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Highlights

1. Detection of chatter in industrial machining using Fast Fourier Transform and deep
learning.
2. The dataset is obtained via transformations on the vibratory signal of the machining

process with the help of a professional expert.
3. The proposed approach uses pre-trained models for feature extraction and classification.

4. The model trained on the unambiguous signal can be generalized by classifying
ambiguous and unambiguous signals.

5. The model has been trained on renormalized signals, showing its ability to detect chatter
without amplitude information.



Abstract

Most of the work on chatter detection is based on laboratory machining tests, thus without the
constraints of noise, the variety of situations to be managed in the industry, and the uncertainties
on the parameters (sensor position, tool engagement, and sometimes even spindle rotation
frequency). This work presents an approach first based on mechanical skills first to identify the
optimal signal processing, then based on deep learning to automatically detect the phenomenon
of chatter in machining. To do so, we use input images from the Fast Fourier Transform analysis
of a vibration signal from the machining of an Alstom industrial railway system. The FFT
images are first cropped in height to perform a renormalization of the signal scale. This
renormalization step eliminates a bias regularly observed in the literature, which did not
eliminate a simple correlation with signal amplitude because chatter is often, but not always,
associated with stronger vibrations. Deep learning extracted features from the image data by
exploiting pre-trained deep neural networks such as VGG16 and ResNet50. The data is derived
from an industrial vibration signal (with noise, a not ideally placed sensors, and uncertainties
on process parameters), which was very poorly represented in the literature. It is shown that by
depleting the signal (renormalized amplitude and absence of information on the rotation speed),
the model obtains a good result (an accuracy of 99% in the training and validation phases),
which had never been done in the literature. In addition, since a part of the test dataset is similar
to the training dataset, the proposed model obtains an accuracy of 98.82%. The robustness is
proved by adding another test dataset containing noisy and more or less ambiguous images to
be classified. The model still manages to detect these cases from its training of unambiguous
cases, showing that the obtained generalization is efficient with an accuracy of 73.71%.

Keywords: deep learning; vibration signal analysis; chatter; fault detection; Fourier transform;
machining.



1. Introduction

Chatter, described by several historical authors (Taylor, 1907; Tobias and Fishwick, 1958),
corresponds to the interaction between a part and a cutting tool in a machining process. Chatter
results in irregular marks (defects) on a machined surface. It represents one of the most complex
difficulties in typical machining processes, such as turning, milling, drilling, and grinding.

Vibration measurements are widely applied in machine monitoring, allowing quick and
accurate detection of rotating machine malfunctions (Manhertz and Bereczky, 2021). Vibration
analysis of signals can provide status indicators of existing vibration phenomena, help ensure
the quality of machined parts, and facilitate decision-making to remedy problems. Analysis
techniques can detect weak signals as early as possible by establishing real trend curves
(Vishwakarma et al., 2017). A vibration spectrum is data in which it is possible to read
extremely tenuous defects, such as the chipping of a ball in a bearing. Vibration analysis of
signals is one of the most popular ways to monitor the condition of rotating machines in
operation (Nirwan and Ramani, 2021).

The identification, stability, and detection of chatter have been growing research areas for
decades. Recent research on machining chatter detection focuses on advanced applications of
machine learning or deep learning due to their ability to solve highly complex and non-linear
problems related to high-dimensional datasets (Goodfellow et al., 2017; LeCun et al., 2015).
Artificial Intelligence (Al) applied to vibration analysis would be helpful for both experts and
non-specialists. For the former, it would avoid wasting time analyzing signals from machines
in good condition or with apparent defects. Experts could monitor a more extensive fleet and
spend more time on complex cases to reduce the risk of error in the analysis. For non-experts,
artificial intelligence would allow them to propose a relatively reliable first diagnosis, giving
them new autonomy in their decision-making and optimizing the call to experts.

