfy

dk

dzk

(
zm

m!

)
z=0

= δmk for m ≥ 0 and k ≥ 0.

Given a sequence (am)m≥0 of complex numbers, the unique analytic

solution (if it exists) f of the interpolation problem

f (m)(0) = am for all m ≥ 0

is given by the Taylor expansion

f(z) =
∑
m≥0

am
zm

m!
·

Lidstone expansion replaces the single point 0 and the sequence of all

derivatives with two points 0 and 1 and only the derivatives of even

order at these two points.

The first Lidstone polynomial is Λ0,1(z) = z:

Λ0,1(0) = 0, Λ0,1(1) = 1, Λ
(t)
0,1(0) = Λ

(t)
0,1(1) = 0 for t ∈ 2N, t ≥ 2.

The next lemma provides an inductive way for finding all of them.

3. Differential equation

Lemma 2. The sequence of Lidstone polynomials
(
Λt,1

)
t∈2N is deter-

mined by Λ0,1(z) = z and

Λ′′t,1 = Λt−2,1 for t ≥ 2 even,
6



with the initial conditions Λt,1(0) = Λt,1(1) = 0 for t ∈ 2N, t ≥ 2.

More precisely, let
(
Lt
)
t∈2N be a sequence of polynomials satisfying

L0(z) = z and

L′′t = Lt−2 for t ∈ 2N, t ≥ 2,

with the initial conditions Lt(0) = Lt(1) = 0 for t ∈ 2N, t ≥ 2; then

Lt = Λt,1 for all t ∈ 2N.

Notice that the assumption L0(z) = z cannot be omitted: given any

polynomial A, there is a unique sequence
(
Lt
)
t∈2N satisfying all other

assumptions but with L0 = A.

Proof. That the sequence
(
Λt,1

)
t∈2N satisfies these conditions is plain.

We now prove the unicity. Let
(
Lt
)
t∈2N, be a sequence of polynomials

satisfying the conditions of Lemma 2. By assumption L0(z) = z. By

induction, assume that for some t ≥ 2 we know that Lt−2 = Λt−2,1.

Then the difference g = Lt − Λt,1 satisfies g′′ = 0, hence g has degree

≤ 1. The assumptions Lt(0) = Lt(1) = 0 for t ∈ 2N, t ≥ 2 imply

g = 0. �

For t ∈ 2N, the polynomial Λt,1 is odd, it has degree t + 1 and

leading term 1
(t+1)!

zt+1. For instance

Λ2,1(z) =
1

6
(z3 − z) =

1

6
z(z − 1)(z + 1),

Λ2,0(z) = Λ2,1(1− z) = −z
3

6
+
z2

2
− z

3
= −1

6
z(z − 1)(z − 2),

Λ4,1(z) =
1

120
z5 − 1

36
z3 +

7

360
z =

1

360
z(z2 − 1)(3z2 − 7),

and

Λ4,0(z) = Λ4,1(1− z) = − 1

120
z5 +

1

24
z4 − 1

18
z3 +

1

45
z

= − 1

360
z(z − 1)(z − 2)(3z2 − 6z − 4).

(3)
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4. Recurrence formula

For t ∈ 2N, the polynomial ft(z) = zt+1 satisfies

f
(τ)
t (0) = 0 for τ ∈ 2N, f

(τ)
t (1) =


(t+1)!

(t−τ+1)!
for 0 ≤ τ ≤ t, τ ∈ 2N

0 for τ ≥ t+ 2, τ ∈ 2N.

From Theorem 1 one deduces, for t ∈ 2N,

zt+1 =
∑
0≤τ≤t
τ∈2N

(t+ 1)!

(t− τ + 1)!
Λτ,1(z),

which yields the recurrence formula

Λt,1(z) =
1

(t+ 1)!
zt+1 −

∑
0≤τ≤t−2
τ∈2N

1

(t− τ + 1)!
Λτ,1(z). (4)

Another consequence of Theorem 1 is

zt

t!
= Λt,0(z) +

∑
0≤τ≤t
τ∈2N

1

(t− τ)!
Λτ,1(z) (5)

for t ∈ 2N.

5. Unicity for entire functions

According to Theorem 1, a polynomial is determined by the values

of its derivatives of even order at the two points 0 and 1. H. Poritsky

[4] and J. M. Whittaker [8] proved that he same is true more generally

for an entire function of exponential type < π:

Theorem 2 (H. Poritsky, J. M. Whittaker 1932). Let f be an entire

function of exponential type < π satisfying f (t)(0) = f (t)(1) = 0 for all

sufficiently large t ∈ 2N. Then f is a polynomial.

