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Abstract

Density-based topology optimization methodologies in magnetostatics interpolate either the
magnetic permeability µ or the magnetic reluctivity ν to define intermediate materials and com-
pute the problem sensitivities. These choices may lack physical interpretation and are not suited
to model realistic permanent magnets. This work proposes the interpolation of the vector mag-
netic polarization m as a more general alternative, which can model any magnetic material. It
is then applied to the multi-material topology optimization of the rotor of a permanent magnet
synchronous machine. The case of an ideal permanent magnet with a constant magnetic polariza-
tion is compared to that of AlNiCo. The results show that considering the non-linearity of the
permanent magnet can significantly impact the optimized geometry.

Keywords: Density Method –Multi-Material Topology Optimization – Magnetic Polarization
– Nonlinear Magnetostatics – Permanent Magnet Synchronous Machine

• Open Archive HAL with file: hal-04024477
• Doi: 10.1109/TMAG.2023.3256003

1

https://orcid.org/0000-0001-5421-4061
https://orcid.org/0000-0002-3992-8266
https://orcid.org/0000-0002-8935-5929
https://orcid.org/0000-0002-2371-2655
https://orcid.org/0000-0001-6662-6020
mailto:theodore.cherriere@ens-paris-saclay.fr
https://hal.science/hal-04024477
https://doi.org/10.1109/TMAG.2023.3256003


Théodore Cherrière, Tom Vancorsellis, Sami Hlioui, Luc Laurent, François Louf, Hamid Ben Ahmed & Mohamed Gabsi. A Multimaterial
Topology Optimization considering the PM Nonlinearity. EEE Transactions on Magnetics, 2023. doi: 10.1109/TMAG.2023.3256003

Contents
1. Introduction 2

2. Physical analysis of the interpolations 3
2.1. Serial assembly - ν interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2. Parallel assembly - µ interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3. m-interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.4. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3. Numerical implementation 7
3.1. Magnetic materials behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2. 2D magnetostatics with m-formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

4. Optimization formalism 8
4.1. Multi-material interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
4.2. Objective function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.3. Optimization problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

5. Numerical examples 10
5.1. Ideal permanent magnet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
5.2. Non-linear permanent magnet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
5.3. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

6. Conclusion 12

A. Variational formulations 13

B. Derivation of the magnetic polarization 14

References 14

1. Introduction
Topology optimization (TO) is a fast-growing structural conception tool issued from mechanical engi-
neering [1], which was introduced in the field of electromagnetic actuators with [2]. These methods aim
to find Ω an admissible material distribution, which minimizes an objective function f :

find Ω∗ = arg min f(Ω). (1)

Some methodologies try to solve this problem directly using heuristic algorithms such as particle
swarm optimization [3], or genetic algorithms [4]; see [5] for a comparison. While they can handle a
wide variety of problems easily and may be able to find their global optimum, heuristic approaches suffer
from the high computing time due to the numerous variables N > 103 involved in TO [6]. Other works
prefer faster optimization algorithms based on first-order derivatives. Among a wide variety of different
approaches, such as the level set method [7] or the phase-field method [8] (see [9], [10] for exhaustive
overviews), density-based methodologies are the most popular. They aim to solve a discretized and
relaxed version of (1):

find ρopt = arg min
ρ∈[0,1]N

f(ρ), (2)

where ρ is the vector containing N optimization variables, called ”densities”, representing the filling
level of each mesh element, similar to how pixels represent a geometry. A density value of 0 represents
air, and a value of 1 represents a solid element such as steel, as shown in Fig. 1. The properties of

2

https://doi.org/10.1109/TMAG.2023.3256003


Théodore Cherrière, Tom Vancorsellis, Sami Hlioui, Luc Laurent, François Louf, Hamid Ben Ahmed & Mohamed Gabsi. A Multimaterial
Topology Optimization considering the PM Nonlinearity. EEE Transactions on Magnetics, 2023. doi: 10.1109/TMAG.2023.3256003

Ω

(a) Reference material
distribution Ω

(b) Density-based repre-
sentation of Ω

Figure 1: Density based geometry representation. Black elements (ρ = 1) represent solid material and
white elements (ρ = 0) represent void.

materials, for example, Young modulus in mechanical engineering, or magnetic permeability in electrical
engineering, can then be continuously interpolated with respect to the optimization variables ρ. So,
first-order derivatives can be computed efficiently with the Adjoint Variable Method (AVM) [9] in order
to then use fast optimization algorithms based on gradient descent. However, the relaxed optimization
problem (2) introduces the possibility of ”gray materials”, associated with a density ρ between 0 and 1.
They may be interpreted as a mixture between solid material and void, organized as micro-structures
in homogenization methods such as [11].

