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Introduction

Chatter, described by several historical authors [START_REF] Taylor | On the art of cutting metals[END_REF][START_REF] Tobias | Theory of regenerative machine tool chatter[END_REF], corresponds to the interaction between a part and a cutting tool in a machining process. Chatter results in irregular marks (defects) on a machined surface. It represents one of the most complex difficulties in typical machining processes, such as turning, milling, drilling, and grinding.

Vibration measurements are widely applied in machine monitoring, allowing quick and accurate detection of rotating machine malfunctions [START_REF] Manhertz | STFT spectrogram based hybrid evaluation method for rotating machine transient vibration analysis[END_REF]. Vibration analysis of signals can provide status indicators of existing vibration phenomena, help ensure the quality of machined parts, and facilitate decision-making to remedy problems. Analysis techniques can detect weak signals as early as possible by establishing real trend curves [START_REF] Vishwakarma | Vibration Analysis & Condition Monitoring for Rotating Machines: A Review[END_REF]. A vibration spectrum is data in which it is possible to read extremely tenuous defects, such as the chipping of a ball in a bearing. Vibration analysis of signals is one of the most popular ways to monitor the condition of rotating machines in operation [START_REF] Nirwan | Condition monitoring and fault detection in roller bearing used in rolling mill by acoustic emission and vibration analysis[END_REF].

The identification, stability, and detection of chatter have been growing research areas for decades. Recent research on machining chatter detection focuses on advanced applications of machine learning or deep learning due to their ability to solve highly complex and non-linear problems related to high-dimensional datasets (Goodfellow et al., 2017;[START_REF] Lecun | Deep learning[END_REF]. Artificial Intelligence (AI) applied to vibration analysis would be helpful for both experts and non-specialists. For the former, it would avoid wasting time analyzing signals from machines in good condition or with apparent defects. Experts could monitor a more extensive fleet and spend more time on complex cases to reduce the risk of error in the analysis. For non-experts, artificial intelligence would allow them to propose a relatively reliable first diagnosis, giving them new autonomy in their decision-making and optimizing the call to experts.

Over time, research has focused on AI applied to the industrial domain, and many studies show [START_REF] Angelopoulos | Tackling Faults in the Industry 4.0 Era-A Survey of Machine-Learning Solutions and Key Aspects[END_REF][START_REF] Lee | From technological development to social advance: A review of Industry 4.0 through machine learning[END_REF][START_REF] Usuga Cadavid | Machine learning applied in production planning and control: a state-of-the-art in the era of industry 4.0[END_REF]) that these techniques are among the main catalysts for moving a traditional manufacturing system to Industry 4.0. With the digital development of the manufacturing industry, manufacturing processes have become more diverse, automated, and customized. The multiple requirements for manufacturing parts have increased significantly. Anomalies in the machining process must be systematically detected, whether they are easily observable, such as in finishing operations, or not, such as in roughing operations, which are usually not subject to systematic observation. The productivity of any milling operation relies on the ability to remove the material as quickly as possible [START_REF] Arriaza | Chatter Identification using Multiple Sensors and Multi-Layer Neural Networks[END_REF]. However, the material removal rate is reduced due to chatter and all the accompanying side effects, such as poor surface finish, tool damage, spindle damage, and noise, for example. Researchers have developed several methodologies to control chatter [START_REF] Yan | Early chatter detection in thin-walled workpiece milling process based on multi-synchrosqueezing transform and feature selection[END_REF], but this phenomenon still limits the productivity of most machining operations.

Most existing chatter detection methods are based on chatter indicators that extract features from the signal, usually a simple scalar number. Still, the thresholds of the chatter indicators designed in this way must usually be identified manually for each cutting condition under consideration. The data-based automatic chatter detection problem can be considered a classification case in machine learning [START_REF] El-Sappagh | Multimodal multitask deep learning model for Alzheimer's disease progression detection based on time series data[END_REF].

this paper, we seek to demonstrate that deep learning is capable of detecting chatter on an In industrial signal, considering that the amplitude of the signal and the rotation frequency are in fact, not reliable information. The method is composed of two types of transformation: a transformation on the physics (from the time domain to the frequency domain) and a transformation on the data by exploiting several pre-trained networks, VGG16 and ResNet50. This distinguishes the proposed model from classical monitoring methods that are generally based on signal amplitude and frequency peak analysis while knowing the rotation speeds very precisely.

