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ABSTRACT

Context. The orientation and rotation of Mars can be described by a set of Euler angles (longitude, obliquity, and rotation angles) and
estimated from radioscience data (tracking of orbiters and landers), which can then be used to infer the planet’s internal properties.
The data are analyzed using a modeling expressed within the barycentric celestial reference system (BCRS). This modeling includes
several relativistic contributions that need to be properly taken into account to avoid any misinterpretation of the data.
Aims. We provide new and more accurate (to the 0.1 mas level) estimations of the relativistic corrections to be included in the BCRS
model of the orientation and rotation of Mars.
Methods. There are two types of relativistic contributions with regard to Mars’s rotation and orientation: (i) those that directly impact
the Euler angles and (ii) those resulting from the time transformation between a local Mars reference frame and BCRS. The former
contribution essentially corresponds to the geodetic effect, as well as to the smaller Lense-Thirring and Thomas precession effects,
and we computed their values assuming that Mars evolves on a Keplerian orbit. As for the latter contribution, we computed the effect
of the time transformation and compared the rotation angle corrections obtained, based on the assumption that the planets evolve on
Keplerian orbits, with the corrections obtained, based on realistic orbits as described by the ephemerides.
Results. The relativistic correction in longitude mainly comes from the geodetic effect and results in a geodetic precession
(6.754 mas yr−1) and geodetic annual nutation (0.565 mas amplitude). For the rotation angle, the correction is dominated by the
effect of the time transformation. The main annual, semiannual, and terannual terms display amplitudes of 166.954 mas, 7.783 mas,
and 0.544 mas, respectively. The amplitude of the annual term differs by about 9 mas from the estimate usually considered by the
community. We identified new terms at the Mars-Jupiter and Mars-Saturn synodic periods (0.567 mas and 0.102 mas amplitude)
that are relevant considering the current level of uncertainty of the measurements, as well as a contribution to the rotation rate
(7.3088 mas day−1). There is no significant correction that applies to the obliquity.
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1. Introduction

Apart from the Earth and the Moon, the rotation of Solar Sys-
tem bodies is inferred from data that are analyzed using the
barycentric celestial reference system (BCRS). Most of the time,
the inferred rotation model is then used to estimate physical
properties of these bodies related to their atmosphere and sur-
face dynamics or to their interior structure and composition.
To prevent errors in the physical interpretation of the rotation
models, it is necessary to properly correct them for relativistic
contributions.

Thanks to the many missions that have visited and studied
Mars over recent decades, the rotation of the red planet has been
thoroughly investigated. Many solutions have been proposed in
the literature based on different sets of data (mostly radiometric
data from orbiters and landed spacecraft, e.g., Konopliv et al.
2020; Kahan et al. 2021). Along with these rotation models,
interior models and global circulation models (GCM) have also
been produced and improved over time, especially following the
InSight mission. This is why we focus the present paper on Mars,
although the levels of relativistic contributions in the rotation of
other planets are also provided at the end of this paper.

The orientation of Mars with respect to its orbit can be
described with a set of Euler angles (see Fig. 1), which are used

to build the rotation models in the BCRS. These models are com-
monly corrected for relativistic effects in the longitude angle (ψ)
and in the spin angle (ϕ), while no relativistic correction in the
obliquity (ε) of Mars is usually applied in the literature. The rel-
ativistic correction in ψ does not often explicitly appear in the
angle definition1, but instead it is distributed among the differ-
ent terms used to express that angle (e.g., Konopliv et al. 2006,
Eq. (14); Folkner et al. 1997a, Eq. (5); or Baland et al. 2020,
Eq. (14)):

ψ(t) = ψ0 + ψ̇0 t + ψnut(t), (1)

where ψ0 is the constant value at epoch J2000, ψ̇0 is the constant
Mars precession rate, and ψnut(t) is a periodic series of nuta-
tions. Baland et al. (2020) found a geodetic precession rate of
6.7 mas yr−1 hidden in ψ̇0 (see their Eq. (69)), which is greater
than the uncertainty on the determination of the precession rate
(∼2 mas yr−1, Le Maistre et al., in prep.), as well as periodic
geodetic nutations in ψnut, including an annual term with 0.6 mas
in amplitude (see also Eroshkin & Pashkevich 2007).

1 Except e.g. in Konopliv et al. (2011) or Reasenberg & King (1979)
where the relativistic correction is written separately from the terms of
Eq. (1).
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Fig. 1. Euler angles between the rotating body frame of Mars (axes
XYZ) and the inertial frame associated with the mean orbit of Mars
of 1980 (axes xyz, the x-axis is in the direction of the ascending node
of Mars’s orbit over the Earth ecliptic of epoch J2000). The X-axis of
the BF is chosen as the prime meridian defined in the IAU convention
(Archinal et al. 2018). The spin axis longitude ψ is measured from the
x-axis to the autumn equinox, ϕ is measured from the equinox to the
X-axis, and the obliquity, ε, is the angle from the z-axis to the Z-axis –
or the inclination of the BF equator over the IF xy plane.

As in the case of the Earth, Mars experiences periodic vari-
ations in its rotation due to atmosphere and surface dynamics
that result in length-of-day (LOD) variations. By convention, the
rotation angle of Mars, ϕ, is measured from the ascending node
of the Mars true equator of date over the Mars mean orbit of
epoch (usually chosen as the 1980 orbit, following Folkner et al.
1997b) to the intersection of Mars’s Prime Meridian on Mars’s
true equator of date (see Fig. 1). It is generally decomposed as
(e.g., Konopliv et al. 2006, Eq. (16)):

ϕ(t) = ϕ0 + ϕ̇0 t − ψnut(t) cos ε0

+

4∑
j=1

(
ϕc j cos j l′(t) + ϕs j sin j l′(t)

)
+ [ϕ]GR(t), (2)

where ϕ0 is the constant value at epoch J2000, ϕ̇0 is the constant
spin rate of Mars, and ϕc j and ϕs j are the amplitudes of the peri-
odic variations induced by the seasonal atmosphere and surface
dynamics, with l′(t) as the mean anomaly for Mars. Addition-
ally, ψnut(t) is the periodic nutation in longitude of Eq. (1) and
ε0 is the J2000 epoch Mars obliquity, t is barycentric dynamical
time (TDB), as detailed in Sect. 2.2. The term −ψnut(t) cos ε0 in
Eq. (2) is a correction for the seasonal periodic variations that
are measured along Mars’s mean equator of date – rather than
along the true equator of date, which is nutating with respect
to the mean equator of date. This nutation term in the rota-
tion angle therefore includes the periodic relativistic correction
in longitude. The last term [ϕ]GR(t) in Eq. (2) is another rel-
ativistic correction arising when changing the time scale from
the proper time of Mars to TDB. This term takes into account:
(i) the time dilation effect due to the barycentric orbital veloc-
ity of Mars’s center-of-mass and (ii) the Einstein gravitational
redshift effect due to the change of Mars’s altitude inside the
gravitational potential of the Sun caused by the non-vanishing
eccentricity. This relativistic correction is of the same order of
magnitude as the seasonal periodic terms, and must be estimated
accurately.

Yoder & Standish (1997) provided an estimation for [ϕ]GR(t)
(for details, see their Eq. (21), with amplitudes in mas):

[ϕ]GR(t) ≈
3∑

j=1

ϕr j sin j l′(t) = −175.80 sin l′(t)

−8.20 sin 2l′(t) − 0.60 sin 3l′(t), (3)

which is still in use (e.g., in Konopliv et al. 2020). This estima-
tion is expressed as a sum of trigonometric terms, the arguments
being the harmonics of the Mars mean anomaly, l′(t), as well as
for the seasonal terms. As we show in Sect. 3, this estimation is
affected by an error of about 9 mas on the periodic terms, which
is greater than the current formal uncertainty on the determina-
tion of rotation periodic variations (∼1 mas, Le Maistre et al.,
in prep.) and lacks a linear term that would affect the rotation
rate.

To ensure a correct interpretation of rotation variations mea-
surements, we aim to estimate the relativistic contribution to the
Euler angles at the 0.1 mas level. We go on to update the esti-
mation of the main terms and also investigate the existence of
terms neglected thus far with amplitudes higher than the 0.1 mas
threshold.

The paper is organized as follows. In Sect. 2, we present the
theory for the geodetic and Lense-Thirring effects, as well as for
the effect of the time transformation. The results for the geodetic
and Lense-Thirring effects are also presented in Sect. 2, whereas
the results for the effect of the time transformation are presented
in a dedicated section (Sect. 3), as it requires more investigation.
In that section, we also present solutions obtained initially based
on the assumption that the planets evolve on Keplerian orbits and
then based on realistic orbits as described by ephemerides. In
Sect. 4, we discuss the signature of the relativistic effects on the
Doppler signal of a Martian radioscience instrument. In Sect. 5,
we briefly introduce a relevant application of the model to other
planets in the Solar System. Our discussion and conclusion are
given in Sect. 6.