There is some freedom in the material interpolation function. Concerning magnetic actuators, two
trends exist in the literature. The magnetic permeability µ = |b|/|h| can be considered as the reference
variable to interpolate, as in the seminal article [2]. A common interpolation, used in jung2021, [12]–
[14], which mimics the SIMP scheme in mechanical engineering [15], is the following:

µ(ρ, |b|) = µ0 + (µsteel(|b|)− µ0)ρ
p. (3)

The other possibility is to interpolate, in a similar manner, the magnetic reluctivity ν = 1/µ. It was
introduced by [16] and is used in numerous papers such as [17]–[22].

As they do not have a proper physical interpretation in general, intermediate materials should be
eliminated, with penalization schemes [23] or filtering [24]. To model linear hard-magnetic materials, an
additional optimization variable to model the remanence should be considered as in [21]. However, this
formalism seems inadequate to model non-linear Permanent Magnets (PM). To address this issue, this
work proposes to interpolate the magnetic polarization m, which is the common underlying magnetic
property of both soft magnetic materials, such as steel, and hard magnetic materials, such as PM. In
addition, this interpolation naturally models the non-linearity of PM, which is necessary to take into
account the demagnetization of PM, previously only considered in analytical or parametric optimizations
[25]–[27].

This new interpolation is first explained and compared to the other classical µ and ν interpolations.
It is then applied, as an example, to the case of the Multi-Material Topology Optimization (MMTO)
of a Permanent Magnet Synchronous Machine (PMSM) rotor. To do so, its numerical implementation
is given with respect to the materials’ behavior laws and the optimization framework is detailed. Next,
the results are presented and analyzed for ideal and non-ideal magnets, highlighting the effect of the
non-linearity. Finally, the conclusion draws some perspectives on this work.

2. Physical analysis of the interpolations
Macroscopic magnetostatics is entirely described by Maxwell’s equations and material behavioral laws,
which can be formulated following two different conventions [28]:

Kennelly convention: h =
1

µ0
(b−mb(b)), (4a)

Sommerfeld convention: b = µ0(h+mh(h)), (4b)

3

https://doi.org/10.1109/TMAG.2023.3256003


Théodore Cherrière, Tom Vancorsellis, Sami Hlioui, Luc Laurent, François Louf, Hamid Ben Ahmed & Mohamed Gabsi. A Multimaterial
Topology Optimization considering the PM Nonlinearity. EEE Transactions on Magnetics, 2023. doi: 10.1109/TMAG.2023.3256003

with b the magnetic flux density, h the magnetic field, µ0 = 4π × 10−7H/m the void permeability, mh

the magnetization, and mb = µ0mh the magnetic polarization. Note that mb = µ0mh. We recall the
expression of the magnetic permeability µ = |b|/|h| and reluctivity ν = |h|/|b| for isotropic materials.
We denote the norm of the vector as b = |b|, h = |h| and m = |m|. The following linear interpolations
are considered for M different materials:

ν − interpolation: ν̃(b) = ν0 +

M∑
i=1

ρi(νi(b)− ν0), (5a)

µ− interpolation: µ̃(b) = µ0 +

M∑
i=1

ρi(µi(b)− µ0), (5b)

m− interpolation: m̃(b) =

M∑
i=1

ρimi(b), (5c)

where ρi is the optimization variable associated with material i. We assume that {ρi}1≤i≤M partitions
the unit:

M∑
i=1

ρi = 1. (6)

At macroscopic scale, Ampere’s theorem reads:∮
Γ

h.dl = I (7)

where Γ is a closed path oriented along the flux line of a macroscopic solenoid represented in Fig. 2,
which embraces a current I. Equation (7) helps to interpret the different interpolations at a smaller
scale in a mesoscopic Representative Volume Element (RVE). In the numerical implementation detailed
in section 3, the RVE is a mesh element.