Over time, research has focused on Al applied to the industrial domain, and many studies show
(Angelopoulos et al., 2019; Lee and Lim, 2021; Usuga Cadavid et al., 2020) that these
techniques are among the main catalysts for moving a traditional manufacturing system to
Industry 4.0. With the digital development of the manufacturing industry, manufacturing
processes have become more diverse, automated, and customized. The multiple requirements
for manufacturing parts have increased significantly. Anomalies in the machining process must
be systematically detected, whether they are easily observable, such as in finishing operations,
or not, such as in roughing operations, which are usually not subject to systematic observation.
The productivity of any milling operation relies on the ability to remove the material as quickly
as possible (Arriaza et al., 2018). However, the material removal rate is reduced due to chatter
and all the accompanying side effects, such as poor surface finish, tool damage, spindle damage,
and noise, for example. Researchers have developed several methodologies to control chatter
(Yan and Sun, 2021), but this phenomenon still limits the productivity of most machining
operations.

Most existing chatter detection methods are based on chatter indicators that extract features
from the signal, usually a simple scalar number. Still, the thresholds of the chatter indicators
designed in this way must usually be identified manually for each cutting condition under
consideration. The data-based automatic chatter detection problem can be considered a
classification case in machine learning (El-Sappagh et al., 2020).



In this paper, we seek to demonstrate that deep learning is capable of detecting chatter on an
industrial signal, considering that the amplitude of the signal and the rotation frequency are in
fact, not reliable information. The method is composed of two types of transformation: a
transformation on the physics (from the time domain to the frequency domain) and a
transformation on the data by exploiting several pre-trained networks, VGG16 and ResNet50.
This distinguishes the proposed model from classical monitoring methods that are generally
based on signal amplitude and frequency peak analysis while knowing the rotation speeds very
precisely.

Most of the methods, probably all of them, explicitly or not, are based on analyzing the
amplitude of the vibration signal and/or comparing the measured frequencies with the spindle
rotation frequency. However, in laboratory tests, the correlation between the chatter
phenomenon, the vibration amplitude, and the frequencies that appear is most of the time trivial,
raising questions about the interest in the sophisticated detection methods proposed.

In an industrial situation, this amplitude and frequency information is only sometimes very
reliable due to the highly variable position of the sensors and the fact that secondary
maintenance operations often create a discrepancy between the real and assumed rotation speed.
Thus, to determine if our approach would be of real interest in an industrial situation, we chose
to erase the information on the spindle speed and the average amplitude of the signal. Then, we
use transfer learning methods to extract the features. These methods extract the features from
the raw signal image data to detect machining phases related to vibration phenomena during
the machining process: chatter, machining without chatter, and rotation without machining.

The rest of this paper is organized as follows. Section 2 provides the state of the art of deep
learning applications for monitoring and detecting faults in machining processes. Section 3
discusses the proposed approach for the detection of chatter in machining. Section 4 presents
the chatter detection results of the proposed method. The discussion and the conclusion are
presented in Section 5.

2. State of the Art

In the literature, two groups of authors have been identified in the study of the chatter
phenomenon (Kounta et al., 2022). The first group of authors publishing historically on
machining and, in particular, machining chatter (J. Tlusty, Y. Altintas, J. Munoa, etc.), and
authors publishing on sensors (H.O. Unver, B. Sener, etc.) who have developed others chatter
detection techniques.

Several works in the literature seek to detect chatter with signal processing techniques (FFT,
STFT, WT, EMD, HHT, etc.) and have shown some effectiveness for the task (Xu et al., 2006).
The authors (Huda et al., 2020) experimented, for example, with a turning process, simply
correlating the chatter to the amplitude signal and specific peaks in FFT. They collect two types
of signals (normal and chatter) with a microphone very near the machining zone. (Ding et al.,
2010) measured the cutting force using a dynamometer table in the machine and applied an FFT
to identify the chatter by comparing the power spectrum with a predefined peak threshold.
(Chen et al., 2019) propose an approach to extracting the chattering characteristics from an
accelerometer sensor signal (put on a dynamometer table), by analyzing the images of the
dominant frequency bands through the spectrograms from the STFT. (Afazov and Scrimieri,
2020), as many other studies, detect chatter with the FFT on the measured cutting forces. The



wavelet transform (WT) has also been applied to the cutting force measured by a dynamometer
table, to detect chatter (Yoon and Chin, 2005). Some authors also use analytical and numerical
methods, such as the stability lobe theory, to better identify chatter frequencies (Altintas and
Budak, 1995; Smith and Tlusty, 1993).