2. Theory

Two different types of relativistic contributions exist which arise
in the BCRS rotation model of Solar System bodies: (i) con-
tributions that impact directly the rotation of the body and (ii)
contributions arising from reference frame transformation. The
first type of contributions concerns the ones that impacts the spin
equation of motion such as the geodetic precession and nuta-
tions (Fukushima 1991; Eroshkin & Pashkevich 2007; Baland
et al. 2020) and the Lense-Thirring and Thomas precessions (see
Sect. 2.1). The second relativistic contributions come from the
reference frame transformation between a local inertial frame
that would be used to describe the local physics of the body
and the BCRS used to analyze the data. The theory of ref-
erence frame transformation to first post-Newtonian order has
been derived by Brumberg & Kopejkin (1989); Kopejkin (1988);
Damour et al. (1991); Klioner & Voinov (1993) – and it has
also been adopted in the IAU 2000 conventions, as in Soffel
et al. (2003). Of prime importance for our purpose is the time
transformation between a local reference frame and BCRS. In
Sect. 2.2, we will present in details various contributions that
arise in the time transformation and their impact in terms of the
Mars rotation model.
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2.1. Geodetic, Lense-Thirring, and Thomas precession effects

Within general relativity framework, the evolution of a spinning
body is given, at the first post-Newtonian approximation, by a
simple precession relation (see e.g., Barker & O’Connell 1970;
Soffel et al. 2003; Poisson & Will 2014):

dS
dt
= Ω ∧ S + O(c−4) · (4)

In this equation, S denotes the spin angular momentum of Mars
andΩ is the relativistic total precessional angular velocity, which
is decomposed into three parts: Ω = Ωso +Ωss +ΩTP. The term
Ωso is called the spin–orbit precessional angular velocity, Ωss is
the spin-spin precessional angular velocity, andΩTP is called the
angular velocity of the Thomas precession. The spin–orbit and
spin-spin components are also called the “geodetic precession”
and the “Lense-Thirring precession,” respectively.

When applying Eq. (4) to the description of the spin vari-
ations of Mars, we can keep the contribution of the Sun only
in the relations of the spin–orbit and spin-spin precessional
angular velocities, while the contribution of Phobos alone can
be retained in the relation of the Thomas precession angular
velocity. Thus, the expressions of the angular velocities are as
follows:

Ωso =
GM⊙

2c2∥x − x⊙∥3
(x − x⊙) ∧ (3v − 4v⊙), (5a)

Ωss =
GS ⊙

c2∥x − x⊙∥3

(
3
(
(x − x⊙) · ê⊙

)
(x − x⊙)

∥x − x⊙∥2
− ê⊙

)
, (5b)

ΩTP = −
1

2c2 v ∧Q, (5c)

where x and x⊙ are the barycentric positions of Mars and of
the Sun, respectively, and v and v⊙ represent their barycentric
velocities. The vector Q is the non-geodesic acceleration whose
expression can be derived from Eq. (6.30a) of Damour et al.
(1991); hereafter, we only consider the dominant Newtonian con-
tribution. In addition, M⊙ is the mass of the Sun, while S ⊙ and
ê⊙ denote the magnitude and direction of the Sun’s spin angu-
lar momentum, respectively, c is the speed of light, and G is the
universal gravitational constant.

Hereafter, we write ê⊙ = cosα⊙ cos δ⊙ êx + sinα⊙ cos δ⊙ êy +
sin δ⊙ êz with α⊙ and δ⊙ as the right ascension and declination
of the direction of the Sun’s spin axis, respectively. Both are
assumed to be fixed in the inertial frame associated with the
mean orbit of Mars, namely (êx, êy, êz). We also consider that
M/M⊙ ≪ 1, so that Mars follows an heliocentric orbit, namely
∥x⊙∥/∥x∥ ≪ 1, ∥v⊙∥/∥v∥ ≪ 1. We denote by êz the direction of
the orbital angular momentum of Mars (assumed to be constant)
and by êx the direction of the ascending node of Mars’s orbit in
the ecliptic; êy completes the triad such that (êx, êy, êz) is a direct
orthogonal basis. After decomposing Eqs. (5a) and (5b) into this
basis (the case of the Thomas precession is treated separately at
the end of the section), we obtain the following relationships:

Ωso = Ωso (1 + e cos f )3 êz = Ω
z
so êz, (6a)

Ωss = Ωss

(
cos δ⊙

2

((
3 cos(2l′ − α⊙) + cosα⊙

)
êx

+
(
3 sin(2l′ − α⊙) + sinα⊙

)
êy

)
− sin δ⊙ êz

)
, (6b)

with

Ωso =
3(GM⊙)3/2

2c2a5/2(1 − e2)5/2 , (7a)

Ωss =
GS ⊙
c2a3 , (7b)

where a is the semi-major axis, e is the eccentricity, and f is
the true anomaly for Mars. We neglected e in Ωss, as the Lense-
Thirring effect obtained for a circular orbit is already very small
(between three and four orders of magnitude smaller than the
geodetic effect; for more, see below).

We now write the components of êx, êy, and êz in the coor-
dinates of a rotating frame attached to Mars (êX , êY , êZ) and
oriented with the Euler angles (ψ, ε, ϕ), with details given in
Fig. 1:

êx = (cosψ cos ϕ − sinψ cos ε sin ϕ) êX

− (sinψ cos ε cos ϕ + cosψ sin ϕ) êY + sinψ sin ε êZ , (8a)
êy = (cosψ cos ε sin ϕ + sinψ cos ϕ) êX

+ (cosψ cos ε cos ϕ − sinψ sin ϕ) êY − cosψ sin ε êZ , (8b)
êz = sin ε sin ϕ êX + sin ε cos ϕ êY + cos ε êZ · (8c)

The precessional angular velocities Ωso and Ωss can also be
written as function of the Euler angles such as:

Ω = (ε̇ cos ϕ + ψ̇ sin ε sin ϕ) êX − (ε̇ sin ϕ − ψ̇ sin ε cos ϕ) êY

+(ϕ̇ + ψ̇ cos ε) êZ , (9)

where a “dot” denotes a differentiation with respect to time.
By merging Eq. (9) with Eq. (6a), we obtain ε̇ = ϕ̇ = 0,

so that only the longitude angle ψ is affected by the geodetic
effect (ψ̇ = Ωz

so , 0). We proceed to a change of variable (from t
to f ):

dψso( f ) = Ωso (1 + e cos f )3
(

dt
d f

)
d f , (10)

with dt/d f being given by p3/2(GM⊙)−1/2(1 + e cos f )−2 for a
Keplerian motion, where p = a(1 − e2) the semi-latus rectum of
Mars’s orbit. After substituting the expression of dt/d f into the
right-hand side of Eq. (10), the integration is immediate (see also
Eq. (3) of Fukushima 1991) and leads to

ψso( f ) =
3

2(1 − e2)

(na
c

)2
( f + e sin f ) · (11)

After using the equation of the center (see e.g., Murray &
Dermott 2000) to express the true anomaly in term of the mean
anomaly, l′, the expression for the spin axis longitude of Mars is
given by:

ψso(l′) =
3

2(1 − e2)

(na
c

)2

l′ + +∞∑
k=1

(
e
√

1 − e2
(
Jk−1(ke) − Jk+1(ke) +

2Jk(ke)

ke
√

1 − e2

)

+ 2
+∞∑
m=1

(
1 −
√

1 − e2
)m

kem

(
Jk−m(ke) + Jk+m(ke)

))
sin(kl′)

 ,
(12)

where the Jk(x) are the Bessel functions of first kind with
k-index, and n is the Mars’s mean motion which is given by
Kepler third law of motion. The term which is directly pro-
portional to Mars’s mean anomaly describes a precession in
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Table 1. Parameter values used for computing the relativistic contributions to the Mars BCRS rotation model, in the frame of analytical and toy
model developments of Sects. 2.2 and 3.1, where the orbit of the planets are assumed to be Keplerian.