2.1. Serial assembly - ν interpolation
Let us define the average magnetic field on the RVE by ⟨h⟩ = 1

L

∫ L

0
h.dl, with L the length of the RVE.

Then, using the classical behavior law h = νb, the partition of unity (6), the Ampère’s theorem (7)
and the non-divergence of the flux density which induces a constant b in an RVE containing a serial
assembly of materials, we obtain:

⟨h⟩ =
M∑
i=1

li
L
νi(b)b =

(
ν0 +

M∑
i=1

li
L
(νi(b)− ν0)

)
︸ ︷︷ ︸

ν̃ from (5a)

b, (8)

L

b h

b

h

S

Γ

I

Figure 2: Illustration of the magnetic situation with a serial and a parallel RVE.
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with li the elementary length of material i. Equation (8) can be directly identified with Equation (5a),
the optimization variable ρi playing the role of lineic fraction li/L of materials i. Therefore, linear ν-
interpolation can be identified with a serial assembly of materials along the flux lines. This interpolation
is suitable when b is the degree of freedom of the behavior law, i.e. when expressed in the Kennelly
convention (See Equation (4a)). This is the case of the majority of finite element implementations,
which are based on the ”primal” vector potential a; the associated magnetic behavior is shown in
Fig. 3a. However, there is no indication that such an interpolation has a physical meaning when it is
based on the magnetic field h as in Fig. 3b.

2.2. Parallel assembly - µ interpolation
Let us define the average flux density ⟨b⟩ = 1

S

∫∫
S
b.ds, with S the section of the RVE. Equation (7)

gives the exact and constant magnetic field h = I/L within all the parallel assembly RVE. Then, the
average ⟨b⟩ can be computed by using (6) and the traditional material behavior law b = µh to obtain:

⟨b⟩ =
M∑
i=1

si
S
µi(h)h =

(
µ0 +

M∑
i=1

si
S
(µi(h)− µ0)

)
︸ ︷︷ ︸

µ̃(h)

h, (9)

with si the elementary section of material i. Note that (9) cannot be directly identified with (5b), as
µ̃(h) depends on h and not on b. Therefore, (9) makes sense as a parallel assembly along the flux
lines only in the Sommerfeld convention (4b), where the optimization variable ρi plays the role of
surface fraction si/S of material i. While the Sommerfeld convention is typically used in physics, it is
rarely used in numerical implementation, where it is known as the dual formulation [29]: this magnetic
behavior is plotted in Fig. 4b. Consequently, there is no simple physical interpretation of Equation (5b)
which depends on b, or even no physical interpretation at all. Indeed, Fig. 4a shows that intermediate
materials may have a differential permeability ∂b

∂h lower than µ0, which seems impossible.

2.3. m-interpolation
In fact, both Equations (8) and (9) can be rewritten to be identified with the unique physical quantity
m – formulated either in Sommerfeld or in Kennelly convention:

• In a serial assembly, we obtain with (4a) and (7):

⟨h⟩ = 1

µ0

(
b−

M∑
i=1

li
L
mbi(b)︸ ︷︷ ︸

Eq. (5c) – Kennelly

)
. (10)
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Figure 3: BH curves of intermediate materials for linear ν-interpolation.
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Figure 4: BH curves of intermediate materials for linear µ-interpolation.
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Figure 5: BH curves of intermediate materials for linear m-interpolation.

• In a parallel assembly, we obtain with (4b) and (7):

⟨b⟩ = µ0

(
h+

M∑
i=1

si
S
mhi(h)︸ ︷︷ ︸

Eq. (5c) – Sommerfeld

)
. (11)

Note that mb and mh represent the same physical quantity with a µ0 factor. Therefore m-interpolation
is suited in both convention and the associated numerical formulations, as shown in Fig. 5.

2.4. Discussion
As shown in the previous sections, m seems to be the natural material property for interpolating
magnetostatics topology optimization problems.