Proof. We combine some arguments that we used for polynomials in

the three proofs of Lemma 1. Let f̃ = f−P , where P is the polynomial

satisfying

P (t)(0) = f (t)(0) and P (t)(1) = f (t)(1) for t ∈ 2N.

We have f̃ (t)(0) = f̃ (t)(1) = 0 for all t ∈ 2N.
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The functions f̃(z) and f̃(1− z) are odd, hence f̃(z) is periodic of

period 2. Therefore there exists a function g, analytic in C×, such that

f̃(z) = g(eπiz). Since f̃(z) has exponential type < π, using Cauchy’s

inequalities for the coefficients of the Laurent expansion of g at the

origin, we deduce f̃ = 0 and f = P . �

Theorem 2 is best possible in the following two directions:

• The entire function sin(πz) has exponential type π and satisfies

f (t)(0) = f (t)(1) = 0 for all t ∈ 2N.

• If we assume only f (t)(0) = f (t)(1) = 0 for all even t outside a finite

set, then the conclusion is still valid – this follows from Theorems 1

and 2. However, if we remove an infinite subset of conditions in the

assumptions of Theorem 2, then the conclusion is no more valid:

Lemma 3. Let E be an infinite subset of the set of (t, i) ∈ 2N×{0, 1}.
Then there exists a non countable set of transcendental entire functions

f of order 0, with rational Taylor coefficients at the origin, such that

f (t)(i) = 0 for all (t, i) ∈ (2N× {0, 1}) \ E.

Proof. Let (Pm)m≥0 be an infinite sequence of polynomials belonging

to the set {Λt,i | (t, i) ∈ E}. Let dm be the degree of Pm. We assume

the sequence (dm)m≥0 to be increasing. Let (cm)m≥0 be a sequence of

rational numbers such that

|Pm|r ≤ |cm|rdm

for all r ≥ 1 and m ≥ 0. For m ≥ 0, set

um =
1

cm(dm!)2
·

The series ∑
m≥0

umPm(z)

is uniformly convergent on any compact subset of C, its sum f(z) is

an entire function of order 0. From the uniform convergence of the
9



series, we deduce, for all t ∈ 2N and i ∈ {0, 1},

f (t)(i) =

um if Pm = Λt,i,

0 if Pm 6= Λt,i.

The conclusion of Lemma 3 follows. �

6. Expansion of entire functions and generating series

Lidstone finite expansion for polynomials (2) has been extended in

[4, 8] to an infinite expansion for entire functions of exponential type

< π as follows:

Theorem 3 (H. Poritsky, J. M. Whittaker 1932). The expansion (2)

holds for any entire function f of exponential type < π, where, for

each z ∈ C, the series∑
t∈2N

f (t)(0)Λt,0(z) and
∑
t∈2N

f (t)(1)Λt,1(z)

are absolutely convergent.

Notice that Theorem 2 is a consequence of Theorem 3.

We will deduce from Theorem 3 explicit formulae for the two fol-

lowing generating series:

M1(ζ, z) :=
∑
t∈2N

Λt,1(z)ζt and M0(ζ, z) :=
∑
t∈2N

Λt,0(z)ζt.

Corollary 1. For |ζ| < π, we have

M1(ζ, z) =
sinh(ζz)

sinh(ζ)
(6)

and

M0(ζ, z) = cosh(ζz)− sinh(ζz) coth(ζ). (7)

Since Λt,0(z) = Λt,1(1− z), we have M0(ζ, z) = M1(ζ, 1− z) and the

trigonometric relation

sinh(z1 − z2) = sinh(z1) cosh(z2)− cosh(z1) sinh(z2)

shows that the two formulae (6) and (7) are equivalent.
10



Proof of (6) as a consequence of Theorem 3. Let ζ ∈ C satisfy |ζ| <
π. We use Theorem 3 and formula (2) for the function fζ(z) = eζz.

Since f
(t)
ζ (0) = ζt and f

(t)
ζ (1) = eζζt, we deduce

eζz =
∑
t∈2N

Λt,0(z)ζt + eζ
∑
t∈2N

Λt,1(z)ζt. (8)

Replacing ζ with −ζ yields

e−ζz =
∑
t∈2N

Λt,0(z)ζt + e−ζ
∑
t∈2N

Λt,1(z)ζt.

Hence

eζz − e−ζz = (eζ − e−ζ)
∑
t∈2N

Λt,1(z)ζt.

