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Highlights 

1. Detection of chatter in industrial machining using Fast Fourier Transform and deep
learning.

2. The dataset is obtained via transformations on the vibratory signal of the machining
process with the help of a professional expert.

3. The proposed approach uses pre-trained models for feature extraction and classification.

4. The model trained on the unambiguous signal can be generalized by classifying
ambiguous and unambiguous signals.

5. The model has been trained on renormalized signals, showing its ability to detect chatter
without amplitude information.
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Abstract 
Most of the work on chatter detection is based on laboratory machining tests, thus without the 
constraints of noise, the variety of situations to be managed in the industry, and the uncertainties 
on the parameters (sensor position, tool engagement, and sometimes even spindle rotation 
frequency). This work presents an approach first based on mechanical skills first to identify the 
optimal signal processing, then based on deep learning to automatically detect the phenomenon 
of chatter in machining. To do so, we use input images from the Fast Fourier Transform analysis 
of a vibration signal from the machining of an Alstom industrial railway system. The FFT 
images are first cropped in height to perform a renormalization of the signal scale. This 
renormalization step eliminates a bias regularly observed in the literature, which did not 
eliminate a simple correlation with signal amplitude because chatter is often, but not always, 
associated with stronger vibrations. Deep learning extracted features from the image data by 
exploiting pre-trained deep neural networks such as VGG16 and ResNet50. The data is derived 
from an industrial vibration signal (with noise, a not ideally placed sensors, and uncertainties 
on process parameters), which was very poorly represented in the literature. It is shown that by 
depleting the signal (renormalized amplitude and absence of information on the rotation speed), 
the model obtains a good result (an accuracy of 99% in the training and validation phases), 
which had never been done in the literature. In addition, since a part of the test dataset is similar 
to the training dataset, the proposed model obtains an accuracy of 98.82%. The robustness is 
proved by adding another test dataset containing noisy and more or less ambiguous images to 
be classified. The model still manages to detect these cases from its training of unambiguous 
cases, showing that the obtained generalization is efficient with an accuracy of 73.71%. 

Keywords: deep learning; vibration signal analysis; chatter; fault detection; Fourier transform;
machining. 
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1. Introduction
Chatter, described by several historical authors (Taylor, 1907; Tobias and Fishwick, 1958), 
corresponds to the interaction between a part and a cutting tool in a machining process. Chatter 
results in irregular marks (defects) on a machined surface. It represents one of the most complex 
difficulties in typical machining processes, such as turning, milling, drilling, and grinding. 

Vibration measurements are widely applied in machine monitoring, allowing quick and 
accurate detection of rotating machine malfunctions (Manhertz and Bereczky, 2021). Vibration 
analysis of signals can provide status indicators of existing vibration phenomena, help ensure 
the quality of machined parts, and facilitate decision-making to remedy problems. Analysis 
techniques can detect weak signals as early as possible by establishing real trend curves 
(Vishwakarma et al., 2017). A vibration spectrum is data in which it is possible to read 
extremely tenuous defects, such as the chipping of a ball in a bearing. Vibration analysis of 
signals is one of the most popular ways to monitor the condition of rotating machines in 
operation (Nirwan and Ramani, 2021). 

The identification, stability, and detection of chatter have been growing research areas for 
decades. Recent research on machining chatter detection focuses on advanced applications of 
machine learning or deep learning due to their ability to solve highly complex and non-linear 
problems related to high-dimensional datasets (Goodfellow et al., 2017; LeCun et al., 2015). 
Artificial Intelligence (AI) applied to vibration analysis would be helpful for both experts and 
non-specialists. For the former, it would avoid wasting time analyzing signals from machines 
in good condition or with apparent defects. Experts could monitor a more extensive fleet and 
spend more time on complex cases to reduce the risk of error in the analysis. For non-experts, 
artificial intelligence would allow them to propose a relatively reliable first diagnosis, giving 
them new autonomy in their decision-making and optimizing the call to experts. 