Most of the methods, probably all of them, explicitly or not, are based on analyzing the amplitude of the vibration signal and/or comparing the measured frequencies with the spindle rotation frequency. However, in laboratory tests, the correlation between the chatter phenomenon, the vibration amplitude, and the frequencies that appear is most of the time trivial, raising questions about the interest in the sophisticated detection methods proposed.

In an industrial situation, this amplitude and frequency information is only sometimes very reliable due to the highly variable position of the sensors and the fact that secondary maintenance operations often create a discrepancy between the real and assumed rotation speed. Thus, to determine if our approach would be of real interest in an industrial situation, we chose to erase the information on the spindle speed and the average amplitude of the signal. Then, we use transfer learning methods to extract the features. These methods extract the features from the raw signal image data to detect machining phases related to vibration phenomena during the machining process: chatter, machining without chatter, and rotation without machining.

The rest of this paper is organized as follows. Section 2 provides the state of the art of deep learning applications for monitoring and detecting faults in machining processes. Section 3 discusses the proposed approach for the detection of chatter in machining. Section 4 presents the chatter detection results of the proposed method. The discussion and the conclusion are presented in Section 5.

State of the Art

In the literature, two groups of authors have been identified in the study of the chatter phenomenon [START_REF] Kounta | Review of AI-based methods for chatter detection in machining based on bibliometric analysis[END_REF]. The first group of authors publishing historically on machining and, in particular, machining chatter (J. Tlusty, Y. Altintas, J. Munoa, etc.), and authors publishing on sensors (H.O. Unver, B. Sener, etc.) who have developed others chatter detection techniques.

Several works in the literature seek to detect chatter with signal processing techniques (FFT, STFT, WT, EMD, HHT, etc.) and have shown some effectiveness for the task [START_REF] Xu | Analysis of Chatter Marks in Accurate Grinding on Optical Curve Grinder[END_REF]. The authors [START_REF] Huda | Chatter detection in turning process using sound signal and simple microphone[END_REF] experimented, for example, with a turning process, simply correlating the chatter to the amplitude signal and specific peaks in FFT. They collect two types of signals (normal and chatter) with a microphone very near the machining zone. [START_REF] Ding | Chatter Detection in High Speed Machining of Titanium Alloys[END_REF] measured the cutting force using a dynamometer table in the machine and applied an FFT to identify the chatter by comparing the power spectrum with a predefined peak threshold. [START_REF] Chen | Feature extraction using dominant frequency bands and time-frequency image analysis for chatter detection in milling[END_REF] propose an approach to extracting the chattering characteristics from an accelerometer sensor signal (put on a dynamometer table), by analyzing the images of the dominant frequency bands through the spectrograms from the STFT. [START_REF] Afazov | Chatter model for enabling a digital twin in machining[END_REF], as many other studies, detect chatter with the FFT on the measured cutting forces. The wavelet transform (WT) has also been applied to the cutting force measured by a dynamometer table, to detect chatter [START_REF] Yoon | Cutting force monitoring in the endmilling operation for chatter detection[END_REF]. Some authors also use analytical and numerical methods, such as the stability lobe theory, to better identify chatter frequencies [START_REF] Altintaş | Analytical Prediction of Stability Lobes in Milling[END_REF][START_REF] Smith | Efficient Simulation Programs for Chatter in Milling[END_REF].

These analysis techniques have always had difficulty detecting chatter at an early stage, i.e., before the amplitude of the vibrations is already significant, and visible on the amplitude of the signal, and before it is too late to preserve the quality of the part.