This proves (6). �

From (6) one readily deduces the following relation [8, Equation(3.5)]

for t ∈ 2N,

Λt,1(z) =
2t+1

(t+ 1)!
Bt+1

(
1 + z

2

)
,

between the Lidstone polynomials and the Bernoulli polynomials; the

latter are defined by

t
etz − 1

et − 1
=
∞∑
n=1

Bn(z)
tn

n!
·

From Corollary 1 we deduce M1(ζ, z+ 1)−M1(ζ, z− 1) = 2 cosh(ζz),

which means

Λt,1(z + 1)− Λt,1(z − 1) = 2
zt

t!
·

This relation also follows from the functional equation

Bn(z + 1)−Bn(z) = nzn−1

of the Bernoulli polynomials.

Our proof of Theorem 3 below will rest on (6), hence we need to

give a direct proof of it.

Direct proof of (6). We start with the formula

eζz =
sinh(ζ(1− z))

sinh(ζ)
+ eζ

sinh(ζz)

sinh(ζ)
, (9)
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which holds for ζ ∈ C, ζ 6∈ πiZ and z ∈ C. For ζ ∈ C, ζ 6∈ πiZ, the

entire function

f(z) =
sinh(ζz)

sinh(ζ)
=

eζz − e−ζz

eζ − e−ζ

satisfies

f ′′ = ζ2f, f(0) = 0, f(1) = 1,

hence f (t)(0) = 0 and f (t)(1) = ζt for all t ∈ 2N.

For z ∈ C and |ζ| < π, let

F (ζ, z) =
sinh(ζz)

sinh(ζ)

with F (0, z) = z. Fix z ∈ C. The map ζ 7→ F (ζ, z) is analytic in

the disc |ζ| < π and is even: F (−ζ, z) = F (ζ, z). Consider its Taylor

expansion at the origin:

F (ζ, z) =
∑
t∈2N

ct(z)ζt

with c0(z) = z. For fixed z ∈ C, this Taylor series is absolutely and

uniformly convergent on any compact subset of the disc |ζ| < π. We

have F (ζ, 0) = 0, F (ζ, 1) = 1, and

F (ζ, z) =
eζz − e−ζz

eζ − e−ζ
·

From

ct(z) =
1

t!

(
∂

∂ζ

)t
F (0, z)

it follows that ct(z) is a polynomial. From(
∂

∂z

)2

F (ζ, z) = ζ2F (ζ, z)

we deduce

c′′t = ct−2 for t ∈ 2N, t ≥ 2.

Since ct(0) = ct(1) = 0 for t ∈ 2N, t ≥ 2, we deduce from Lemma 2

that ct(z) = Λt,1(z).

This completes the proof of (6), hence the proof of (8) for all ζ ∈ C
with |ζ| < π. �
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We are going to prove Theorem 3 by means of the Laplace transform,

which is a special case of the method of kernel expansion of R.C. Buck

[2]; see also [1, Chap.I §3]. Let

f(z) =
∑
k≥0

ak
k!
zk

be an entire function of exponential type τ(f). The Laplace transform

of f , viz.

F (ζ) =
∑
k≥0

akζ
−k−1, (10)

is analytic in the domain {ζ ∈ C | |ζ| > τ(f)}. From Cauchy’s

residue Theorem we deduce, for r > 0,

1

2πi

∫
|ζ|=r

eζzζ−k−1dζ =
zk

k!
· (11)

From the absolute and uniform convergence of the series in the right

hand side of (10) on |ζ| = r, it follows that for r > τ(f) we have

f(z) =
1

2πi

∫
|ζ|=r

eζzF (ζ)dζ

and

f (t)(z) =
1

2πi

∫
|ζ|=r

ζteζzF (ζ)dζ.

Proof of Theorem 3. Let f be an entire function of exponential type

τ(f) satisfying τ(f) < π. Let r satisfy τ(f) < r < π. From the

uniform convergence of the series (8) on the compact set {ζ ∈ C |
|ζ| = r}, we deduce

f(z) =
∑
t∈2N

(
1

2πi

∫
|ζ|=r

ζtF (ζ)dζ

)
Λt,0(z)+

∑
t∈2N

(
1

2πi

∫
|ζ|=r

ζteζF (ζ)dζ

)
Λt,1(z),

and therefore (formula of Poritsky and Whittaker (2) for entire func-

tions of exponential type < π)

f(z) =
∑
t∈2N

f (t)(0)Λt,0(z) +
∑
t∈2N

f (t)(1)Λt,1(z),

13



where the two series are absolutely convergent.