Over time, research has focused on AI applied to the industrial domain, and many studies show 
(Angelopoulos et al., 2019; Lee and Lim, 2021; Usuga Cadavid et al., 2020) that these 
techniques are among the main catalysts for moving a traditional manufacturing system to 
Industry 4.0. With the digital development of the manufacturing industry, manufacturing 
processes have become more diverse, automated, and customized. The multiple requirements 
for manufacturing parts have increased significantly. Anomalies in the machining process must 
be systematically detected, whether they are easily observable, such as in finishing operations, 
or not, such as in roughing operations, which are usually not subject to systematic observation. 
The productivity of any milling operation relies on the ability to remove the material as quickly 
as possible (Arriaza et al., 2018). However, the material removal rate is reduced due to chatter 
and all the accompanying side effects, such as poor surface finish, tool damage, spindle damage, 
and noise, for example. Researchers have developed several methodologies to control chatter 
(Yan and Sun, 2021), but this phenomenon still limits the productivity of most machining 
operations. 

Most existing chatter detection methods are based on chatter indicators that extract features 
from the signal, usually a simple scalar number. Still, the thresholds of the chatter indicators 
designed in this way must usually be identified manually for each cutting condition under 
consideration. The data-based automatic chatter detection problem can be considered a 
classification case in machine learning (El-Sappagh et al., 2020).  
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this paper, we seek to demonstrate that deep learning is capable of detecting chatter on an  In 
industrial signal, considering that the amplitude of the signal and the rotation frequency are in 
fact, not reliable information. The method is composed of two types of transformation: a 
transformation on the physics (from the time domain to the frequency domain) and a 
transformation on the data by exploiting several pre-trained networks, VGG16 and ResNet50. 
This distinguishes the proposed model from classical monitoring methods that are generally 
based on signal amplitude and frequency peak analysis while knowing the rotation speeds very 
precisely. 

Most of the methods, probably all of them, explicitly or not, are based on analyzing the 
amplitude of the vibration signal and/or comparing the measured frequencies with the spindle 
rotation frequency. However, in laboratory tests, the correlation between the chatter 
phenomenon, the vibration amplitude, and the frequencies that appear is most of the time trivial, 
raising questions about the interest in the sophisticated detection methods proposed. 

In an industrial situation, this amplitude and frequency information is only sometimes very 
reliable due to the highly variable position of the sensors and the fact that secondary 
maintenance operations often create a discrepancy between the real and assumed rotation speed. 
Thus, to determine if our approach would be of real interest in an industrial situation, we chose 
to erase the information on the spindle speed and the average amplitude of the signal. Then, we 
use transfer learning methods to extract the features. These methods extract the features from 
the raw signal image data to detect machining phases related to vibration phenomena during 
the machining process: chatter, machining without chatter, and rotation without machining. 

The rest of this paper is organized as follows. Section 2 provides the state of the art of deep 
learning applications for monitoring and detecting faults in machining processes. Section 3 
discusses the proposed approach for the detection of chatter in machining. Section 4 presents 
the chatter detection results of the proposed method. The discussion and the conclusion are 
presented in Section 5. 

2. State of the Art
In the literature, two groups of authors have been identified in the study of the chatter 
phenomenon (Kounta et al., 2022). The first group of authors publishing historically on 
machining and, in particular, machining chatter (J. Tlusty, Y. Altintas, J. Munoa, etc.), and 
authors publishing on sensors (H.O. Unver, B. Sener, etc.) who have developed others chatter 
detection techniques.  