However, this interpolation is vectorial by nature – as in Equations (4a) and (4b) – so its numerical
implementation detailed in Section 3 is more tedious than µ or ν interpolations. In addition, equivalent
interpolations can be achieved with ν following the Kennelly convention (classical finite element formu-
lation) or µ following the Sommerfeld convention (dual formulation) when dealing with soft magnetic
materials only, as shown in Sec. 2.

In fact, the practical usefulness of vectorial m-interpolation becomes apparent when dealing with a
mixture of hard magnetic materials and non-linear soft magnetic materials. The usual material laws

• h = νb for soft materials, where ν = h
b , and

• h = ν0(b−mb) for hard materials, where ν = ∆h
∆b ,

6
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Figure 6: BH curves of soft and hard magnetic materials.

are simplifications of (4a) that are valid under the assumptions mb = 0 when b = 0 for soft materials,
and mb is a constant for hard materials. Such conditions are in contradiction of each other, which makes
the interpretation of intermediate materials obtained by ν-interpolation difficult to interpret. Indeed,
the interpretation of the coefficient ν itself differs for hard and soft materials. Similarly, a non-linear
permanent magnet behaves like a mixture of ideal soft and ideal hard materials, and its behavior is
well-described through its magnetic polarization model.

Therefore, the m - interpolation handles general magnetic behaviors similar to gradient-free topol-
ogy optimization, where an independent black-box magnetic solver is often used without the need of
intermediate materials. In contrast, in density-based topology optimization, the user must consistently
define the material models of the real and intermediate materials.

3. Numerical implementation
3.1. Magnetic materials behavior
The anhysteretic magnetic polarization of anhysteretic soft magnetic materials such as FeSi can be fully
determined by its scalar BH curve, such as in Fig. 6a. Assuming its reciprocal function h(b) is known,
m reads:

mFeSi(b) = mFeSi(b) · ub, (12)

where mFeSi(b) = b− µ0h(b) is deduced from (4a) and the BH curve, ub =
b
b a unitary vector oriented

along the induction. Concerning ideal hard magnetic materials, m is a constant. However, the magnetic
polarization of realistic hard materials depends on the norm of b and its direction. It requires a vector
hysteresis model such as [30], [31]. In addition, irreversibility and hysteresis models may be considered
but increase the computation time significantly, which is a severe issue for topology optimization.

Therefore, the irreversibility of magnetic materials is not taken into account in this work, and the
following simplified magnetic model of PM is considered to save computing time :

mpm(b) = mpm(b) · upm, (13)

where mpm is the magnetic polarization of PM, upm is the unitary vector indicating its fixed direction,
and mpm(b) = b ·upm−µ0h(b ·upm) is its norm. This model requires the magnet’s h(b) behavior along
its d-axis, such as in Fig. 6b. More elaborated models are possible such as vectorized Jiles-Atherton
[32].
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3.2. 2D magnetostatics with m-formulation
Using the general behavior law in the Kennelly convention (4a), Maxwell’s equations give the following
magnetostatics equation:

∇× (∇× a) = µ0j +∇×m(b), (14)

where a is the magnetic vector potential verifying ∇ × a = b, and j is the current density. Magnetic
polarization is not limited to a permanent magnet but to all magnetic materials, including soft magnetic
materials, and is zero in non-magnetic materials. In 2D problems where a = [0 0 az], j = [0 0 jz]
and m = [mx my 0], (14) becomes:

−∇ · (∇az) = µ0jz +∇ ·
(
my(b)−mx(b)

)
. (15)

This equation can be discretized with the finite element method to obtain the non-linear system (16).
After discretization, the finite element system can be assembled and reads:

Ka = s(a,ρ), (16)

which is solved with a Newton-Raphson scheme. The associated solver was implemented in Matlab and
validated with GetDp [34]. More details are given in appendixes A and B.

4. Optimization formalism
This article considers the Multi-Material Topology Optimization (MMTO) of a Permanent Magnet
Synchronous Machine (PMSM) rotor. Three different materials are considered:

• Anhysteretic steel (standard FeSi);

• PM with a fixed orientation of 15◦ for the sake of simplicity, which may restrict the possible
solutions - note that it is possible to include the magnetization direction in the optimization
problem [11], [21]. However, the PM can be non-linear;

• Air.