This completes the proof of Theorem 3. �

7. Integral formulae for Lidstone polynomials

Using Cauchy’s residue Theorem, we deduce from (6) the following

integral formula [8, (4.1)]:

Proposition 1. For z ∈ C, t ∈ 2N and K ≥ 0, we have

Λt,1(z) = (−1)t/2
2

πt+1

K∑
k=1

(−1)k+1

kt+1
sin
(
kπz

)
+

1

2πi

∫
|ζ|=(2K+1)π/2

ζ−t−1
sinh(ζz)

sinh(ζ)
dζ.

Proof. Let z ∈ C. Inside the disc {ζ ∈ C | |ζ| ≤ (2K + 1)π/2}, the

function ζ 7→ ζ−t−1 sinh(ζz)
sinh(ζ)

has a pole of order t + 1 at ζ = 0 and only

simple poles at ζ = kπi with k ∈ Z, 0 < |k| ≤ K. The residue at 0 is

Λt,1(z), while for k ∈ Z \ {0}, the residue at kπi is

(−1)ki−t(kπ)−t−1 sin
(
kπz

)
. (12)

Since t is even, the function is odd and the residues at kπi and at

−kπi are the same. �

In particular, with K = 1 we have [8, (4.3)]

Λt,1(z) = (−1)t/2
2

πt+1
sin(πz) +

1

2πi

∫
|ζ|=3π/2

ζ−t−1
sinh(ζz)

sinh(ζ)
dζ.

Since | sinh(ζ)| ≥ 1 for |ζ| = 3π/2, one deduces, for t ≥ 0 and r > 0,
∣∣∣∣Λt,1(z)− (−1)t/2

2

πt+1
sin(πz)

∣∣∣∣ ≤ ( 2

3π

)t
e3πr/2,∣∣∣∣Λt,0(z)− (−1)t/2

2

πt+1
sin(πz)

∣∣∣∣ ≤ e3π/2
(

2

3π

)t
e3πr/2.

(13)

These estimates enable Whittaker [8, Theorem 1] to solve the Lidstone

interpolation problem as follows. Let (at)t∈2N and (bt)t∈2N be two

sequences of complex numbers. If the series∑
t∈2N

(−1)t/2
at
πt

and
∑
t∈2N

(−1)t/2
bt
πt

14



are convergent, then ∑
t∈2N

atΛt,0(z) +
∑
t∈2N

btΛt,1(z) (14)

is uniformly convergent on any compact of C and its sum f(z) is an

entire function satisfying

f (t)(0) = at and f (t)(1) = bt for all t ∈ 2N.

If one of the series ∑
t∈2N

(−1)t/2
at
πt
,
∑
t∈2N

(−1)t/2
bt
πt

is not convergent, then (14) cannot converge for any non integral value

of z.

Another consequence of (13) is, for t ∈ 2N and r ≥ 0,

|Λt,1|r ≤ 2π−te3πr/2 and |Λt,0|r ≤ 2e3π/2π−te3πr/2. (15)

We now prove another integral formula for the polynomials Λt,0.

Proposition 2. For t ∈ 2N and for K ≥ 0, we have

Λt,0(z) =
zt

t!
+(−1)t/2

2

πt+1

K∑
k=1

1

kt+1
sin
(
kπz

)
− 1

2πi

∫
|ζ|=(2K+1)π/2

ζ−t−1 sinh(ζz) coth(ζ)dζ.

Proof. Proposition 2 is equivalent to Proposition 1 by changing the

variable z to 1 − z. We give another proof by repeating the same

arguments as for the proof of Proposition 1. Inside the disc {ζ ∈ C |
|ζ| ≤ (2K + 1)π/2}, the function ζ 7→ ζ−t−1 sinh(ζz) coth(ζ) has only

simple poles at kπi with k ∈ Z, |k| ≤ K. From (7), it follows that the

residue at ζ = 0 is
zt

t!
− Λt,0(z),

while for k ∈ Z \ {0}, the residue at kπi is

i−t(kπ)−t−1 sin
(
kπz

)
. (16)

Since t is even, the function we integrate is odd and the residues at

kπi and at −kπi are the same. �
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8. Functions of finite exponential type

We follow [2]. Let K ≥ 1. The function ζ 7→ sinh(ζz)
sinh(ζ)

is even and has

only simple poles at kπi with k ∈ Z \ {0}, with residue given by (12)

with t = −1, namely (−1)ki sin(kπz). The sum of the residues at k

and −k is 0 and we have1

(−1)ki sin(kπz)

ζ − kπi
− (−1)ki sin(kπz)

ζ + kπi
= 2π(−1)k+1k sin(kπz)