Several works in the literature seek to detect chatter with signal processing techniques (FFT, 
STFT, WT, EMD, HHT, etc.) and have shown some effectiveness for the task (Xu et al., 2006). 
The authors (Huda et al., 2020) experimented, for example, with a turning process, simply 
correlating the chatter to the amplitude signal and specific peaks in FFT. They collect two types 
of signals (normal and chatter) with a microphone very near the machining zone. (Ding et al., 
2010) measured the cutting force using a dynamometer table in the machine and applied an FFT 
to identify the chatter by comparing the power spectrum with a predefined peak threshold. 
(Chen et al., 2019) propose an approach to extracting the chattering characteristics from an 
accelerometer sensor signal (put on a dynamometer table), by analyzing the images of the 
dominant frequency bands through the spectrograms from the STFT. (Afazov and Scrimieri, 
2020), as many other studies, detect chatter with the FFT on the measured cutting forces. The 
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wavelet transform (WT) has also been applied to the cutting force measured by a dynamometer 
table, to detect chatter (Yoon and Chin, 2005). Some authors also use analytical and numerical 
methods, such as the stability lobe theory, to better identify chatter frequencies (Altintaş and 
Budak, 1995; Smith and Tlusty, 1993). 

These analysis techniques have always had difficulty detecting chatter at an early stage, i.e., 
before the amplitude of the vibrations is already significant, and visible on the amplitude of the 
signal, and before it is too late to preserve the quality of the part. 

The chatter is mathematically described by strongly non-linear equations, mainly because of a 
delay term in differential equations of the mass-spring type, which are not easy to master from 
a mathematical or numerical point of view. Signal processing tools or analytical methods 
usually relies on identifying a threshold that characterizes the occurrence of chatter. This task, 
traditionally performed by an expert, can be facilitated by machine learning methods. Machine 
learning methods SVM and ANN (HongQi et al., 2011; Yao et al., 2010) are commonly applied 
in vibration signal analysis. An intelligent multi-sensor monitoring system with three units for 
turning processes is proposed by (Zhang and Shin, 2018). The three units are implemented by 
integrating two low-cost sensors, an energy meter, and an accelerometer. This integrated 
monitoring device provides high prediction accuracy for all three process conditions, 
generalized applicability over various operating conditions, and satisfactory robustness to 
process and measurement uncertainties. For chatter detection, they achieve 96.88% accuracy 
even when changing the configuration. (Chen and Zheng, 2018) and (Zheng et al., 2022) 
propose a chatter detection method in end milling based on wavelet packet transform (WPT) 
and SVM as feature extractors. (L. Zhu et al., 2020) decompose the raw cutting force signal by 
the EEMD function to obtain a set of Intrinsic Mode Functions (IFMs). The principal 
component analysis method retained the IFMs containing chatter situations and underwent a 
dimension reduction process. A non-linear SVM then performs the detection process. 
(Shrivastava and Singh, 2019) propose another machine learning method, by the artificial neural 
network, to predict tool chatter in a turning process. (Khasawneh et al., 2018) combine 
supervised machine learning with topological data analysis (TDA) to produce a process 
descriptor capable of detecting chatter. 

These methods are developed in three steps: data collection, feature extraction, and model 
training. The decision phase then requires no human intervention, but there are some 
limitations, such as sensitivity to measurement errors and expert labeling of training data. These 
limitations can be addressed by unsupervised learning techniques such as the K-means method 
(Dun et al., 2021) which does not require labeling, or by deep learning methods. 

For the design of methods capable of detecting abnormal behavior on machines, deep learning 
allows the development of new diagnostic techniques for monitoring the vibration signal. Deep 
learning aims to develop algorithms allowing modeling with a high level of data abstraction via 
architectures with cascades of linear and non-linear operations. This learning is notably related 
to classification (discrete outputs) or regression (continuous outputs) to predict the answers to 
questions asked on extensive datasets (LeCun et al., 2015). Deep learning has become a popular 
technique for extracting information (features) from data due to its ability to process raw data 
and automatically recognize features across multiple levels of abstraction (Glaeser et al., 2021). 