4.1. Multi-material interpolation
To use a density-based method, it is necessary to define an interpolation between the magnetic polariza-
tion of the different materials. To do so, two optimization variables contained in a square ρ1, ρ2 ∈ [−1, 1]2

are used per mesh element. A material is attributed to each vertex of this square, so the interpolated
m̃ reads:

m̃(ρ1, ρ2, b) = ωpm(ρ1, ρ2)mpm(b)+

ωFeSi(ρ1, ρ2)mFeSi(b),
(17)

with mpm the polarization of the permanent magnet, mFeSi the polarization of the steel, ωpm and ωFeSi

the weight functions, associated to permanent magnet and steel, respectively. The weight functions,
also used in [35], [36], are plotted in Fig. 7, and read:

ωPM (ρ1, ρ2) =
1

4
(ρ1 + 1)(1− ρ2), (18a)

ωFeSi(ρ1, ρ2) =
1

4
(1− ρ1)(ρ2 + 1). (18b)

Note that, m-interpolation (17) can handle any magnetic material without additional variables, as
long as a vector model is available for m(b). This is not the case with µ- or ν- interpolations that

8

https://doi.org/10.1109/TMAG.2023.3256003


Théodore Cherrière, Tom Vancorsellis, Sami Hlioui, Luc Laurent, François Louf, Hamid Ben Ahmed & Mohamed Gabsi. A Multimaterial
Topology Optimization considering the PM Nonlinearity. EEE Transactions on Magnetics, 2023. doi: 10.1109/TMAG.2023.3256003

w
ei
gh
t

2

1

FeSi

PM

Air
FeSi
PM

Figure 7: Weight functions ωFeSi and ωPM with material placement.

require the addition of the PM remanence, for example, which is already included within the magnetic
polarization model.

Since the optimized designs do not contain intermediate materials, there is no need to introduce an
exponent p as in Eq. (3). This is similar to ν- interpolation optimizations which are self-penalized [16],
[20], and corresponds to the same serial-assembly interpretation as m-interpolation in vector-potential
magnetostatics formulation (see Sec. 2).

4.2. Objective function
The aim of this optimization is to maximize the average torque. From Maxwell’s stress tensor Σ, the
torque t of a rotating machine can be written as a line integral within the airgap [37]:

t = L

∮
γ

r × Σn dγ, (19)

where L is the axial length of the machine, r the position vector, n the outer normal vector from the
path γ. Σ can be reduced to its magnetic component, which reads:

Σij =
1

µ0

(
bibj −

|b|2

2
δij

)
, (20)

where δij is the Kronecker delta. Equation (19) can be rewritten as a surface integral within the airgap’s
surface Se, so the following expression is used:

t =
2πL

Se

∫∫
Se

r × Σr ds. (21)

Only the z component of t is interesting in 2D. This expression depends explicitly on the magnetic
flux density b, but not on the design variables ρ. The design variables and the physical state (also called
the direct state) are linked implicitly by the non-linear physical system (16). Therefore, the Adjoint
Variable Method (AVM) [9] is necessary to compute the problem sensitivities.

4.3. Optimization problem
A volume constraint is set to avoid the rotor being filled entirely with the permanent magnet. The
maximal volume of the permanent magnet is arbitrarily set to 10% of the total rotor volume. The
optimization problem can now be formulated under the standard form:

9
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Figure 8: Flowchart of the optimization algorithm.

find ρopt = arg max⟨t.ez⟩,

subject to
∫∫

R ω10ds/
∫∫

R 1ds ≤ 10%,
(22)

where R is the optimization zone, i.e., the rotor of the machine. The Method of Moving Asymptote
[38] (MMA) is used to perform the optimization. Neither filtering nor post-processing. The algorithm
stops after 500 iterations. The optimization flowchart is given in Fig. 8. The average computing times
per iteration were about 8.4 s for the FEM, 1.0 s for the AVM and 0.1 s for MMA.