Parameter Value Reference

GM⊙ 1.3271244 × 1020 m3 s−2 Simon et al. (2013)
GMJ 1.2671 × 1017 m3 s−2 ibid
GMS 3.794 × 1016 m3 s−2 ibid
a 2.27939 × 1011 m ibid
aJ 7.78298 × 1011 m ibid
aS 1.42939 × 1012 m ibid
e 0.09340 ibid, as

√
(k0)2 + (h0)2

c 299792458 m s−1 ibid
n 1.058576 × 10−7 rad s−1 ibid
nJ 1.678489 × 10−8 rad s−1 ibid
nS 6.759040 × 10−9 rad s−1 ibid
ϕ̇0 350.◦891985339 day−1 Le Maistre et al. (in prep.)
ε0 25.◦18940927 Le Maistre et al. (in prep.)
ψ0 35.◦437639 adapted from Le Maistre et al. (in prep.)
S ⊙ 1.909 × 1041 kg m2 s−1 Pijpers (1998)
α⊙ 304.◦414 Adapted from Archinal et al. (2018)
δ⊙ 84.◦351 Adapted from Archinal et al. (2018)

Notes. The subscripts ⊙, J, and S refer to the Sun, Jupiter, and Saturn, respectively.

longitude at a steady rate, while the other periodic terms rep-
resent the nutations in longitude. After making use of the
numerical values given in Table 1, we find the following estimate
reported here at third-order in eccentricity:

ψso(t) = 6.754 mas yr−1 × t + 0.565 mas sin l′

+0.039 mas sin 2l′ + 0.004 mas sin 3l′ · (13)

Since the geodetic precession and nutations are small, the toy
model based on the assumption of an elliptic Keplerian orbit is
accurate enough for our purposes. The precession and annual
terms are above the 0.1 mas threshold and must be included in
a model for the longitude angle, ψ, as done, for instance, in
Baland et al. (2020). The geodetic precession term is larger
than the uncertainty on the determination of the precession rate
(−7598.3±2.1 mas yr−1, Le Maistre et al., in prep.) and is needed
to avoid an error of about 0.1% in the determination of the polar
moment of inertia. The geodetic annual term, with its ampli-
tude of 0.6 mas, does not depend on the properties of Mars’s
interior and has to be removed from any determination of the
annual nutation term before any interpretation in terms the of
core radius for instance.

By merging Eq. (9) with Eq. (6b), we obtain the equation of
motion for the Euler angles related to the Lense-Thirring effect:

ψ̇ss =
1
2Ωss

(
− 2 sin δ⊙

+ cos δ⊙ cot ε
(

sin(α⊙ − ψ) + 3 sin(2l′ − α⊙ − ψ)
))
, (14a)

ε̇ss =
1
2Ωss cos δ⊙

(
cos(α⊙ − ψ) + 3 cos(2l′ − α⊙ − ψ)

)
, (14b)

ϕ̇ss = −
1
2Ωss

cos δ⊙
sin ε

(
sin(α⊙ − ψ) + 3 sin(2l′ − α⊙ − ψ)

)
· (14c)

After integration (we considered the angles ψ and ε as constant
in the right-hand sides of the equations, and therefore denote

them with a subscript “0” in the following), the solution for each
angle will be the sum of a linear term and of a periodic term at
the semi-annual period. After making use of numerical values
given in Table 1, we find the following estimate:

ψss(t) = −0.0779 µas yr−1 × t sin δ⊙
+0.0390 µas yr−1 × t cot ε0 cos δ⊙ sin(α⊙ − ψ0)
−0.0175 µas cos(2l′ − α⊙ − ψ0) cot ε0 cos δ⊙,
= −0.0857 µas yr−1 × t
−0.0037 µas cos(2l′ − 339.◦852), (15a)

εss(t) = 0.0390 µas yr−1 × t cos δ⊙ cos(α⊙ − ψ0)
+0.0175 µas sin(2l′ − α⊙ − ψ0) cos δ⊙,
= −0.0001 µas yr−1 × t
+0.0017 µas sin(2l′ − 339.◦852), (15b)

ϕss(t) = −0.0390 µas yr−1 × t
cos δ⊙
sin ε0

sin(α⊙ − ψ0)

+0.0175 µas cos(2l′ − α⊙ − ψ0)
cos δ⊙
sin ε0

,

= 0.0090 µas yr−1 × t
+0.0040 µas cos(2l′ − 339.◦852) · (15c)

We actually see that the spin-spin contribution is well below
the 0.1 mas precision and can therefore be safely neglected, as
compared to the spin–orbit contribution.

While considering the spin of Mars as an accelerated gyro-
scope, we also consider the Thomas precessionΩTP contribution
within the total relativistic angular precessional velocity Ω (see
e.g., Eq. (25) of Soffel et al. 2003). As shown in Eq. (5c), this
term is proportional to the acceleration that characterizes the
deviation of the actual worldline of the planet from a geodesic,
which comes mainly from the coupling of higher order multi-
pole moments of Mars to the external tidal gravitational fields.
The Thomas precession scales as ΩTP = ∥ΩTP∥ ∝ Q∥v∥/c2, with
Q = ∥Q∥ ∝ J2R2GMp/∥x − xp∥

4; here, J2 and R are respectively
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the quadrupole moment and the equatorial radius of Mars, while
Mp and xp are the mass and the barycentric position of the exter-
nal body, respectively. For the Earth, the dominant contribution
to Thomas precession comes from the Moon. Here, for Mars,
Phobos plays the dominant role. The absolute value of Q due to
the action of Phobos is on the order of 10−12 m s−2, meaning that
ΩTP ∼ 10−6 µas yr−1 (against 105 µas yr−1 and 10−1 µas yr−1 for
Ωso and Ωss, respectively). The contribution of Thomas preces-
sion to the variations in Euler angles is therefore smaller than the
already negligible contribution of the Lense-Thirring precession.

2.2. Time coordinate transformation and impact on Mars
rotation modeling

We denote, using τ, the local time (or proper time) related to the
central body (i.e., Mars) and, using t, the barycentric dynamical
time (TDB), which is related to the BCRS and used to ana-
lyze the data at Mars. The local model of rotation describes the
rotation of the body in terms of local physics such as the atmo-
sphere and surface dynamics. This model is typically expressed
as a function of the local time, τ. For example, for a uniformly
rotating body, we have ϕ = ϕ0 + ϕ̇0τ. As a consequence, when
expressed in BCRS, the rotation model will be impacted by the
τ− t time transformation. In Sect. 2.2.1, we present the theory
related to the time transformation, while in Sect. 2.2.2, we show
how this time transformation impacts the modeling of Mars’s
rotation when expressed in BCRS.

2.2.1. Time coordinate transformation

The t of TDB is a rescaled version of barycentric coordinate
time (TCB). The link between TDB and TCB is defined by the
recommendation B3 of IAU2006, which reads:

dt
dTCB

= 1 − LB, (16)

where LB = 1.550519768×10−8; as in Eq. (10.3) from Petit et al.
(2010).

The proper time related to a local frame co-moving with
Mars (the Martian equivalent to geocentric coordinate time, or
TCG) is denoted here as τ. For a small orbital velocity (v ≪ c)
and a weak gravitational field (r ≫ GM/c2), the relationship
between TDB and Mars’s proper time τ at first post-Newtonian
order is given by (see, e.g., Soffel et al. 2003; Petit et al. 2010)

dτ
dt
− 1 =

[
dτ
dt

]
GR
=

LB

1 − LB
−

1
c2

1
1 − LB

(
v2

2
+ w

)
+

1
c4

1
1 − LB

(
−
v4

8
−

3
2
v2w + 4v · w +

1
2
w2 + ∆

)
, (17)

where v is Mars’s barycentric velocity. The potential, w, is the
Newtonian potential at the location of Mars:

w =

 ∑
A,Mars

GMA

rA

 − 3J⊙2
2

GM⊙
r⊙

(
R⊙
r⊙

)2 ( ê⊙ · (x − x⊙)
r⊙

)2

−
1
3

 ,
(18)

where rA = ∥x− xA∥ with x the barycentric position of Mars and
xA is the position of the body A, and where the sum includes
the Sun and all planets, R⊙ is the Sun’s equatorial radius, ê⊙ is
the unit vector defining the Sun’s spin axis, and J⊙2 is the Sun’s
quadrupolar moment of the mass distribution. The norm of the

barycentric distance between Mars and the Sun is denoted r⊙ =
∥x − x⊙∥. In addition, w is the vector potential defined by:

w =
∑

A,Mars

GMA

rA
vA, (19)

and ∆ is defined by

∆ =
∑

A,Mars

GMA

rA

(
− 2 v2

A

+
∑
B,A

GMB

RAB
+

1
2

(
vA · (x − xA)

rA

)2

+
1
2

aA · (x − xA)
)
, (20)

where aA is the Newtonian point-mass acceleration of body A,
namely,

aA =
∑
B,A

GMB

∥xB − xA∥
3 (xB − xA). (21)

We can write the result from the integration of Eq. (17), the
relationship between TDB and Mars’s proper time, τ, as

τ = t + [τ−t]GR, (22)

where [τ−t]GR includes the various relativistic corrections. Typ-
ically the relative amplitude of [τ− t]GR is of the order of
GM⊙/c2a ∼ 10−8, where a is Mars’s semi-major axis. In the fol-
lowing, we show how these relativistic corrections impact the
data analysis related to the rotation of Mars when analyzed using
TDB.