Integrating deep learning into intelligent fault diagnosis of rotating machines has achieved great 
success and benefited industrial applications (Zhang et al., 2021). Compared to conventional 
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machine learning, deep learning automatically extracts features at a higher level and merges 
feature extraction and classification into a single structure so that a large amount of trial and 
error is not required, resulting in reliable performance (Janiesch et al., 2021; Wang et al., 2021). 
Problem anticipation in the industrial context is paramount for identifying weak signals and 
reducing response times. The objectives are multiple: (i) the reduction of the number of 
breakdowns, (ii) the reliability of the production tool, (iii) the increase of the availability rate, 
and (iv) the improvement of the spare parts stock management. Indeed, from the vibrations 
regularly collected on a rotating machine, the vibration analysis consists of detecting or 
anticipating possible malfunctions (Glowacz et al., 2019). 

Detecting these malfunctions will often be done via image processing which benefits from a set 
of detection and analysis methods to allow the automation of a specific task. This technology 
can classify objects or detect an anomaly or a manufacturing defect in an image. Segmentation 
also represents a detection task to locate an element on an image to the nearest pixel. Image 
analysis thus offers powerful means to visualize and recognize the defects identified on the 
systems considered. 

According to (Hoang and Kang, 2019), intelligent defect detection comprises three steps: data 
collection, feature extraction, and defect classification. Vibration sensors are widely used for 
data collection due to their availability and high sensitivities. This process depends on the data 
that reflects the problem at hand. There are several tools to transform the signals obtained from 
these sensors, such as Fourier transform (Bengherbia et al., 2020; Lin et al., 2016), Mortelet 
wavelets (Behera et al., 2021), and Daubechies, Mallat, and Meyer wavelet packet transform 
(Xiong et al., 2020). The feature extraction process is essential for obtaining good accuracy in 
intelligent sensing. This process is divided into two types, physics-based and data-based 
methods. Physics-based methods usually extract features from the time, frequency, and time-
frequency domains. Data-driven strategies use machine or deep learning techniques to extract 
the most informative features from the data available (any sensors, image, or text information). 

(Liao et al., 2021) propose a method for monitoring the manufacturing process through the 
fusion of time-frequency analysis and deep neural networks. Acoustic emission signals were 
acquired during turning operations with different spindle speeds, feed rates, and depths of cut. 
It can be seen in the literature review that the authors address problems such as process and 
machine condition monitoring in real time, detection and diagnosis of bearing faults in rotating 
machines, and chatter detection by taking into account aspects such as the change in rotational 
speed, feed rate, and very generally the average band frequency amplitude. 

A hybrid model that combines a pre-trained deep neural network Alexnet (Krizhevsky et al., 
2012) and a model based on self-excited vibration theory, based on short-term Fourier transform 
STFT has been used by (Unver and Sener, 2021) to detect chatter. (Sener et al., 2021) apply the 
continuous wavelet transform for signal preprocessing by obtaining images rich in chatter 
information. These images are then exploited as training data for a deep neural network. (Tran 
et al., 2020) present an approach for real-time chatter detection. This approach is based on the 
continuous wavelet transform scalogram and convolutional neural networks to predict states 
(stable, transient, and unstable). A transfer learning model composed of analytical solutions and 
a convolutional neural network (CNN) is proposed by (Unver and Sener, 2021) to detect the 
chatter without the need for real data for the training phase, but trivially based on an RMS 
threshold. (Shi et al., 2020) use a variant of LSTM to detect chatter in high-speed milling 
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processes. On-line chatter detection based on the current signal from a CNC machine is 
presented by (Vashisht and Peng, 2020). An LSTM is then trained to detect chatter found on 
the simulated sequence of control currents. 

In the literature, many deep learning techniques have obtained satisfactory results. These studies 
generally use data from machining conditions far from industrial applications, but some papers 
use realistic cutting conditions. 