These analysis techniques have always had difficulty detecting chatter at an early stage, i.e.,
before the amplitude of the vibrations is already significant, and visible on the amplitude of the
signal, and before it is too late to preserve the quality of the part.

The chatter is mathematically described by strongly non-linear equations, mainly because of a
delay term in differential equations of the mass-spring type, which are not easy to master from
a mathematical or numerical point of view. Signal processing tools or analytical methods
usually relies on identifying a threshold that characterizes the occurrence of chatter. This task,
traditionally performed by an expert, can be facilitated by machine learning methods. Machine
learning methods SVM and ANN (HongQi et al., 2011; Yao et al., 2010) are commonly applied
in vibration signal analysis. An intelligent multi-sensor monitoring system with three units for
turning processes is proposed by (Zhang and Shin, 2018). The three units are implemented by
integrating two low-cost sensors, an energy meter, and an accelerometer. This integrated
monitoring device provides high prediction accuracy for all three process conditions,
generalized applicability over various operating conditions, and satisfactory robustness to
process and measurement uncertainties. For chatter detection, they achieve 96.88% accuracy
even when changing the configuration. (Chen and Zheng, 2018) and (Zheng et al., 2022)
propose a chatter detection method in end milling based on wavelet packet transform (WPT)
and SVM as feature extractors. (L. Zhu et al., 2020) decompose the raw cutting force signal by
the EEMD function to obtain a set of Intrinsic Mode Functions (IFMs). The principal
component analysis method retained the [FMs containing chatter situations and underwent a
dimension reduction process. A non-linear SVM then performs the detection process.
(Shrivastava and Singh, 2019) propose another machine learning method, by the artificial neural
network, to predict tool chatter in a turning process. (Khasawneh et al., 2018) combine
supervised machine learning with topological data analysis (TDA) to produce a process
descriptor capable of detecting chatter.

These methods are developed in three steps: data collection, feature extraction, and model
training. The decision phase then requires no human intervention, but there are some
limitations, such as sensitivity to measurement errors and expert labeling of training data. These
limitations can be addressed by unsupervised learning techniques such as the K-means method
(Dun et al., 2021) which does not require labeling, or by deep learning methods.

For the design of methods capable of detecting abnormal behavior on machines, deep learning
allows the development of new diagnostic techniques for monitoring the vibration signal. Deep
learning aims to develop algorithms allowing modeling with a high level of data abstraction via
architectures with cascades of linear and non-linear operations. This learning is notably related
to classification (discrete outputs) or regression (continuous outputs) to predict the answers to
questions asked on extensive datasets (LeCun et al., 2015). Deep learning has become a popular
technique for extracting information (features) from data due to its ability to process raw data
and automatically recognize features across multiple levels of abstraction (Glaeser et al., 2021).

Integrating deep learning into intelligent fault diagnosis of rotating machines has achieved great
success and benefited industrial applications (Zhang et al., 2021). Compared to conventional



machine learning, deep learning automatically extracts features at a higher level and merges
feature extraction and classification into a single structure so that a large amount of trial and
error is not required, resulting in reliable performance (Janiesch et al., 2021; Wang et al., 2021).
Problem anticipation in the industrial context is paramount for identifying weak signals and
reducing response times. The objectives are multiple: (i) the reduction of the number of
breakdowns, (ii) the reliability of the production tool, (iii) the increase of the availability rate,
and (iv) the improvement of the spare parts stock management. Indeed, from the vibrations
regularly collected on a rotating machine, the vibration analysis consists of detecting or
anticipating possible malfunctions (Glowacz et al., 2019).