2.2.2. Impact on rotation modeling for Mars

We now explore how the time transformation developed above
can impact Mars rotation modeling in BCRS. We first con-
sider a rotation model expressed in Mars’s local reference frame.
Such a model includes a uniform rotation and periodic terms,
that is,

ϕlocal(τ) = ϕ0+ ϕ̇
local
0 τ−ψnut cos ε0+

4∑
j=1

(ϕc j cos j l′+ϕs j sin j l′).

(23)

On the other hand, one needs a similar modeling expressed
in terms of TDB in order to perform the data analysis. Using
Eq. (22), this modeling is given as:

ϕ(t) = ϕlocal (τ(t)) = ϕ0 + ϕ̇
local
0 t − ψnut cos ε0

+

4∑
j=1

(ϕc j cos j l′ + ϕs j sin j l′) +
[
ϕ
]
GR(t), (24)

where[
ϕ
]
GR(t) = ϕ̇local

0 [τ−t]GR· (25)

When analyzing data from orbiting spacecraft or surface
landers, the timescale used in the data reduction is TDB, so
that the model for Mars rotation needs to include the relativis-
tic contributions, as presented above. In the following section,
we study, both numerically and analytically, various contribu-
tions that impact the [τ− t]GR relationship and their impact on
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Mars’s rotation angle ϕ. We go on to propose a new modeling
process that improves upon the one currently used in various
analyses.

Additional relativistic corrections in longitude and obliquity
can be computed similarly as for the rotation angle, by replacing
the rotation rate in Eq. (25) by the precession rate in longi-
tude and in obliquity. However, as those rates (−7598.3 mas yr−1

and −7.9 mas yr−1, respectively, see Le Maistre et al., in prep.)
are very small compared to the rotation rate, the associated
relativistic corrections are negligible.

3. Impact of the time transformation on Mars
rotation modeling

In this section, we study the various contributions to the [τ−t]GR
relationship that arise from the integration of Eq. (17) and
their corresponding impacts on the Mars BCRS rotation model
through Eq. (25). In order to cross-check and validate our results,
we developed three independent approaches.

The first approach consists of developing a simple toy model
to analytically integrate Eq. (17). This provides a good physi-
cal intuition with regard to the various terms obtained and the
process is relatively pedagogical. The second approach consists
of numerically integrating Eq. (17) using the DE440 planetary
ephemerides (Park et al. 2021) provided by the NAIF-SPICE
software (Acton 1996; Acton et al. 2018). In a subsequent step,
analytical series consisting in various harmonic terms are fitted
to the result of the numerical integration. This procedure is sim-
ilar to the one developed to produce the Ephemeris Time (ET)
for Earth. For details, we refer to Fukushima (1995, 2010), Irwin
& Fukushima (1999), and Harada & Fukushima (2003).

The third approach we developed consists of using a series
for the barycentric position and distance of planets to obtain a
subsequent series for the relativistic part of the rotation angle.
We use the analytical planetary theory VSOP87 (Bretagnon &
Francou 1988), derived from the DE200 planetary ephemerides
(Standish 1982). Using the VSOP87 series, we analytically
integrate Eq. (17) and identify the harmonics with the largest
contribution to the [τ−t]GR relationship. We purposely used
VSOP87 in this instance, instead of the more recent versions of
VSOP theories that are not suited for our purpose. VSOP2000
(Moisson & Bretagnon 2001) provides a series only for the
heliocentric positions (not the barycentric positions), whereas
VSOP2013 (Simon et al. 2013), derived from the INPOP plan-
etary ephemerides (Fienga et al. 2011; Bernus et al. 2019, 2022),
is based on Tchebychev polynomials (and not on a series). We
go on to show that the error introduced by using the older (and
therefore less accurate) VSOP87 theory is negligible for our pur-
pose, as the solutions of the second and third approaches are
consistent to the 0.1 mas level.

The advantages to considering the last two approaches are
rooted in the fact that we can cross-check our results and esti-
mate the uncertainties in our derived modeling coming from
numerical integration, differences between the DE and INPOP
ephemerides, and so on.

In the remainder of this section, we consider the various con-
tributions from Eq. (17): the 1/c2 contribution coming from the
two-body problem, contribution related to the motion of the Sun
with respect to the Solar System barycenter (SSB), contribution
from the LB constant, direct contribution from other planets,
and higher order contributions (i.e., the 1/c4 terms and the
Sun’s J⊙2 ).

3.1. Simple analytical solution (toy model)

3.1.1. The 1/c 2 contribution coming from the Sun considering
a Keplerian motion

We first consider the main contribution to the relation between
τ and TDB, which is the 1/c2 contribution from the Sun in a
two-body (or Keplerian) problem.

The evolution of proper time with respect to coordinate time
is given by:

dτ
dt
− 1 =

[
dτ
dt

]
2body

=
LB

1 − LB
−

1
1 − LB

v2
M⊙

2c2 −
1

1 − LB

GM⊙
rM⊙c2 ,

(26)

where rM⊙ is the distance between the Sun and Mars and vM⊙ is
the norm of their relative velocity. This expression can be inte-
grated exactly assuming a perfect Keplerian motion, as in, for
instance, Moyer (1981):

[τ−t]2body = cst +
LB

1 − LB
t −

1
1 − LB

na2

2c2 (4E − nt) ,

= cst +
LB

1 − LB
t −

1
1 − LB

na2

c2

(
2e sin E +

3
2

l′
)
, (27)

where n is the mean motion, a the semi-major axis, E is the
eccentric anomaly, and l′ is the mean anomaly. A low eccen-
tricity expansion leads to:

[τ−t]2body = cst +
1

1 − LB

(
LB −

3n2a2

2c2

)
t

−
na2

c2(1 − LB)

(
2e −

e3

4

)
sin l′

−
na2

c2(1 − LB)

(
e2 −

e4

3

)
sin 2l′

−
3na2

4c2(1 − LB)
e3 sin 3l′

−
2na2

3c2(1 − LB)
e4 sin 4l′ + . . . , (28)

which includes a linear drift and oscillations at frequencies
multiple of the orbital frequency. The linear drift includes a
contribution from the rescaling between TCB and TDB (i.e.,
the contribution from LB) of 1.55 × 10−8 and a contribution
of −9.72 × 10−9 from the Sun (using Mars’s orbital parameters
from Table 1). The total linear drift coefficient is 5.79 × 10−9.
The amplitudes of the harmonics terms are: –11.419 ms for the
term at orbital period, –532.3µs for the term at twice the orbital
period, –37.4µs for the term at three times the orbital period,
and −3.1µs for the term at four times the orbital period. We note
that the 1/(1 − LB) coefficient impacts these amplitude only at
the relative level of 10−8.

The impact on Mars’s rotation is obtained from Eq. (24). First
of all, it is important to notice that the ϕ̇0 estimated from a data
analysis performed in BCRS is actually:

ϕ̇0 = ϕ̇
local
0

(
1 +

1
1 − LB

(
LB −

3n2a2

2c2

))
= ϕ̇local

0

(
1 + 5.79 × 10−9

)
,

(29)
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where ϕ̇local
0 is the proper Mars rotation rate. Using the measured

value of ϕ̇0 from Table 1, we can find:

ϕ̇local
0 = 350.◦891983308 day−1, (30)

such that ϕ̇GR = 5.79 × 10−9 ϕ̇local
0 is 2.◦03 × 10−6 day−1 (or

7.3117 mas day−1). This quantity is two orders of magni-
tude larger than the current uncertainty in the Mars rotation
rate estimate and thus must be removed for any geophysical
interpretation of the latter (ϕ̇0 in Eq. (2) must be replaced
by ϕ̇local

0 ).
The 2-body contribution from the transformation between τ

and t to the Mars rotation model in BCRS, including the linear
term and the four largest periodic terms, is

[ϕ]2body = ϕ̇
local
0 [τ−t]GR = ϕ̇GR t +

∑
j

ϕr j sin j l′,

= 2.◦03 × 10−6 day−1 × t
−166.950 mas sin l′ − 7.782 mas sin 2l′

−0.547 mas sin 3l′ − 0.045 mas sin 4l′. (31)

These values will be refined in the further subsections consider-
ing a more accurate modeling of Mars’s trajectory. Nevertheless,
the Keplerian modeling presented here is sufficient to get an
estimate of the order of magnitude of the impact of the time
transformation on the rotation of Mars.