In this paper, we develop a machine learning method that uses vibration analysis, with specific 
processing of FFT images, to eliminate possible biases on the known amplitude and 
frequencies. Then deep learning is used for machining chatter detection, with an additional 
verification phase on a very different dataset, so-called ambiguous signals, not used during the 
training.  

3. The proposed Approach
The proposed process in this work contains multiple steps Figure 1, which are data acquisition, 
foundation building, deep learning training, validation, and testing of the proposed deep 
learning model, as well as the extraction of features and construction of the chatter detection 
model in machining. All these steps will be detailed in the following subsections. 
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ambiguous signals not used before. Image features are extracted from the dataset by a pre-
trained model to train the classification or chatter detection model. The last step will evaluate 
and verify the model's generalization capability on the two test dataset. 

3.1. Data acquisition 

In machining vibration analysis, the time signal is a crucial element. It represents the 
information transmitted by the machine tool’s sensors from the stresses generated by the 
mechanical manufacturing process. As the first step in any measurement, vibration analyzers 
record this time signal and then process it to extract various characteristics. Generally, the size 
of the time signal for analysis depends fundamentally on the sampling frequency and the period 
considered. A wrong setting of these parameters can easily lead to a signal that does not reveal 
any anomaly information, despite the existence of defects. In this case study, the time signal 
was recorded using a Kistler accelerometer type 8776A50M6, magnetized to the workpiece 
holder, connected to a Roga Plug-n-Daq signal conditioner, and recorded at 22 kHz using 
Audacity software. The measurements were made during a machining process of Alstom 
Transport for the milling of TGV train car walls, illustrated in Figure 2. 

Figure 2. Milling process of a TGV train car wall (length ≈20 meters). (Image from the machining center of Alstom industry) 

After analysis of the signal with the help of an expert in machining vibration analysis, several 
machining phases were identified: rotation without machining, machining without chatter, and 
machining with chatter. The expert made precise identification and labeled these distinct phases 
of the signal in a spreadsheet file containing the period and label of each phase. We then 
exported the signal in .wav format and renormalized the signal. An example of the temporal 
signal used for data collection is visualized in Figure 3, which shows a substantial variation of 
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VGG16 (Figure 6) is a large convolutional neural network model with 138 million parameters 
widely used on ImangeNet. 

Figure 6. The architecture of the VGG16 model was proposed by (Pandiyan et al., 2019). 

ResNet50 is one of the most popular convolutional neural network architectures. It is a 50-layer 
deep neural network model with 48 convolution layers, a MaxPooling layer, and an Average 
Pooling layer Figure 7. The ResNet50 solved the problem of overlearning and accuracy 
saturation due to increasing network depth. This model uses two kinds of residual bottleneck 
blocks (Identity Block and Convolution Block) to reduce the number of parameters and matrix 
multiplications. 

Figure 7.  Architecture of ResNet50 model proposed by (S. Jahromi et al., 2019). 

These pre-trained models are fitted to the dataset for vibration chatter detection in machining. 
In deep learning, a convolutional neural network comprises two major parts, a lower part to 
extract features useful for image recognition and an upper part for the classification task. Only 
the bottom portion for feature extraction is considered, and the classification part is adapted to 
the dataset of this case study since the VGG16 model, for example, has 1000 classes. 
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 Table 3, the most influential and essential factors are precision and the F1 score. The higher      In
 this score, the better the model used. 

Table 3. Classification report 

Precision % Recall % F1-score %  support 
Machining with chatter 100 100 100 1544 
Machining without chatter 93 100 96 733 
Rotation without machining 100 98 99 2814 

Precision is the ratio between the number of individuals correctly assigned to a class and the 
total number of individuals assigned to the class. Recall defines the ratio between the number 
of individuals correctly assigned to a class and the number of individuals belonging to the class. 
The F1-score combines the model's accuracy and recall, defined as the harmonic mean of the 
model's accuracy and recall. 

To show the ability of a deep learning model to predict, we compare its result to reality by 
exploiting the confusion matrix. In Figure 11 and  Figure 12, we can visualize the calculation 
of the confusion matrix on our test dataset. 