The chatter is mathematically described by strongly non-linear equations, mainly because of a delay term in differential equations of the mass-spring type, which are not easy to master from a mathematical or numerical point of view. Signal processing tools or analytical methods usually relies on identifying a threshold that characterizes the occurrence of chatter. This task, traditionally performed by an expert, can be facilitated by machine learning methods. Machine learning methods SVM and ANN [START_REF] Hongqi | On-line chatter detection using servo motor current signal in turning[END_REF][START_REF] Yao | On-line chatter detection and identification based on wavelet and support vector machine[END_REF] are commonly applied in vibration signal analysis. An intelligent multi-sensor monitoring system with three units for turning processes is proposed by [START_REF] Zhang | A multimodal intelligent monitoring system for turning processes[END_REF]. The three units are implemented by integrating two low-cost sensors, an energy meter, and an accelerometer. This integrated monitoring device provides high prediction accuracy for all three process conditions, generalized applicability over various operating conditions, and satisfactory robustness to process and measurement uncertainties. For chatter detection, they achieve 96.88% accuracy even when changing the configuration. [START_REF] Chen | Online chatter detection of the end milling based on wavelet packet transform and support vector machine recursive feature elimination[END_REF] and [START_REF] Zheng | Chatter detection in milling process based on the combination of wavelet packet transform and PSO-SVM[END_REF] propose a chatter detection method in end milling based on wavelet packet transform (WPT) and SVM as feature extractors. (L. Zhu et al., 2020) decompose the raw cutting force signal by the EEMD function to obtain a set of Intrinsic Mode Functions (IFMs). The principal component analysis method retained the IFMs containing chatter situations and underwent a dimension reduction process. A non-linear SVM then performs the detection process. [START_REF] Shrivastava | A comparative study of EMD and EEMD approaches for identifying chatter frequency in CNC turning[END_REF] propose another machine learning method, by the artificial neural network, to predict tool chatter in a turning process. [START_REF] Khasawneh | Chatter Classification in Turning using Machine Learning and Topological Data Analysis[END_REF] combine supervised machine learning with topological data analysis (TDA) to produce a process descriptor capable of detecting chatter.

These methods are developed in three steps: data collection, feature extraction, and model training. The decision phase then requires no human intervention, but there are some limitations, such as sensitivity to measurement errors and expert labeling of training data. These limitations can be addressed by unsupervised learning techniques such as the K-means method [START_REF] Dun | A chatter detection method in milling of thin-walled TC4 alloy workpiece based on auto-encoding and hybrid clustering[END_REF] which does not require labeling, or by deep learning methods.

For the design of methods capable of detecting abnormal behavior on machines, deep learning allows the development of new diagnostic techniques for monitoring the vibration signal. Deep learning aims to develop algorithms allowing modeling with a high level of data abstraction via architectures with cascades of linear and non-linear operations. This learning is notably related to classification (discrete outputs) or regression (continuous outputs) to predict the answers to questions asked on extensive datasets [START_REF] Lecun | Deep learning[END_REF]. Deep learning has become a popular technique for extracting information (features) from data due to its ability to process raw data and automatically recognize features across multiple levels of abstraction [START_REF] Glaeser | Applications of deep learning for fault detection in industrial cold forging[END_REF].

Integrating deep learning into intelligent fault diagnosis of rotating machines has achieved great success and benefited industrial applications [START_REF] Zhang | Rotating machinery fault detection and diagnosis based on deep domain adaptation: A survey[END_REF]. Compared to conventional machine learning, deep learning automatically extracts features at a higher level and merges feature extraction and classification into a single structure so that a large amount of trial and error is not required, resulting in reliable performance [START_REF] Janiesch | Machine learning and deep learning[END_REF][START_REF] Wang | Comparative analysis of image classification algorithms based on traditional machine learning and deep learning[END_REF]. Problem anticipation in the industrial context is paramount for identifying weak signals and reducing response times. The objectives are multiple: (i) the reduction of the number of breakdowns, (ii) the reliability of the production tool, (iii) the increase of the availability rate, and (iv) the improvement of the spare parts stock management. Indeed, from the vibrations regularly collected on a rotating machine, the vibration analysis consists of detecting or anticipating possible malfunctions [START_REF] Glowacz | Detection of Deterioration of Three-phase Induction Motor using Vibration Signals[END_REF].