3.1.2. Contribution related to the motion of the Sun with
respect to the Solar System barycenter

The two-body problem calculation performed in the previous
section considers one test mass orbiting one massive body,
assuming that the coordinate time TDB is the one related to a
coordinate system where the massive body is at rest at the ori-
gin. For BCRS, this is not the case: the Sun is not at rest and
not located at the origin of the coordinate system that is defined
as the SSB. Therefore, when we are interested in computing the
evolution of Mars proper time with respect to TDB, we should
use:

dτ
dt
− 1 =

LB

1 − LB
−

1
1 − LB

v2
M

2c2 −
1

1 − LB

GM⊙
rM⊙c2 , (32)

where vM is Mars’s velocity with respect to the SSB and rM⊙
is the distance between Mars and the Sun. The only difference
with respect to Eq. (26) relies on the velocity expressed relative
to the SSB and not to the Sun. A simple calculation using vM =
vM⊙ + v⊙, where vM⊙ is the velocity of Mars with respect to the
Sun and v⊙ is the Sun velocity with respect to the SSB, shows
that there is an additional contribution to the evolution of Mars
proper time due to the velocity of the Sun with respect to the
SSB. This additional contribution is given by:[
dτ
dt

]
SSB
= −

1
1 − LB

v⊙ · vM⊙

c2 −
1

1 − LB

v2
⊙

2c2 ≈ −
v⊙ · vM⊙

c2 · (33)

To first order, the motion of the Sun with respect to the SSB
is due to its gravitational interaction with Jupiter. If we take a
simple toy model and consider that the motion of the Sun with
respect to the SSB is due to Jupiter only and assuming Jupiter’s
orbit to be circular around the Sun, then the Sun’s velocity is
given by u⊙ ≈ aJnJ

MJ
M⊙

(sin nJt,− cos nJt, 0), where aJ is Jupiter’s

semi-major axis and nJ its mean motion. To a first approximation,
we can also consider the orbital motion of Mars to be circular;
then, Eq. (33) can be integrated analytically:

[τ−t]SSB ≈
aaJ

c2

nnJ

n − nJ

MJ

M⊙
sin

(
(n − nJ) t + δ

)
, (34)

where a is Mars’s semi-major axis, n its mean motion, and δ the
phase difference between the two planets, assuming co-planar
motion. The velocity of the Sun with respect to the SSB there-
fore induces an additional modulation to the transformation from
τ to the TDB. The period of this modulation is the Mars-Jupiter
synodic orbital period, namely, 2.235 yr, and its amplitude is
37.59µs.

Using Eq. (25), this modulation impacts the BCRS Mars
rotation modeling and induces a modulation of amplitude of
0.55 mas at the Mars-Jupiter synodic orbital period. A simi-
lar calculation considering Saturn leads to a harmonic term of
period of 2 yr with an amplitude of 0.11 mas. The other planets
induce periodic terms with amplitudes ≲0.01 mas. This can be
seen as an indirect effect of the other planets of the Solar Sys-
tem on Mars proper time since it comes from the impact of other
planets on the SSB velocity. The direct effect will be computed
below.

3.1.3. Direct contribution from other planets

As can be noticed from Eq. (17), the gravitational potential from
the other planets will also impact the evolution of Mars proper
time. To first order, the impact from the planets gravitational
potential is governed by[
dτ
dt

]
P
= −

1
1 − LB

GMP

c2rMP
, (35)

where rMP = ∥xM − xP∥ is the distance between Mars and a
planet P.

A simple toy model considering both Mars and the planet to
be orbiting on coplanar circular orbits shows that, to first order,
the integration of the previous equation leads to a linear drift
whose linear coefficients is given by −GMP/((a2 + a2

P)1/2 c2) and
to an harmonic signal at the planet-Mars synodic orbital period
and of amplitude of GMP

aaP
(a2+a2

P)3/2 /(c2(n − nP)), where aP and
nP are the semi-major axis and mean motion of the planet P.
This calculation is valid only to first order in a aP/(a2 + a2

P) and
neglecting LB. Other harmonics can be identified at higher orders
and for non-zero eccentricities, in particular an oscillation at the
orbital period of the planet (see Sect. 3.3).

For each planet P, these contributions to the τ to TDB trans-
formation will impact Mars’s BCRS rotation modeling through
Eq. (25), that is to say, it will produce one term with linear
rate ϕ̇GR and one harmonic synodic term. For Jupiter, ϕ̇GR =
−6◦ × 10−10 day−1 (or −0.00220 mas day−1). For Saturn, ϕ̇GR =
−1◦ × 10−10 day−1 (or −0.00037 mas day−1). The synodic terms
associated to Jupiter and Saturn have amplitudes of 0.077 mas
and 0.007 mas, respectively. The other planets induce synodic
terms with amplitudes ≲0.001 mas. Although the direct synodic
terms associated to Jupiter and Saturn have small amplitudes,
they cannot be neglected as they combine with the indirect syn-
odic terms obtained in the previous subsection. The total synodic
terms related to Jupiter and Saturn have 0.47 mas and 0.10 mas
of amplitude, respectively, as the direct and indirect terms are out
of phase to each other. The sum of the direct and indirect effect of
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Table 2. Coefficients parametrizing the evolution of
[
ϕ
]
GR(t) using Eq. (37) fitted to the numerical integration of Eq. (17), using the DE440

planetary ephemeris and using Eq. (25).

2π/ f j (yr) Amp (mas) Phase (◦) Comment

0.470223 0.045 257.459 1/4 Mars’s orbital period
0.626964 0.544 238.143 1/3 Mars’s orbital period
0.940446 7.783 218.770 1/2 Mars’s orbital period
1.11764 0.077 101.380 1/2 Mars-Jupiter’s synodic period

1.880892 166.949 199.384 Mars’s orbital period
2.00913 0.097 302.306 Mars-Saturn’s synodic period
2.23528 0.567 321.360 Mars-Jupiter’s synodic period
2.7543 0.075 63.492 Jupiter-Mars’s 2–1 resonance
11.862 0.038 157.048 Jupiter’s orbital period
15.781 0.060 292.431 Mars-Earth’s 2–1 resonance

the planets will be refined in the further subsections considering
a more accurate modeling of each planet’s trajectory.

Similarly as for the effect of the planets, it is possible to build
a toy model for the direct effect of Phobos and Deimos, and
of Ceres, the largest body of the asteroid belt. However, given
their small mass, the associated relativistic corrections can be
neglected.

3.2. Numerical solution using the DE planetary ephemerides

In this section, we present the result of a numerical integra-
tion of Eq. (17) using the DE440 planetary ephemerides (Park
et al. 2021) provided by the NAIF-SPICE software (Acton 1996;
Acton et al. 2018). The integration was performed starting from
J2000 and lasting 30 yr backward and forward. In a second step,
analytical series consisting of various harmonic terms were fit-
ted to the result of the numerical integration. This procedure is
similar to the one developed to produce the Time Ephemeris for
Earth (see Fukushima 1995, 2010; Irwin & Fukushima 1999;
Harada & Fukushima 2003).

3.2.1. First-order contributions

In this section, we consider the leading contributions from
Eq. (17), namely, the 1/c2 contributions from the Sun, the var-
ious planets, and from LB. This integration therefore includes
all the effects presented in the previous section. We numerically
integrate Eq. (17) and transform the evolution of τ− t into an
estimate of the evolution of ϕ through Eq. (25). We then fit the
expression[
ϕ
]
GR(t) = ϕ̇GR t +

∑
j

(C j cos f j t + S j sin f j t) (36)

to the numerically integrated evolution of
[
ϕ
]
GR(t). The val-

ues of the various coefficients ϕ̇GR, C j, and S j are obtained
using a standard linear least-squares fit. Motivated by the toy
model presented in the previous section, the angular frequen-
cies, f j, included in the fit are chosen as linear combinations
of the planets mean motion. We identify the relevant frequen-
cies by (iteratively) searching for the largest peaks in the Fourier
transform of the numerically integrated

[
ϕ
]
GR(t) time series. The

fitted coefficients are then transform to obtain the following
expression:[
ϕ
]
GR(t) = ϕ̇GR t +

∑
j

A j sin( f j t + φ j) · (37)
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Fig. 2. Difference between the
[
ϕ
]
GR(t) obtained by numerically inte-

grating Eq. (17), using the DE440 planetary ephemerides and using
Eq. (25) and the fitted series from Eq. (37). This curve provides an
estimate of the accuracy of the fitted analytical model provided by the
coefficients from Table 2.