Figure 11. Confusion matrix on unambiguous data. 
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Figure 12. Confusion matrix on ambiguous data. 

From 1544 samples of noiseless test data in the class machining with the chatter, see the first 
row in Figure 11 only five images were misclassified into the machining class without chatter. 
All images in the rotation without machining class are true positives. From 2814 images in the 
machining without chatter class, 55 are classified into the rotation without machining class, and 
the remaining 2759 are well classified. After evaluating the ambiguous data, the model obtains 
a prediction accuracy of 74%. It can be seen in Figure 12 that most of this discrepancy is in the 
class machining without chatter, of which 48 items are considered machining with chatter (the 
human expert has also struggled to classify this category). 

On each matrix column, we find a class predicted by our model and the representations of the 
real classes. There are generally four categories in the matrix: 

True Positive (TP): means that the prediction and the actual value are positive. 

True Negative (TN): the prediction and the actual value are all negative. 

False Positive (FP): the prediction is positive while the actual value is negative. 

False Negative (FN): the prediction is negative while the actual value is negative. 

To evaluate the output density of our three classes, we plot a curve (Figure 13) called ROC 
(Receiver Operating Characteristic), which calculates the ratio between the true positive rate 
(TPR) and the false positive rate (FPR). 
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propose the combination of empirical ensemble mode decomposition (EEMD) and 
dimensionless non-linear indicators to detect chattering. EEMD focuses on the raw signal due 
to its suitability for decomposing non-linear and non-stationary signals. Correlation analysis is 
applied to obtain the chatter-related components of the intrinsic mode function (IMF). 
Subsequently, the non-linear sample entropy (SE) and energy entropy (EE) of IMFs can be 
extracted as two indicators. (Tran et al., 2020) use CWT to transform one-dimensional time-
domain signals into a two0-dimensional time-domain representation. The multi-resolution 
analysis performed by CWT is advantageous for analyzing non-linear and non-stationary 
signals. (Rahimi et al., 2021) Apply a neural network model combined with a physics-based 
model to detect chatter in milling. Data collected during machining are converted to short-term 
moving frequency spectrum using the STFT transformation process, whose features are mapped 
to five machining states, such as air cutting, workpiece entry and exit, stable cutting, and chatter 
conditions. These studies have achieved very good performance in terms of learning accuracy. 
However, the data collected in these studies are from laboratory vibration signals that do not 
represent actual industrial machining conditions. In addition, the vibration amplitude is still 
strongly related to the chatter in the data from these studies. 

As we can see in our normalized data, our model is good enough to classify the machining type 
without considering the known rotation speed or amplitude of the signal, which is remarkable 
and distinguishes it from the bibliography. After learning and validating the data with our 
model, excellent results are obtained with an accuracy of 99.71% for vgg16 and 99.67% for 
resnet50. Table 4 presents a list of some of the works that have used artificial intelligence 
techniques to detect chatter with the best performance in terms of classification accuracy. 

Table 4. List of some of the best-performing works in terms of classification accuracy. 