5. Numerical examples
The MMTO problem given in Equation (22) is applied to the rotor optimization of a single PMSM
pole. The mesh generated by GMSH [39] contains 5890 nodes and 11331 first-order triangles, with 3441
located in the rotor leading to a total of 6882 design variables. A sliding band technique [40] emulates
the rotation without remeshing. The torque is averaged on 60 angular positions. The stator is fixed,
and the current feedings of the three phases read:

JA+(θe) = J cos (θe + ϕ)
JC−(θe) = J cos

(
θe − π

3 + ϕ
)

JB+(θe) = J cos
(
θe − 2π

3 + ϕ
)
,

(23)

where J is the current density amplitude set to 10A/mm2, θe the electric angle, and ϕ the load angle,
which is an electrical rotation between the initial position of the rotor and the flux created by the stator.
As only one orientation of permanent magnet is available in this optimization, ϕ = 240◦ is chosen to
place it in the center of the rotor pole. The optimization is performed with two different types of PM:

• Ideal permanent magnet with a constant magnetic polarization

• AlNiCo magnet
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Their remanent flux densities are set to 1.25T, representing the nominal remanence of AlNiCo mag-
nets. Only their coercive fields are different; see Fig. 6b for their BH curves. The initial situation for
both optimizations is homogeneous to demonstrate the ability of the methodology to find performing
designs without any initial information and is given in Fig. 9. To avoid starting on the FeSi - PM
diagonal representing a magnetic polarization saddle line, all the optimization variables are initialized
to 0.1 and not in the center of the domain. A simple spatial mean-filter procedure [41] is applied to
limit the geometry artifacts. The radius of the filter decreases from 3mm to 0mm every 50 iterations
to obtain sharp interfaces in the final design. Other filtering schemes or post-processing [24] may be
used to remove the remaining geometric artifacts.

5.1. Ideal permanent magnet
First, the optimization uses an ideal permanent magnet with a constant magnetic polarization as a
candidate material. The final result is shown in Fig. 10. A Surface Permanent Magnet Synchronous
Machine (SPMSM) rotor is obtained, in agreement with the results found in [42]. The optimization
evolution and result are shown in Fig. 10. The final torque is 2836Nm/m, and the PM volume constraint
is respected.

We note that the optimized permanent magnet area is thin. Therefore, there is a risk of demagneti-
zation in a practical situation. Indeed, the high demagnetizing field within the PM shown in Fig. 11a
locally reduces the flux density shown in Fig. 11b, and may cause demagnetization in practical situa-
tions.

This result highlights the importance of considering the non-linearity of the magnetic behavior during
optimization, especially when using semi-hard magnetic materials such as AlNiCo.

5.2. Non-linear permanent magnet
The demagnetization can be partially taken into account in the optimization by considering the upper
BH curve of an AlNiCo. This material was chosen due to its relatively low coercivity compared to
other PM types. Only the non-linearity of the BH curve is considered and the recoil lines follow the
hysteresis curve, which is not the case in real demagnetization, see [43]. However, this simplified model
is enough to change significantly the obtained design shown in Fig. 12a from the ideal PM case. The
torque plotted in Fig. 12b is degraded by 19% and reaches 2293Nm/m, while the PM volume constraint
is still respected.

Note that the position of the PM has changed to avoid the high demagnetizing field located at the
bottom of Fig. 11a and its width has increased in the zone where the demagnetizing field is important.
The demagnetizing field is now very limited in the PM and is more located in the air, as shown in
Fig. 13a and Fig. 13b.

The non-linear behavior of the PM seems to induce more artifacts, such as small isolated structures in
the optimized design, shown in Fig. 12a. Additional filtering or regularization schemes may be necessary
for a more general case.

Phase A+

Phase B+

Phase C-

FeSi Steel

Initial material

PM

Air

AirFe Si

Air PM (15°)

Figure 9: Initial situation corresponding to 6 pole pairs, and intermediate materials’ colorscale.
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Figure 10: Results of the optimization with an ideal PM.
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Figure 11: Magnetic field and flux density of the optimized design with an ideal PM.

5.3. Discussion
The instant torques are plotted in Fig. 14 and compared to a reference BMWi3 reference design adapted
from [44] with ideal PM, the same rotor diameter and current feedings.Additional information such as
the ripple r = max(T )−min(T )

⟨T ⟩ and the PM volume are given in Table 1.