Detecting these malfunctions will often be done via image processing which benefits from a set of detection and analysis methods to allow the automation of a specific task. This technology can classify objects or detect an anomaly or a manufacturing defect in an image. Segmentation also represents a detection task to locate an element on an image to the nearest pixel. Image analysis thus offers powerful means to visualize and recognize the defects identified on the systems considered.

According to (Hoang and Kang, 2019), intelligent defect detection comprises three steps: data collection, feature extraction, and defect classification. Vibration sensors are widely used for data collection due to their availability and high sensitivities. This process depends on the data that reflects the problem at hand. There are several tools to transform the signals obtained from these sensors, such as Fourier transform [START_REF] Bengherbia | FPGA implementation of a wireless sensor node with a built-in ADALINE neural network coprocessor for vibration analysis and fault diagnosis in machine condition monitoring[END_REF][START_REF] Lin | Bearing vibration detection and analysis using enhanced fast Fourier transform algorithm[END_REF], Mortelet wavelets [START_REF] Behera | Multiscale deep bidirectional gated recurrent neural networks based prognostic method for complex non-linear degradation systems[END_REF], and Daubechies, Mallat, and Meyer wavelet packet transform [START_REF] Xiong | A Novel End-To-End Fault Diagnosis Approach for Rolling Bearings by Integrating Wavelet Packet Transform into Convolutional Neural Network Structures[END_REF]. The feature extraction process is essential for obtaining good accuracy in intelligent sensing. This process is divided into two types, physics-based and data-based methods. Physics-based methods usually extract features from the time, frequency, and timefrequency domains. Data-driven strategies use machine or deep learning techniques to extract the most informative features from the data available (any sensors, image, or text information). (Liao et al., 2021) propose a method for monitoring the manufacturing process through the fusion of time-frequency analysis and deep neural networks. Acoustic emission signals were acquired during turning operations with different spindle speeds, feed rates, and depths of cut. It can be seen in the literature review that the authors address problems such as process and machine condition monitoring in real time, detection and diagnosis of bearing faults in rotating machines, and chatter detection by taking into account aspects such as the change in rotational speed, feed rate, and very generally the average band frequency amplitude.

A hybrid model that combines a pre-trained deep neural network Alexnet [START_REF] Krizhevsky | ImageNet Classification with Deep Convolutional Neural Networks[END_REF]) and a model based on self-excited vibration theory, based on short-term Fourier transform STFT has been used by [START_REF] Unver | A novel transfer learning framework for chatter detection using convolutional neural networks[END_REF] to detect chatter. [START_REF] Sener | A novel chatter detection method for milling using deep convolution neural networks[END_REF] apply the continuous wavelet transform for signal preprocessing by obtaining images rich in chatter information. These images are then exploited as training data for a deep neural network. [START_REF] Tran | Milling chatter detection using scalogram and deep convolutional neural network[END_REF] present an approach for real-time chatter detection. This approach is based on the continuous wavelet transform scalogram and convolutional neural networks to predict states (stable, transient, and unstable). A transfer learning model composed of analytical solutions and a convolutional neural network (CNN) is proposed by [START_REF] Unver | A novel transfer learning framework for chatter detection using convolutional neural networks[END_REF] to detect the chatter without the need for real data for the training phase, but trivially based on an RMS threshold. [START_REF] Shi | Chatter detection in high-speed milling processes based on ON-LSTM and PBT[END_REF]) use a variant of LSTM to detect chatter in high-speed milling processes. On-line chatter detection based on the current signal from a CNC machine is presented by [START_REF] Vashisht | Online Chatter Detection for Milling Operations Using LSTM Neural Networks Assisted by Motor Current Signals of Ball Screw Drives[END_REF]). An LSTM is then trained to detect chatter found on the simulated sequence of control currents.