REF. Pretreatment Input Data Classification Precision 

This paper FFT Images FFT Multilabel 99,71 % 

(Sener et al., 2021) CWT Images-
cutting 
parameters 

Multilabel 99,88 % 

(W. Zhu et al., 2020) Size reduction  Images Binary 98,26 % 

(Tran et al., 2020) CWT Images Multilabel 99,67 % 

(Rahimi et al., 2021) STFT Images Multilabel 98,90 % 

The model needs the FFT image as input, which is very easy to generate, and some labeled data 
on typical signals to train the model. It takes care of itself to classify these images into their 
respective classes. We tested the model to see how well it can generalize the prediction obtained 
with unambiguous signals containing the purest information for detecting machining types and 
other ambiguous signals with somewhat less refined cases. Our test results on the ambiguous 
signal showed us that learning could be done on simple data and that recognition naturally 
works well on more complex data. These ambiguous signals generally make human analysis 
difficult, and since these signals may be brief, there is little data available to perform training 
on such signals. Our multiple trials before showed us that this recognition capacity is due to the 
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data and then group them into subsets of similar elements (clustering). With unsupervised 
learning, the model could go so far as to tell us about a change in behavior on a machine and 
show us where the change comes from. It could even feed the expertise by discovering clues in 
the data that remain invisible to the expert's eye for the moment, as mentioned in the previous 
chapter, notably by methodically exploring different resolutions of FFT and STFT analysis, 
which the expert generally does not have the time to do. The data extracted by the different 
transformation techniques (FFT, STFT) could then be categorized by unsupervised techniques 
such as the K-nearest neighbor (KNN) or K-means algorithm. The clusters obtained by these 
methods are considered as classes and will serve as input data for a supervised learning model. 
The goal of unsupervised learning is to alleviate the process of labeling the signal by the expert. 

To better understand the black-box nature of deep learning models, we plan to use explainability 
methods (GradCAM, lime, etc.) on the detection model prediction to visualize the operation of 
these deep neural networks, and pass the information to the machinist or expert. The aim is to 
provide information that can be understood by humans, allowing them to understand on which 
aspects these methods are based to detect this or that machining state in the images provided. 
The visual explanation method Gradient-weighted Class Activation Mapping (GradCAM) 
proposed by (Selvaraju et al., 2016) is an example of making decisions more transparent on 
CNN-based models. GradCam is applicable to any type of concept (data) introduced in a 
classification neural network. This technique explores the network from the convolution layer 
to the final layer to produce a localization map of the determining features. It highlights the 
important regions of the image that led to an accurate response. (Kim and Kim, 2020) used this 
technique for the diagnosis of rolling defects. Local Interpretable Model-Agnostic Explanations 
(LIME) is also one of the visualization methods that contributes to the explanation of individual 
predictions. This technique is independent of the prediction model and can therefore be applied 
to any supervised regression or classification model. LIME presented by (Ribeiro et al., 2016) 
is applicable to three types of data (spreadsheet, text, and images). The idea would be that after 
the realization of the phases of extraction of the characteristics and the classification of the 
images (spectrograms and spectrum) resulting from the STFT and FFT on the vibratory signal 
of machining, the models of visual explanations XAI are applied on the predictions to obtain a 
better discernment between the machining phases. 

6. Conclusion
In this paper, the proposed approach combines vibration analysis and deep learning to detect 
chatter in an industrial machining process, with no-optimal sensor placement and real 
machining noise and uncertainties (about the real spindle). With the raw signal at the source, a 
powerful model was developed for detecting the different machining phases by applying the 
Fast Fourier Transform on the signal to generate the images that trained the model. The use of 
pre-trained networks using transfer learning allowed us to extract features from the data to 
support a generalization of the model. In the classical method of vibration analysis, several 
parameters are taken into account, explicitly or implicitly, to define the different phases, 
particularly the amplitude of the signal and the peak frequencies relative to rotation speed. In a 
real industrial context, this information is not always reliable and may mislead analysis; thus, 
it would be helpful to identify chatter without this information. 

The results of the verification and visualization by the ROC curve and the confusion matrix 
show that the application of deep learning techniques on industrial machining data obtains 
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excellent performances. It is essential to know that the signal's amplitude is not transmitted to 
the network (each FFT is recalibrated to its maximum value) nor the rotation speed (several 
rotation speeds were considered in the datasets). The model thus shows its capacity to identify 
characteristic information of the chatter in the spectrum and adapt itself to several rotation 
speeds, which puzzled the expert who labeled the training dataset. Moreover, some test data are 
similar to the training dataset, but one part is more equivocal. Again, the neural network 
detected these more complex cases well from its training on the easy cases. 
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