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Calculation details

T. Cherriére

1 Magnetic models

We use the Kenelly convention. The reference material law is:

h = vy(b —my (b)), (1)
with h the magnetic field (A/m), v, the reluctivity of void (m/H), b the flux density (T) and m,, the
magnetic polarization, also called J in the litterature (T).

Let’s assume we know the anhysteretic BH curve of a material , i.e., a scalar function h(b) that gives
the norm of the magnetic field h = |h| depending on the norm of the flux density b = |b|. We can
define some magnetic models using this scalar function only.

1.a Non-polarized soft magnetic materials

In this type of material, b and h are colinear, so m; can be expressed simply as :

Mipesi (b) = Mipes; (|b]). wy (b), (2)
where mpg;(b) = b — p h(b) is a scalar function that can be extracted directly from the BH curve,
and u;, = % is the unit vector in the direction of b. In practice, we can use max(|b|, £) with & a small

positive number (such as 5 x 10732* that is the smallest strictly positive number in Matlab) instead of
|b| to prevent division by 0.

1.b Polarized magnetic materials

We assume that for a polarized material :

m, (b)) = my, (b uy,). w, (3)

pm ( pm (

where m,,,(b) = b — p, h(b) is the same scalar function based on the BH curve of the magnet along

its d-axis, given by w,, the fixed unit vector along the orientation of the magnet. Note that we

consider only the influence of b in the direction of w_ , and we fix the magnetization direction, which

pm>
are strong assumptions. It also means that the magnet behaves like air in the transverse direction.

Other more elaborated models, such as vectorized Jiles-Atherton, are possible.

2 Derivatives

dmg  dmgy
b, b .
We want to calculate dd—’;l = ( y) for both models. We assume that the scalar functions mp.g;

dmy  dmy
dby, dby

and m_ are known as well as their derivatives m/p.g; and m’

pm pm*

2.a Non-polarized model

Written in full form, Equation 2 reads:

Mipesi (Vo (b)) Ngfb)

b b
Mipesi (Vg (b))N—fb)

2

Mpeg; (b) =

with N,(b) = /b2 + bz the modulus of b. The derivative reads:
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deeSi - (deeSi deeSi)

db db,, db,
The derivative with respect to b, is:
1 . b, Ny(b)—b, 332
Mypesi ’ Ny(b) 2(b
— s = e (M) | | e (Vo) |
I -\ st
Because i—]}f = % and (ji—];[j = % we obtain :
b
dmyg.g; b Mpesi(|0])
elzm/Cib_z. eSi Nb2_b2
B = s (bl) b FEGE | by 2
—b,b,
We do the same calculations for dby :
dmyg.g; b Mpci(|b —b,b
FeSi _ m/FeSi(|b|)_y2-b+ FESIEJ |) ) Y .
db, ] ] b,
So all together as a matrix, we have :
/ 2 2 J—
dmp,s; _m resi () [ O byba Mpesi([0]) by byb,
db bl \b.b, b o \~bub, B ) (4)
——
b.b"=b®b (R(3)-b)®(R(5).b)

with R(%) = (? :)1) the rotation matrix by a 7 angle; which is the formula (28) given the paper.

2.b Polarized model

Equation 3 reads in full form :

upmI
mpm(b) = mpm (bxupmm + byupmy)' (U ) ’ (5)

pm,,

SO :
Uu
% = m’ (b U +b u ) P
db pm, " pm \ Yz “pm, y 'pm, upmy )

dm

pm
pm __ ’ z
db - upmy m pm (bx upmz + by upmy ) u ’

y ity

which combined as a matrix, gives:

2
dmpm , upmz upmx upmy
= 11 * m/
db g (b ) Uy U u? (6)
pm, ~'pm,, pm,,
upm®upm

which is the formula (29) in the paper. We note that Equation 4 and Equation 6 are symmetric.