In the literature, many deep learning techniques have obtained satisfactory results. These studies generally use data from machining conditions far from industrial applications, but some papers use realistic cutting conditions.

In this paper, we develop a machine learning method that uses vibration analysis, with specific processing of FFT images, to eliminate possible biases on the known amplitude and frequencies. Then deep learning is used for machining chatter detection, with an additional verification phase on a very different dataset, so-called ambiguous signals, not used during the training.

The proposed Approach

The proposed process in this work contains multiple steps Figure 1, which are data acquisition, foundation building, deep learning training, validation, and testing of the proposed deep learning model, as well as the extraction of features and construction of the chatter detection model in machining. All these steps will be detailed in the following subsections. 
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Data acquisition

In machining vibration analysis, the time signal is a crucial element. It represents the information transmitted by the machine tool's sensors from the stresses generated by the mechanical manufacturing process. As the first step in any measurement, vibration analyzers record this time signal and then process it to extract various characteristics. Generally, the size of the time signal for analysis depends fundamentally on the sampling frequency and the period considered. A wrong setting of these parameters can easily lead to a signal that does not reveal any anomaly information, despite the existence of defects. In this case study, the time signal was recorded using a Kistler accelerometer type 8776A50M6, magnetized to the workpiece holder, connected to a Roga Plug-n-Daq signal conditioner, and recorded at 22 kHz using Audacity software. The measurements were made during a machining process of Alstom Transport for the milling of TGV train car walls, illustrated in Figure 2.

Figure 2. Milling process of a TGV train car wall (length ≈20 meters). (Image from the machining center of Alstom industry)

After analysis of the signal with the help of an expert in machining vibration analysis, several machining phases were identified: rotation without machining, machining without chatter, and machining with chatter. The expert made precise identification and labeled these distinct phases of the signal in a spreadsheet file containing the period and label of each phase. We then exported the signal in .wav format and renormalized the signal. An example of the temporal signal used for data collection is visualized in Figure 3, which shows a substantial variation of Spindle Tool 20 m 6) is a large convolutional neural network model with 138 million parameters widely used on ImangeNet. [START_REF] Jahromi | Privacy-Constrained Biometric System for Non-Cooperative Users[END_REF].
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These pre-trained models are fitted to the dataset for vibration chatter detection in machining.

In deep learning, a convolutional neural network comprises two major parts, a lower part to extract features useful for image recognition and an upper part for the classification task. Only the bottom portion for feature extraction is considered, and the classification part is adapted to the dataset of this case study since the VGG16 model, for example, has 1000 classes.
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!"#$%&'L)'*%&/"-"+4'24.'8+--'/$%T&-'<"31';::(J)' ! Table 3, the most influential and essential factors are precision and the F1 score. The higher In this score, the better the model used. Precision is the ratio between the number of individuals correctly assigned to a class and the total number of individuals assigned to the class. Recall defines the ratio between the number of individuals correctly assigned to a class and the number of individuals belonging to the class. The F1-score combines the model's accuracy and recall, defined as the harmonic mean of the model's accuracy and recall.

To show the ability of a deep learning model to predict, we compare its result to reality by exploiting the confusion matrix. In Figure 11 and Figure 12, we can visualize the calculation of the confusion matrix on our test dataset. On each matrix column, we find a class predicted by our model and the representations of the real classes. There are generally four categories in the matrix:

True Positive (TP): means that the prediction and the actual value are positive.

True Negative (TN): the prediction and the actual value are all negative.

False Positive (FP): the prediction is positive while the actual value is negative.

False Negative (FN): the prediction is negative while the actual value is negative.