The estimated linear term is ϕ̇GR = 2◦.03021 × 10−6 day−1 (or
7.308758 mas day−1), while the amplitude and phase of the har-
monic terms are given in Table 2. We searched for terms with
amplitude down to 0.04 mas, covering the amplitude range con-
sidered in Eq. (31) for the terms at the harmonics of the Martian
orbital period. For these terms, the estimated solution is in
good agreement with the solution of the toy model (difference
<0.005 mas), but differs significantly with respect to Eq. (21) of
Yoder & Standish (1997), recalled in Eq. (3), with up to 9 mas,
or 5% in annual amplitude. The differences are mainly likely
due to truncation errors in the parameters values used by Yoder
& Standish (1997). The estimated terms at the Mars-Jupiter and
Mars-Saturn synodic periods are 0.10 mas and 0.005 mas larger
than obtained with the toy model, as a result of the assumption
of circular planetary orbits therein. We also find one term at the
orbital period of Jupiter with an amplitude of about 0.04 mas,
related to the direct effect of the planet, and three others terms at
different periods with amplitude ranging between 0.06 mas and
0.08 mas, mainly due to the indirect effect of the Earth and of
Jupiter of the orbit of Mars.

The residuals between the numerical integration and the fit-
ted harmonics decomposition is presented in Fig. 2 and remains
below 0.15 mas. Formal uncertainties are not relevant quantities
to characterize the errors of the fit as they do not directly rely
on any observations (no data points). Instead, we use another
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Fig. 3. Impact of the 1/c4 term from Eq. (17) on the BCRS modeling
of Mars’s rotation (top). Impact of the Sun quadrupole moment (J⊙2 ) on
the BCRS modeling of Mars’s rotation (bottom).

method described in Sect. 3.3.2 to compute the accuracy of the
estimated coefficients, which is equal to ∼0.01 mas, on the main
terms.

3.2.2. Higher-order contributions

In this section, we consider the 1/c4 contribution appearing
in Eq. (17) and the contribution from the Sun’s quadrupole
moment, J⊙2 . Their impact on the BCRS modeling of Mars’s
rotation is presented in Fig. 3 and is on the order of µ as for
the 1/c4 term and on the order of 10 nas for the J⊙2 . Both these
contributions can safely be neglected.

3.3. Series solution using VSOP ephemerides

In this section, we present the results of a semi-analytical
approach based on series for the barycentric position and dis-
tance of planets as provided by the analytical planetary theory
VSOP87 (Bretagnon & Francou 1988). We integrate Eq. (17),
neglecting the 1/c4 and Sun’s J⊙2 contributions, identify the
harmonics with the largest contribution to the τ−t relationship,
and estimate the evolution of ϕ through Eq. (25). In a second
step, we numerically assess the accuracy of the semi-analytical
solution.

3.3.1. Semi-analytical solution

In VSOP87, the barycentric Cartesian coordinates (X,Y,Z) and
distance r of the planets to the Sun are written as series of the
form:∑

j

(
C j cosφ j + S j sinφ j

)
, (38a)

C j =
∑
α

TαCα, j, (38b)

S j =
∑
α

TαS α, j, (38c)

where Cα, j and S α, j are amplitudes and T is the time measured
in thousands of Julian years from J2000. φ j are linear combina-
tions of fundamental arguments, including the mean longitudes
of Saturn (Sa), Jupiter (Ju), Mars (Ma), and the Earth (Te); we
refer to Table 2 of (Bretagnon & Francou 1988):

Sa = 0.87401675650 + 213.2990954380 T, (39a)

Ju = 0.59954649739 + 529.6909650946 T, (39b)
Ma = 6.20347611291 + 3340.6124266998 T, (39c)
Te = 1.75347045953 + 6283.0758499914 T · (39d)

The power α is an integer in-between 0 and 5. For α = 0, the
series are periodic. For α ≥ 1, the series are pseudo-periodic
(Poisson series).

The solution for [ϕ]GR(t) is firstly written as:

[ϕ]GR(t) = ϕ̇GR × t +
∑

j

(
∆ϕc

j cosφ j + ∆ϕ
s
j sinφ j

)
, (40a)

∆ϕc/s
j =

∑
α

Tα∆ϕc/s
α, j , (40b)

with ∆ϕc/s
j the amplitudes of the periodic and Poisson series. In

the first place, the fundamental arguments of the series will be
the same as the VSOP87 arguments, by construction, because the
series for v2, the squared Mars barycentric velocity, is directly
obtained as the squared norm of the time derivative of the posi-
tion vector of Mars (X,Y,Z), while the series for 1/r⊙ is obtained
starting with the VSOP series for r⊙ and following Eq. (61) of
Baland et al. (2020). The distance rP between Mars and another
planet varies greatly with time, and as a result, it is difficult to
express as convergent series for 1/rP starting from the VSOP
series for the Cartesian coordinates. We therefore assume that the
orbits of Mars and of the other planets are Keplerian and copla-
nar and use the mean orbital elements of Simon et al. (2013). We
adapted the procedure described in Sect. 4.3.3 of Baland et al.
(2020) to obtain a series for 1/r5

P to the case of 1/rP. This can
be seen as extension of the toy model presented in Sect. 3.1.3
to higher orders in eccentricities and in a ap/(a2 + a2

p) and, as a
result, we go on to identify more harmonics and obtain different
amplitudes.

Then, for consistency with the usual form of [ϕ]GR(t),
expressed with the mean anomaly, l′, of Mars as the argument
(see Eq. (3)), we change the fundamental arguments, using the
mean anomalies of the planets

lSa = Sa −ϖSa = 5.53304687684 + 213.2002152909 T, (41a)
lJu = Ju −ϖJu = 0.52395267692 + 529.6533496052 T, (41b)
l′ = Ma −ϖMa = 0.3381185455 + 3340.5349512479 T, (41c)
lTe = Te −ϖTe = 6.24006011944 + 6283.0195517158 T, (41d)

instead of their mean longitudes. We express [ϕ]GR(t) correct
up to the first order in the rates of the pericenter longitudes ϖ
of the planets, creating a second Poisson series, to add to the
first Poisson series coming directly from VSOP ephemerides,
and which is not affected by the argument change, at first order.
Both Poisson series are similar, but with opposite amplitudes,
and therefore they almost cancel each other (the sum of the two
series is smaller than 0.05 mas on the interval ±30 yr around
J2000 and significant Poisson terms were not found in the fit of
the numerical solution). As a result, we omitted Poisson series
in the following.

Finally, the periodic series in [ϕ]GR(t) is written in a pure
Sine form, convenient for the purposes of application:

[ϕ]GR(t) = ϕ̇GR t +
∑

j

ϕr
j sin( f j t + φ0

j ), (42)

with ϕr
j the amplitudes and φ0

j a phase (different from that of
Eq. (40a)); f j represents the linear combination of the rate of the
mean anomalies of Eq. (41).
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Table 3. Terms of the periodic series of Eq. (42), down to 0.04 mas in amplitude using the VSOP ephemerides.

j lSa lJu l′ lTe 2π/ f j (yr) Amp (mas) Phase (◦)

1 0 0 4. 0 0.470223 0.045 257.492
2 0 0 3. 0 0.626964 0.544 238.119
3 0 0 2. 0 0.940446 7.783 218.746
4 0 –2. 2. 0 1.117654 0.077 101.316
5 0 0 1 0 1.880892 166.958 199.373

6 (Syn) –1. 0 1 0 2.009118 0.107 305.198
7 (Syn) 0 –1 1. 0 2.235308 0.566 320.635

8 0 –2. 1. 0 2.754299 0.075 66.885
9 0 1 0 0 11.862826 0.043 148.17
10 0 0 2. –1 15.784901 0.060 290.792
11 1 0 0 0 29.470821 0.043 120.366

Notes. For each term, the frequency, f j, is obtained as the rate of the linear combination of the mean anomalies as described in Cols. 2–5.

Fig. 4. Difference between the solutions for [ϕGR](t) obtained using VSOP87 and DE440 ephemerides via numerical integrations (left). Difference
between the numerical integration and the semi-analytical solution using VSOP87, with only the 11 terms of Table 3 in blue, with all terms in black
(right).

For the constant rate, we find ϕ̇GR = 7.3088 mas day−1, in
agreement with the sum of the respective contributions from LB,
from the Sun and from each planet, as obtained with the fit of the
numerical solution. The periodic terms, with amplitudes down to
0.04 mas, are presented in Table 3. We find the same ten periodic
terms as with the fit of the numerical solution of Table 2, but also
one additional term, at the orbital period of Saturn (∼30 yr) and
with an amplitude of 0.043 mas. We did not find this term with
the fit because of its long period and of its small amplitude.

3.3.2. Accuracy of the semi-analytical solution

The difference between the numerical integrations of [ϕGR](t)
performed using the recent DE440 and the older VSOP87
ephemerides is presented in the left panel of Fig. 4, and it
remains below 0.003 mas, indicating that using the VSOP87
theory should not be a cause of major errors.