Detecting these malfunctions will often be done via image processing which benefits from a set
of detection and analysis methods to allow the automation of a specific task. This technology
can classify objects or detect an anomaly or a manufacturing defect in an image. Segmentation
also represents a detection task to locate an element on an image to the nearest pixel. Image
analysis thus offers powerful means to visualize and recognize the defects identified on the
systems considered.

According to (Hoang and Kang, 2019), intelligent defect detection comprises three steps: data
collection, feature extraction, and defect classification. Vibration sensors are widely used for
data collection due to their availability and high sensitivities. This process depends on the data
that reflects the problem at hand. There are several tools to transform the signals obtained from
these sensors, such as Fourier transform (Bengherbia et al., 2020; Lin et al., 2016), Mortelet
wavelets (Behera et al., 2021), and Daubechies, Mallat, and Meyer wavelet packet transform
(Xiong et al., 2020). The feature extraction process is essential for obtaining good accuracy in
intelligent sensing. This process is divided into two types, physics-based and data-based
methods. Physics-based methods usually extract features from the time, frequency, and time-
frequency domains. Data-driven strategies use machine or deep learning techniques to extract
the most informative features from the data available (any sensors, image, or text information).

(Liao et al., 2021) propose a method for monitoring the manufacturing process through the
fusion of time-frequency analysis and deep neural networks. Acoustic emission signals were
acquired during turning operations with different spindle speeds, feed rates, and depths of cut.
It can be seen in the literature review that the authors address problems such as process and
machine condition monitoring in real time, detection and diagnosis of bearing faults in rotating
machines, and chatter detection by taking into account aspects such as the change in rotational
speed, feed rate, and very generally the average band frequency amplitude.

A hybrid model that combines a pre-trained deep neural network Alexnet (Krizhevsky et al.,
2012) and a model based on self-excited vibration theory, based on short-term Fourier transform
STFT has been used by (Unver and Sener, 2021) to detect chatter. (Sener et al., 2021) apply the
continuous wavelet transform for signal preprocessing by obtaining images rich in chatter
information. These images are then exploited as training data for a deep neural network. (Tran
et al., 2020) present an approach for real-time chatter detection. This approach is based on the
continuous wavelet transform scalogram and convolutional neural networks to predict states
(stable, transient, and unstable). A transfer learning model composed of analytical solutions and
a convolutional neural network (CNN) is proposed by (Unver and Sener, 2021) to detect the
chatter without the need for real data for the training phase, but trivially based on an RMS
threshold. (Shi et al., 2020) use a variant of LSTM to detect chatter in high-speed milling



processes. On-line chatter detection based on the current signal from a CNC machine is
presented by (Vashisht and Peng, 2020). An LSTM is then trained to detect chatter found on
the simulated sequence of control currents.

In the literature, many deep learning techniques have obtained satisfactory results. These studies
generally use data from machining conditions far from industrial applications, but some papers
use realistic cutting conditions.

In this paper, we develop a machine learning method that uses vibration analysis, with specific
processing of FFT images, to eliminate possible biases on the known amplitude and
frequencies. Then deep learning is used for machining chatter detection, with an additional
verification phase on a very different dataset, so-called ambiguous signals, not used during the
training.

3. The proposed Approach

The proposed process in this work contains multiple steps Figure 1, which are data acquisition,
foundation building, deep learning training, validation, and testing of the proposed deep
learning model, as well as the extraction of features and construction of the chatter detection
model in machining. All these steps will be detailed in the following subsections.
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Figure 1. Proposed process for chatter detection in machining.

The data acquisition step allows for obtaining a temporal signal from the machining process of
train car walls of the High-Speed Train (TGV) company Alstom Transport. This step is
followed by transforming from the time domain to the frequency domain to generate FFTs
images. Then, these generated images are labeled into three categories to build the training
dataset, a validation dataset, and a test base that includes similar data but also noisy and



ambiguous signals not used before. Image features are extracted from the dataset by a pre-
trained model to train the classification or chatter detection model. The last step will evaluate
and verify the model's generalization capability on the two test dataset.