To evaluate the output density of our three classes, we plot a curve (Figure 13) called ROC (Receiver Operating Characteristic), which calculates the ratio between the true positive rate (TPR) and the false positive rate (FPR).
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propose the combination of empirical ensemble mode decomposition (EEMD) and dimensionless non-linear indicators to detect chattering. EEMD focuses on the raw signal due to its suitability for decomposing non-linear and non-stationary signals. Correlation analysis is applied to obtain the chatter-related components of the intrinsic mode function (IMF). Subsequently, the non-linear sample entropy (SE) and energy entropy (EE) of IMFs can be extracted as two indicators. [START_REF] Tran | Milling chatter detection using scalogram and deep convolutional neural network[END_REF] use CWT to transform one-dimensional timedomain signals into a two0-dimensional time-domain representation. The multi-resolution analysis performed by CWT is advantageous for analyzing non-linear and non-stationary signals. [START_REF] Rahimi | On-line chatter detection in milling with hybrid machine learning and physics-based model[END_REF] Apply a neural network model combined with a physics-based model to detect chatter in milling. Data collected during machining are converted to short-term moving frequency spectrum using the STFT transformation process, whose features are mapped to five machining states, such as air cutting, workpiece entry and exit, stable cutting, and chatter conditions. These studies have achieved very good performance in terms of learning accuracy. However, the data collected in these studies are from laboratory vibration signals that do not represent actual industrial machining conditions. In addition, the vibration amplitude is still strongly related to the chatter in the data from these studies.

As we can see in our normalized data, our model is good enough to classify the machining type without considering the known rotation speed or amplitude of the signal, which is remarkable and distinguishes it from the bibliography. After learning and validating the data with our model, excellent results are obtained with an accuracy of 99.71% for vgg16 and 99.67% for resnet50. Table 4 presents a list of some of the works that have used artificial intelligence techniques to detect chatter with the best performance in terms of classification accuracy. To better understand the black-box nature of deep learning models, we plan to use explainability methods (GradCAM, lime, etc.) on the detection model prediction to visualize the operation of these deep neural networks, and pass the information to the machinist or expert. The aim is to provide information that can be understood by humans, allowing them to understand on which aspects these methods are based to detect this or that machining state in the images provided. The visual explanation method Gradient-weighted Class Activation Mapping (GradCAM) proposed by [START_REF] Selvaraju | Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization[END_REF] is an example of making decisions more transparent on CNN-based models. GradCam is applicable to any type of concept (data) introduced in a classification neural network. This technique explores the network from the convolution layer to the final layer to produce a localization map of the determining features. It highlights the important regions of the image that led to an accurate response. [START_REF] Kim | Bearing Fault Diagnosis Using Grad-CAM and Acoustic Emission Signals[END_REF] used this technique for the diagnosis of rolling defects. Local Interpretable Model-Agnostic Explanations (LIME) is also one of the visualization methods that contributes to the explanation of individual predictions. This technique is independent of the prediction model and can therefore be applied to any supervised regression or classification model. LIME presented by [START_REF] Ribeiro | Why Should I Trust You?[END_REF] is applicable to three types of data (spreadsheet, text, and images). The idea would be that after the realization of the phases of extraction of the characteristics and the classification of the images (spectrograms and spectrum) resulting from the STFT and FFT on the vibratory signal of machining, the models of visual explanations XAI are applied on the predictions to obtain a better discernment between the machining phases.

Conclusion

In this paper, the proposed approach combines vibration analysis and deep learning to detect chatter in an industrial machining process, with no-optimal sensor placement and real machining noise and uncertainties (about the real spindle). With the raw signal at the source, a powerful model was developed for detecting the different machining phases by applying the Fast Fourier Transform on the signal to generate the images that trained the model. The use of pre-trained networks using transfer learning allowed us to extract features from the data to support a generalization of the model. In the classical method of vibration analysis, several parameters are taken into account, explicitly or implicitly, to define the different phases, particularly the amplitude of the signal and the peak frequencies relative to rotation speed. In a real industrial context, this information is not always reliable and may mislead analysis; thus, it would be helpful to identify chatter without this information.