The different steps of the computational procedure to obtain
the semi-analytical solution of Eq. (40a) introduce residuals
smaller than 0.05 mas when all the terms of the periodic series
are considered, and smaller than 0.2 mas when only the 11 largest
terms of the series are considered (see right panel of Fig. 4).
This is in agreement with the residuals of the fitted solution
to the numerical integration based DE440 ephemerides, which
includes the ten periodic terms of Table 2 (see Fig. 2).

The amplitudes and phases of the fitted (Table 2) and semi-
analytical (Table 3) solutions are in good agreement to each other
(see also Fig. 5, where the difference remains below 0.06 mas).
The differences give a sense of the modeling uncertainties: for
instance, 0.01 mas (0.005%) in annual amplitude or 0.01 mas
(0.9%) on the Mars-Jupiter synodic term. Both solutions or an
averaged solution can be used for the purposes of application.

4. Signatures in the Doppler observable

As shown in the previous sections, the relativistic variations in
Mars rotation and orientation mainly affect the angles ψ and
ϕ. Using analytic expressions, we characterize in this section
the signature of these variations in the Doppler observable of
a Martian lander communicating directly with the Earth.

Numerical applications are provided for the specific case of
RISE (Rotation and Interior Structure Experiment), the radio-
science experiment of the NASA InSight mission (Folkner et al.
2018). The level of the signatures and their temporal behavior
are compared to the noise level and non-relativistic signatures,
respectively.

We note δ(ψ̇0t) as a variation in the precession, δ(ψnut) a
variation in the nutation in longitude, and δϕ a variation (linear
and/or periodic) in the rotation angle ϕ, excluding the nutation
term ψnut cos ε0 (see Eqs. (1) and (2)). These three notations can
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Fig. 5.Fig. 5. Difference between the [ϕGR](t) of the semi-analytical solution
using VSOP87 (with only the 11 terms of Table 3) and the fit of the
numerical integration with DE440 ephemerides.

be used to represent any kind of variations in ψ and ϕ, including
the relativistic ones. Considering that δ(ψ̇0t), δ(ψnut), and δϕ are
small quantities, their signature in the observable can be written
to the first order as (Yseboodt et al. 2017):

∆qδ(ψ̇0t) = δ(ψ̇0t)ΩR cos θ(
cos δE cos HE cos ε − sin δE sin (HE + αE) sin ε

)
, (43a)

∆qδ(ψnut) = −δ(ψnut)ΩR cos θ sin δE sin(HE + αE) sin ε, (43b)
∆qδϕ = δϕΩR cos θ cos HE cos δE, (43c)

with θ as the lander latitude, R the radius of Mars, Ω the rota-
tion rate, and δE the Earth declination relative to Mars’s equator.
Each of these Doppler variations has a diurnal modulation via,
HE, the Earth hour angle seen from Mars. The observable vari-
ations defined in Eq. (43) are Doppler shift expressed as the
variation of the velocity along the line of sight (LOS). For a
round-trip (two-way) radio link, the conversion factor between
the LOS velocity and the Doppler observable is 2 ft/c, with ft as
the carrier downlink frequency. In the case of RISE (but also of
LaRa, a radio transponder ready to fly to Mars, see Dehant et al.
2020), ft ≃ 8.4 GHz, which is in the X frequency band.

The signature of [ϕ]GR(t) (linear and/or periodic terms) is
computed using Eq. (43c). The signature of the geodetic pre-
cession in longitude is obtained using Eq. (43a) and that of the
geodetic nutation in longitude is computed with Eq. (43b). Pre-
cession and nutation signatures differ from each other because
ψnut also affects the angle ϕ, while ψ̇0 does not (see Eqs. (1) and
(2)).

The periodic variations in ϕ(t) induced by the seasonal
atmosphere and surface dynamics (see, e.g., Konopliv et al.
2020) and by the time coordinates transformation altogether
result in a maximum angular displacement of the lander of
∼670 mas as seen from the center of Mars (1 mas corresponds
to a displacement of 1.6 cm at the surface of Mars). For a lan-
der located at the InSight landing site (i.e., Elysium Planitia:
4.5◦N, 135.62◦E, −2.6 km altitude), such an angular displace-
ment induces a Doppler shift in the RISE measurements of
≲0.56 mm s−1 (see Fig. 2 of Yseboodt et al. 2017 or Table 4).
A fourth of this Doppler signal, computed at the RISE tracking
data-timing using the RISE frequency, comes from the rela-
tivistic periodic variations (see Fig. 6a and extra information in
Table 4).

The combination of seasonal variations in Euler angles
and of diurnal trend in the hour angle produces symmetrical
envelopes with respect to zero in the Doppler signature, as seen
in Figs. 6 and 7. Because of the repeatability in the RISE obser-
vation timing imposed by its fixed and directional antennas, the
data points cover a limited part of these diurnal cycles.

The ∼10 mas difference between the periodic terms of our
solution for [ϕ]GR and that first estimated by Yoder & Standish
(1997, see Eq. (3) and Sect. 3.2.1) has a Doppler signature lower
than 0.007 mm s−1, which is smaller than the RISE noise level
(1.1 mHz at 60 s integration time, corresponding to 0.02 mm s−1)
and smaller than the liquid core signature (∼0.01 mm s−1, Le
Maistre et al., in prep). However, a precise solution for the Mars
rotation angles (at the level of 1 mas or smaller) is needed to
correctly interpret the measured periodic variations in terms of
atmospheric constraints.

The signature in the Doppler of the relativistic linear term of
7.3 mas day−1 (see Eq. (46c)) is very large (up to 49 mm s−1), as
shown in Fig. 6b. This pronounced signal with a linear increase
that is barely visible in the plot occurs because it has a lin-
ear dependence on the time of the observations (2018–2022 for
InSight) relative to the chosen reference epoch (here, J2000).

The signature of the geodetic nutation in longitude in
the Doppler observable (shown in Fig. 7a) is very small
(≤ 0.12µm s−1), while that of the geodetic precession (linear
term in Eq. (13)) is two to three orders of magnitude larger (up
to 0.03 mm s−1), as shown in Fig. 7b, where the signature of the
linear plus periodic geodetic terms is plotted (see Eq. (13)). Sim-
ilarly as for the relativistic linear term in the rotation angle, the
stronger signature of the geodetic linear term in longitude for
Mars (6.75 mas yr−1) results from the linear dependency to the
time past from the chosen origin of time (i.e., ∼150 mas in 2020
for a reference epoch at J2000).

5. Application to other planets

Mars has been extensively explored, but the rotation of other
bodies of the Solar System is also subject to investigations. Here,
we provide an estimate of the main terms of the relativistic cor-
rection in longitude, ψ, and rotation, ϕ, to include in the rotation
model of our neighboring planets. For each planet, we first esti-
mated the geodetic precession and nutation in longitude. Then
we estimated the linear and periodic changes in rotation, con-
sidering (1) the Sun’s contribution with regard to a planet on a
Keplerian orbit, (2) the contribution related to the Sun motion
with respect to the SSB, and (3) the direct contribution from the
other planets.

5.1. Geodetic precession and nutations

For any planet, the spin–orbit angular velocity Ωso of Eq. (5a) is
proportional to x × v and therefore perpendicular to the orbital
plane (see also Eq. (6a)). As a result, if a planet moves on a
Keplerian orbit, only its longitude angle (defined as the longitude
of the spin axis with respect to the orbital plane) is affected by
the geodetic precession and nutation, whereas the obliquity and
rotation angles ε and ϕ are unchanged:

ψ̇so = Ω
z
so, (44a)

ε̇so = 0, (44b)
ϕ̇so = 0. (44c)
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Table 4. Maximal amplitude of the signature in the range and the Doppler observables of the relativistic variations in the rotation angles for a
lander in Elysium Planitia and using the RISE timing.