Table 1: Performance of the designs.
Ref. design
(ideal PM)

Optim. design
ideal PM

Optim. design
AlNiCo

Avg. torque 2404Nm/m 2836Nm/m 2293Nm/m
Ripple 29% 22% 34%

PM volume 20% 10% 10%

The optimized design with the ideal PM has a higher average torque than the reference one with a
lower PM volume, which validates the topology optimization methodology. However, the higher torque
may be explained by the lack of mechanical constraint, leading to magnetic short circuits. Note that
the decrease of torque ripple was not expected in the optimized design with ideal PM. The torque ripple
could be reduced even more by adding it explicitly as an objective function [19].

Moreover, it was recently shown in [45], [46] that the electric angle ϕ should be controlled during the
optimization in the presence of PM to obtain better performance. Here, ϕ is fixed to compare the two
final structures, which otherwise would reach different optimal ϕ.

6. Conclusion
This article presents the magnetic polarization interpolation applied to the MMTO of a PMSM rotor.
In its physical interpretation and applications, the m-interpolation is more general than µ- or ν- interpo-
lations. Indeed, it allows the consideration the non-linearity of the PM within the optimization process.
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Figure 12: Magnetic field and flux density with a non-linear PM.
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Figure 13: Magnetic field and flux density with AlNiCo PM.

Numerical examples show that the optimized design could be significantly modified by considering the
non-linearity of the PM behavior, even with a simplified model.

This methodology can be extended to address dynamic demagnetization with more realistic vector
hysteresis models such as [32]. Potential applications include innovative electrical actuators such as
memory machines [47], which are beyond the current state of the art in topology optimization. Other
perspectives include additional physics, such as thermals to obtain a realistic PM demagnetization
model, or mechanics to ensure the rotor’s strength.

A. Variational formulations
The finite element discretization (16) uses the weak form of Eq. (15) on the computational domain D
composed by the rotor, the stator, and the airgap. The weak form of its residual reads:

∀(a, a∗) ∈ H1
0 (D)×H1

0 (D), r(a, a∗) =

∫
D
∇a∗ · ∇a−

∫
D
a∗µ0jz +

∫
D
∇a∗ ·R−π/2 m(b), (24)

with R−π/2 =

[
0 1
−1 0

]
a rotation operator. Eq. (24) can be discretized with the FEM to obtain (16).

To solve it, the Newton method comes from the first-order expansion of the residual:

r(a+ δa, a∗) ≃ r(a, a∗) + dar(δa, a
∗) = 0, (25)

where
dar(δa, a

∗) =

∫
D
∇a∗ · ∇δa+

∫
D
∇a∗ ·R−π/2 dbm daδb, (26)

13

https://doi.org/10.1109/TMAG.2023.3256003


Théodore Cherrière, Tom Vancorsellis, Sami Hlioui, Luc Laurent, François Louf, Hamid Ben Ahmed & Mohamed Gabsi. A Multimaterial
Topology Optimization considering the PM Nonlinearity. EEE Transactions on Magnetics, 2023. doi: 10.1109/TMAG.2023.3256003

0 5 10 15 20 25 30

Rotor position (°)

1500

2000

2500

3000

A
v
er

ag
e 

to
rq

u
e 

(N
m

/m
)

ref. opt. ideal PM opt. AlNiCo

Figure 14: Instant torques associated with the designs obtained with ideal PM and AlNiCo compared
to the reference.

and δa = ak+1 − ak. Since δb = R−π/2∇δa, we should assemble and solve iteratively until convergence:∫
D
∇a∗ · (Id +R−π/2 dbm(bk) R−π/2)∇ak+1

=

∫
D
∇a∗ · (Id +R−π/2 dbm(bk) R−π/2)∇ak − r(ak, a

∗), (27)

Id being the identity matrix.

B. Derivation of the magnetic polarization
The term dbm(b) is symmetric and can be explicitly calculated:

• for soft magnetic material, Eq.(12) gives:

dbmFeSi =
m′

FeSi(|b|)
|b|2

· b⊗ b+
mFeSi(|b|)

|b|3
·
[

b2y −bxby
−bxby b2x

]
(28)

• for hard magnetic material, Eq.(13) gives:

dbmpm = m′
pm(b · um) · um ⊗ um (29)
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