3.1. Data acquisition

In machining vibration analysis, the time signal is a crucial element. It represents the
information transmitted by the machine tool’s sensors from the stresses generated by the
mechanical manufacturing process. As the first step in any measurement, vibration analyzers
record this time signal and then process it to extract various characteristics. Generally, the size
of the time signal for analysis depends fundamentally on the sampling frequency and the period
considered. A wrong setting of these parameters can easily lead to a signal that does not reveal
any anomaly information, despite the existence of defects. In this case study, the time signal
was recorded using a Kistler accelerometer type 8776 A50M6, magnetized to the workpiece
holder, connected to a Roga Plug-n-Daq signal conditioner, and recorded at 22 kHz using
Audacity software. The measurements were made during a machining process of Alstom
Transport for the milling of TGV train car walls, illustrated in Figure 2.

Figure 2. Milling process of a TGV train car wall (length =20 meters). (Image from the machining center of Alstom industry)

After analysis of the signal with the help of an expert in machining vibration analysis, several
machining phases were identified: rotation without machining, machining without chatter, and
machining with chatter. The expert made precise identification and labeled these distinct phases
of the signal in a spreadsheet file containing the period and label of each phase. We then
exported the signal in .wav format and renormalized the signal. An example of the temporal
signal used for data collection is visualized in Figure 3, which shows a substantial variation of
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amplitudes that can be due to the chatter's appearance or to the sensor proximity of the
machining zone throughout the many hours of machining.

20000 -

15000 A

10000 A

5000 -

-5000 -

-10000 A

-15000 A

Figure 3. Temporal signal (time in seconds).

3.2. Preparation of the data

The temporal signal in the .wav file is processed with the Python language using the Librosa
library to process the signal. The most common transformation of frequency domain analysis
used by machining vibration experts is the Fast Fourier transform (FFT), which can be used to
obtain narrowband spectrum efficiently. In agreement with the expert, several FFT was
performed in the labeled intervals every 0.1 seconds to optimize the richness and the number
of labeled data. Then, images of the FFTs were generated. To reduce the size of the image and
focus on the useful part of the signal, the frequency is sampled on 1024 lines in values between
0-2500Hz. The decibel range is set between the maximum and a reduction of 20 dB. This
reduction allows us to keep only the upper part of the FFT image, i.e., the dominant peaks,
which is the most informative (see the red area in Figure 4). An overview of this transformation
is presented in Figure 4.
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Figure 4. The transformation from the time domain to the frequency domain.

The red area in Figure 4 can be seen in Figure 5. These images are then sorted according to
their respective labels (rotation without machining: 1582 images, machining without chattering:
5514 images, and chattering: 3089 images) to build the training (representing 70% of the
images, i.e., 7126 images) and validation (representing 30% of the images, i.e., 3054 images)
dataset.

Table 1. Distribution of the dataset.

Training (non- Validation (non- Test .(non- Test 2

Samples ambiguous signals) ambiguous signals) ambiguous (ambiguous
signals) signals)

chatter 2161 926 1544 104
Machining without 3859 1654 2814 216
chatter
Rotation without 1106 474 733 9
imachining
Total 7126 3054 5091 329

The test is performed on two datasets, a test dataset (5091 samples) containing signals similar
to those used in the training and validation phases. Another type of signal was used, which is
much more difficult for a human expert to analyze, typically 2x, 3x, or more time to analyze,
and are so-called ambiguous signals (329 samples). The difference between the samples in these
two datasets can be visualized in Figure 5.
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Figure 5. Images of the ambiguous and unambiguous signal.

These signals are not noisy in the sense of random noise. Still, they are signals with intermediate
characteristics, which require the expert to perform much more in-depth analyses to identify
the dominant phenomenon. Analyzing such signals could save the expert much time for signal
analysis and the labeling phase. These data will be used to test the ability of the proposed model
to classify data that it has never seen and would have been difficult to label.