ζ2 + k2π2
·

Hence the function GK(ζ, z) defined by

sinh(ζz)

sinh(ζ)
= 2π

K∑
k=1

(−1)k+1k sin(kπz)

ζ2 + k2π2
+GK(ζ, z) (17)

is analytic in the domain
{

(ζ, z) ∈ C2 | |ζ| < (K+ 1)π
}

. Notice that

for |ζ| < kπ and k ≥ 1 we have

1

ζ2 + k2π2
=
∑
t∈2N

(iζ)t

(kπ)t+2
·

The function z 7→ GK(ζ, z) is odd. Since the function ζ 7→ GK(ζ, z)

is even, its Taylor expansion at the origin can be written

GK(ζ, z) =
∑
t∈2N

gt(z)ζt

where the functions gt(z) are odd entire functions. This Taylor series

is absolutely and uniformly convergent for ζ in any compact subset of

the disc {ζ ∈ C | |ζ| < (K + 1)π}. The Taylor coefficient gt(z) is

the sum of Λt,1(z) and a finite trigonometric sum of exponential type

≤ Kπ, namely

gt(z) = Λt,1(z) + 2(−1)t/2
K∑
k=1

(−1)k(kπ)−t−1 sin(kπz).

Using (9) we deduce, for |ζ| < (K + 1)π,

eζz =
∑
t∈2N

gt(1−z)ζt+eζ
∑
t∈2N

gt(z)ζt+2π
K∑
k=1

k sin(kπz)

ζ2 + k2π2

(
1 + (−1)k+1eζ

)
.

(18)

1A factor 2 is missing in [2, p.795] and [1, Chap.I §4 p.15].
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Proposition 3 (R.C. Buck, 1955). Let K be a positive integer. Let f

be an entire function of finite exponential type τ(f) < (K + 1)π and

let F (ζ) be the Laplace transform of f . Then for z ∈ C we have

f(z) =
∑
t∈2N

f (t)(0)gt(1− z) +
∑
t∈2N

f (t)(1)gt(z) +
K∑
k=1

Ck sin(kπz),

where the series are absolutely convergent and

Ck = −ki

∫
|ζ|=r

1 + (−1)k+1eζ

ζ2 + k2π2
F (ζ)dζ (1 ≤ k ≤ K) (19)

for any r in the range τ(f) < r < (K + 1)π.

Proof. Let r satisfy τ(f) < r < (K + 1)π. From the absolute and

uniform convergence on |ζ| = r of the series in the right hand side of

(18), we deduce

f(z) =
1

2πi

∫
|ζ|=r

eζzF (ζ)dζ

=
∑
t∈2N

gt(1− z)
1

2πi

∫
|ζ|=r

ζtF (ζ)dζ +
∑
t∈2N

gt(z)
1

2πi

∫
|ζ|=r

ζteζF (ζ)dζ

+
K∑
k=1

Ck sin(kπz),

with

1

2πi

∫
|ζ|=r

ζtF (ζ)dζ = f (t)(0) and
1

2πi

∫
|ζ|=r

ζteζF (ζ)dζ = f (t)(1).

�

Example. The Laplace transform of f(z) = sin(πz) is F (ζ) = π
ζ2+π2

and for π < r < 2π we have∫
|ζ|=r

1 + eζ

(ζ2 + π2)2
dζ =

i

π
,

hence for this function f , we have

C1 = −i

∫
|ζ|=r

1 + eζ

ζ2 + π2
F (ζ)dζ = −iπ

∫
|ζ|=r

1 + eζ

(ζ2 + π2)2
dζ = 1,

as expected.
17



In [6] and [7], we will need the following variant of (17). The func-

tion HK(ζ, z) defined by

sinh(ζz) coth(ζ) = −2π
K∑
k=1

k sin(kπz)

ζ2 + k2π2
+HK(ζ, z), (20)

is analytic in the domain
{

(ζ, z) ∈ C2 | |ζ| < (K + 1)π
}

. The map

ζ 7→ HK(ζ, z) is even and the map z 7→ HK(ζ, z) is odd. Replacing z

with 1− z in (17) yields

HK(ζ, z) = cosh(ζz)−GK(ζ, 1− z).

Corollary 2 (I.J. Schoenberg, 1936). Let f be an entire function of

finite exponential type τ(f) satisfying f (t)(0) = f (t)(1) = 0 for all

t ∈ 2N. Then

f(z) =
K∑
k=1

Ck sin(kπz).

with K ≤ τ(f)/π and with the constants C1, . . . , CK given by (19).

A side result is that the exponential type τ(f) of a function f sat-

isfying the assumption of Corollary 2 is an integer multiple of π.
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