The results of the verification and visualization by the ROC curve and the confusion matrix show that the application of deep learning techniques on industrial machining data obtains excellent performances. It is essential to know that the signal's amplitude is not transmitted to the network (each FFT is recalibrated to its maximum value) nor the rotation speed (several rotation speeds were considered in the datasets). The model thus shows its capacity to identify characteristic information of the chatter in the spectrum and adapt itself to several rotation speeds, which puzzled the expert who labeled the training dataset. Moreover, some test data are similar to the training dataset, but one part is more equivocal. Again, the neural network detected these more complex cases well from its training on the easy cases.

  used before. Image features are extracted from the dataset by a pretrained model to train the classification or chatter detection model. The last step will evaluate and verify the model's generalization capability on the two test dataset.
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Figure 6 .

 6 Figure 6. The architecture of the VGG16 model was proposed by (Pandiyan et al., 2019). ResNet50 is one of the most popular convolutional neural network architectures. It is a 50-layer deep neural network model with 48 convolution layers, a MaxPooling layer, and an Average Pooling layer Figure 7. The ResNet50 solved the problem of overlearning and accuracy saturation due to increasing network depth. This model uses two kinds of residual bottleneck blocks (Identity Block and Convolution Block) to reduce the number of parameters and matrix multiplications.

Figure 7 .

 7 Figure 7. Architecture of ResNet50 model proposed by (S.[START_REF] Jahromi | Privacy-Constrained Biometric System for Non-Cooperative Users[END_REF].

Figure 11 .

 11 Figure 11. Confusion matrix on unambiguous data.

Figure 12 .

 12 Figure 12. Confusion matrix on ambiguous data. From 1544 samples of noiseless test data in the class machining with the chatter, see the first row in Figure 11 only five images were misclassified into the machining class without chatter. All images in the rotation without machining class are true positives. From 2814 images in the machining without chatter class, 55 are classified into the rotation without machining class, and the remaining 2759 are well classified. After evaluating the ambiguous data, the model obtains a prediction accuracy of 74%. It can be seen in Figure 12 that most of this discrepancy is in the class machining without chatter, of which 48 items are considered machining with chatter (the human expert has also struggled to classify this category).

  

  

  

Table 3 .

 3 Classification report

		Precision % Recall % F1-score % support
	Machining with chatter	100	100	100	1544
	Machining without chatter	93	100	96	733
	Rotation without machining 100	98	99	2814

Table 4 .

 4 List of some of the best-performing works in terms of classification accuracy.The model needs the FFT image as input, which is very easy to generate, and some labeled data on typical signals to train the model. It takes care of itself to classify these images into their respective classes. We tested the model to see how well it can generalize the prediction obtained with unambiguous signals containing the purest information for detecting machining types and other ambiguous signals with somewhat less refined cases. Our test results on the ambiguous signal showed us that learning could be done on simple data and that recognition naturally works well on more complex data. These ambiguous signals generally make human analysis difficult, and since these signals may be brief, there is little data available to perform training on such signals. Our multiple trials before showed us that this recognition capacity is due to the ! data and then group them into subsets of similar elements (clustering). With unsupervised learning, the model could go so far as to tell us about a change in behavior on a machine and show us where the change comes from. It could even feed the expertise by discovering clues in the data that remain invisible to the expert's eye for the moment, as mentioned in the previous chapter, notably by methodically exploring different resolutions of FFT and STFT analysis, which the expert generally does not have the time to do. The data extracted by the different transformation techniques (FFT, STFT) could then be categorized by unsupervised techniques such as the K-nearest neighbor (KNN) or K-means algorithm. The clusters obtained by these methods are considered as classes and will serve as input data for a supervised learning model. The goal of unsupervised learning is to alleviate the process of labeling the signal by the expert.

	REF.	Pretreatment Input Data Classification Precision
	This paper	FFT	Images FFT Multilabel	99,71 %
	(Sener et al., 2021)	CWT	Images-	Multilabel	99,88 %
			cutting		
			parameters		
	(W. Zhu et al., 2020)	Size reduction Images	Binary	98,26 %
	(Tran et al., 2020)	CWT	Images	Multilabel	99,67 %
	(Rahimi et al., 2021)	STFT	Images	Multilabel	98,90 %
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