3.3. Transfer learning

The transfer learning technique is widely used in deep learning. It applies knowledge already
learned from other models to solve similar problems. Several model architectures can be used
in a transfer learning approach. Transfer learning uses existing models that have been carefully
selected for their effectiveness and designed by experts to achieve high performance in the
target task under consideration, like image classification. Since deep neural networks require a
large amount of data, transfer learning is used to learn how to map from an essential
characteristic input valid for problem-solving to the desired output. Transfer learning is a fast
and efficient way to deal with qualitative or quantitative data shortages.

Implementing the deep neural network model LeNet by (LeCun et al., 1989) sparked the
possibility of using convolutional neural networks in practice. AlexNet, invented by
(Krizhevsky et al., 2017), is one of the models that proved that CNN could work well on this
object recognition dataset (ImageNet). The AlexNet has achieved this complex identification
task with good performance, which led the company into a CNN development competition, the
ImageNet large-scale visual recognition challenge (ILSVRC). There are models like VGG
(Simonyan and Zisserman, 2015), Inception (Szegedy et al., 2016), ResNet (He et al., 2016), to
EfficientNet (Tan and Le, 2019). These architectures have almost the same composition:
combinations of convolution layers and clustering layers followed by fully connected layers,
often with layers having an activation function and/or a normalization phase. In this paper, two
pre-trained neural network models are chosen (VGG16 and ResNet50) to extract features from
the data. These models have won the Imagenet Large-Scale Visual Recognition Challenge
(ILSVRC) at least once.

VGG16 is a convolutional neural network architecture with thirteen convolution layers, five
Max Pooling layers, and three Dense layers (fully connected layers).



VGG16 (Figure 6) is a large convolutional neural network model with 138 million parameters
widely used on ImangeNet.
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Figure 6. The architecture of the VGG 16 model was proposed by (Pandiyan et al., 2019).

ResNet50 is one of the most popular convolutional neural network architectures. It is a 50-layer
deep neural network model with 48 convolution layers, a MaxPooling layer, and an Average
Pooling layer Figure 7. The ResNet50 solved the problem of overlearning and accuracy
saturation due to increasing network depth. This model uses two kinds of residual bottleneck
blocks (Identity Block and Convolution Block) to reduce the number of parameters and matrix
multiplications.
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Figure 7. Architecture of ResNet50 model proposed by (S. Jahromi et al., 2019).

These pre-trained models are fitted to the dataset for vibration chatter detection in machining.
In deep learning, a convolutional neural network comprises two major parts, a lower part to
extract features useful for image recognition and an upper part for the classification task. Only
the bottom portion for feature extraction is considered, and the classification part is adapted to
the dataset of this case study since the VGG16 model, for example, has 1000 classes.
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3.4. Construction of the chatter detection model

The methodology of using the pre-trained neural network model is presented in Figure 8. The
models we use in this approach are trained on ImageNet data containing rather generic and
especially not FFT images of the vibration signal. For these models to work on a new dataset,
it is necessary to proceed to a process of readjusting the models based on the feature extraction
part.

This readjustment process allows in a first step to modify the outputs of these models from 1000
ImageNet categories, where they manage to find a good performance, to 3 categories (chatter,
machining without chatter, and rotation without machining). The last fully connected layers
used to classify 1000 ImageNet categories are removed. Secondly, all weights of the pre-trained
neural network models are frozen to fit the new three-class classification task. The third step is
to add three fully connected layers to perform the classification of our three classes. Following
these steps, all layers of the new model are trained on the new dataset containing the FFT images
from the industrial vibration signals using the softmax function to perform a multi-class
classification task. Table 2 shows the hyperparameters used in the training phase.

Table 2. Hyperparameters used in the training phase.

Hyperparameters

Batch size 2

Learning rate 0,0001

Epoch 30

Optimizer RMSprop

Dropout rate 0.3

Loss Categorical Cross-Entropy loss
— — o> VGG16 model ?.::Zi?s;es 4

Transfer the weights and parameters

Target image
FFT

Features extraction

: Softmax
Classification
Inytre |:> activation

Figure 8. The proposed transfer learning model.
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