Contribution Magnitude Signature in Signature in Doppler obs.
(mas) range obs. (m) (mm s−1) (mHz)

Periodic variations in ϕ (seasonal and relativistic) 670 10 0.56 31
[ϕ]GR(t) (periodic terms only) 167 2.7 0.14 7.8
[ϕ]GR(t) (linear and periodic terms) 58 000 950 49 2800
[ϕ]GR, this paper – [ϕ]GR,Yoder & Standish (1997) 8.8 0.14 0.007 0.41

Liquid core contribution to nutations ∼20–30 ∼0.3 ∼0.01 ∼0.5
ψso (geodetic nutation only) 0.6 0.001 0.0001 0.007
ψso (geodetic nutation and linear term) 150 0.44 0.03 1.7

InSight/RISE noise level 0.02 1.1

Doppler signature (mm/s)
Relativistic per. var. (mas/1000)
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(a) Signature of the periodic relativistic variations in the Doppler observable

Doppler signature (mm/s)
Relativistic terms (mas/1000)

0 200 400 600 800 1000 1200

-60

-40

-20

0

20

40

60

Time (days after landing)

(m
m
/s
)

(b) Signature of the relativistic terms (linear term+periodic) in the Doppler observable

Fig. 6. Signature in the Doppler observable of the relativistic corrections in the rotation angle ϕ: (a) Signature (in mm s−1) of the periodic relativistic
variations ([ϕ]GR(t) − ϕ̇GR t) in the rotation angle as a function of time, using the RISE timing (November 2018–April 2022). The blue envelope
uses a simulated continuous timing. The gray dashed line represents the periodic relativistic variations in the rotation angle δϕ, arbitrarily rescaled.
(b) Signature (in mm s−1) of both the linear and periodic relativistic terms [ϕ]GR(t) in the rotation angle, using the RISE timing.

The geodetic precession and nutation for each planet, as obtained
with the toy model of Sect. 2.1, is given in Table 5. The geode-
tic precession rate increases with decreasing distance to the Sun.
The amplitudes of the periodic terms do not strictly follow that
rule of thumb because they are relatively more dependent on
eccentricity.

For the Earth, we obtain consistent results with Fukushima
(1991), as we follow the same approach based on a Keplerian
orbit (see also Eq. (27) of Soffel et al. 2003). Even though their
solution is presented as an approximation, our results for the
precession and annual terms of the eight planets are in a very
good agreement with those presented in Table 1 of Eroshkin
& Pashkevich (2007), where they fit a solution to a numeri-
cal integration based on ephemerides. This is because of two
approximations which compensate each other during their com-
putation: (1) they refer the geodetic motion of all planets to the

Earth ecliptic of J2000, instead of their respective orbital plane,
and (2) they neglect the equatorial components of the angular
velocity vector σ = (σX , σY , σZ) expressed in the coordinates of
a frame attached to the Earth ecliptic of J2000. For the demon-
stration, we first write the geodetic variations in “ecliptic Euler
angles” (we use the notation ∗ for these angles) as

ψ̇∗so = σ
Z − σX sinψ∗0 cot ε∗0 + σ

Y cosψ∗0 cot ε∗0, (45a)

ε̇∗so = σ
X cosψ∗0 + σ

Y sinψ∗0, (45b)

ϕ̇∗so = (σX sinψ∗0 − σ
Y cosψ∗0)/ sin ε∗0 · (45c)

Then we write σ = Rz(−Ω0) · Rx(−i0) · Ωso, with Ω0 and i0 the
ascending node longitude and inclination of the planet’s orbit
with respect to the ecliptic. Since Ωx

so ≃ 0 and Ωyso ≃ 0 (for a non
Keplerian orbit, small variations about zero are possible), σX ≃

Ωz
so sin i0 sinΩ0, σY ≃ −Ωz

so sin i0 cosΩ0, and σZ ≃ Ωz
so cos i0.
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Table 5. Geodetic precession and nutation in longitude for the planets of the Solar System (in mas, t is the time in years).

Planet ψso(t)

Mercury 214.887 × t + 4.996 sin lMe + 0.759 sin 2lMe + 0.151 sin 3lMe
Venus 43.123 × t + 0.086 sin lVe
Earth 19.193 × t + 0.153 sin lTe + 0.002 sin 2lTe
Mars 6.754 × t + 0.565 sin l′ + 0.039 sin 2l′ + 0.004 sin 3l′
Jupiter 0.312 × t + 0.086 sin lJu + 0.003 sin 2lJu
Saturn 0.068 × t + 0.053 sin lSa + 0.002 sin 2lSa
Uranus 0.012 × t + 0.022 sin lUr + 0.001 sin 2lUr
Neptune 0.004 × t + 0.003 sin lNe
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(a) Signature of the geodetic nutations in the Doppler observable
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(b) Signature of the geodetic terms (linear term+periodic) in the Doppler observable

Fig. 7. Signature in the Doppler observable of the relativistic corrections in the longitude angle ψ: (a) Signature in the Doppler observable (in
µm s−1) of the small geodetic nutations in the longitude angle as a function of time, using the RISE timing (Nov. 2018–April 2022). The blue
envelope uses a simulated continuous timing. The gray dashed line represents the geodetic nutations, arbitrarily rescaled. (b) Signature in the
Doppler observable (in mm s−1) of all the geodetic terms (nutations and the linear term), using the RISE timing.

To obtain ψso(t), we integrate Ωz
so over time (see Eq. (44a)). For

bodies with a small orbital inclination with respect to the Earth’s
ecliptic, σZ ≃ Ωz

so, and by integrating only σZ while neglecting
σX and σY in Eq. (45a), Eroshkin & Pashkevich (2007) in fact
obtained ψso(t) instead of ψ∗so(t).

In subsequent studies (e.g., Pashkevich 2016), the geode-
tic variations in Ecliptic Euler angles were described and
took into account σX and σY . Here, we compute the pre-
cession rate in ecliptic Euler angles for Mars, by multi-
plying 6.754 mas yr−1 by

(
cos i0 − sin i0 cot ε∗0 cos(ψ∗0 −Ω0)

)
,

− sin i0 sin(ψ∗0 − Ω0), and (sin i0 cos(ψ∗0 − Ω0))/ sin ε∗0, respec-
tively. With i0 = 1◦.84973,Ω0 = 49◦.5581, ψ∗0 = 82◦.9071, ε∗0 =
26◦.7179, we find 6.389, −0.120 and 0.405 mas yr−1 in ψ∗, ε∗

and ϕ∗, respectively. For the rate in obliquity and rotation angle,
we obtain values that are consistent with Pashkevich (2016), but
with opposite signs. The geodetic rate in longitude of Pashkevich
(2016) is 7.114 mas yr−1. We believe this value was obtained
erroneously as a result of confusion with regard to the sign for
the ecliptic obliquity, ε∗0.

5.2. Rotation variations due to time coordinate transformation

In Table 6, we present estimates for the Sun contribution to the
relativistic variations in ϕ, for a rotation model expressed in the
BCRS, assuming that the planets follow Keplerian orbits (see
toy model of Sect. 3.1.1). This two-body contribution tends to
increase with increasing distance from the Sun, the maximum
being reached for Saturn. The linear term includes for all planets
the LB contribution for the rescaling between TCB and TDB (see
Eq. (28)).

Table 7 provides estimates for the contribution related to
the Sun motion relative to the SSB, based on the toy model of
Sect. 3.1.2. For each planet, seven terms at synodic periods cor-
responding the indirect effects of the other planets are computed.
Most of these contributions have negligible amplitude. Only the
giant planets induce indirect effects on the other planets larger
than 0.01 mas in amplitude, and this effect is almost zero on
Mercury and Venus. The largest term (with an amplitudes above
4 mas) applies to Saturn and is caused by Jupiter.
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Table 6. Two-body contribution to the relativistic variations in ϕ, assuming that the planets follow Keplerian orbits (see toy model of Sect. 3.1).

Planet ϕ̇GR (mas day−1) ϕr1 (mas) ϕr2 (mas) ϕr3 (mas) ϕr4 (mas)

Mercury –0.503 –3.23 –0.33 –0.05 –0.01
Venus 0.026 0.04 0.00 0.00 0.00
Earth 0.906 –24.85 –0.21 –0.00 0.00
Mars 7.311 –166.95 –7.78 –0.55 –0.05

Jupiter 39.673 –397.54 –9.63 –0.35 –0.02
Saturn 40.735 –573.00 –15.89 –0.66 –0.03
Uranus –26.584 418.97 9.69 0.34 0.01

Neptune 29.248 –109.94 –0.49 –0.00 0.00

Notes. The second column is for the rate of the linear term. The other columns are for the amplitude of the periodic terms, following the
parametrization of Eq. (31).

Table 7. Amplitudes of synodic terms (in mas) in the relativistic variations in ϕ, related to the Sun motion relative to the SSB, based on the toy
model of Sect. 3.1.2.

Mercury Venus Earth Mars Jupiter Saturn Uranus Neptune

Mercury 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Venus 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Earth 0.00 0.00 0.00 0.34 0.07 0.01 0.01
Mars 0.00 0.00 0.00 0.55 0.11 0.01 0.01

Jupiter 0.00 0.00 0.00 0.00 1.45 0.11 0.09
Saturn 0.00 0.00 0.00 0.00 4.52 0.25 0.18
Uranus 0.00 0.00 0.00 0.00 1.37 1.00 0.38

Neptune 0.00 0.00 0.00 0.00 1.09 0.68 0.35

Notes. Each line corresponds to the considered body, and each row corresponds to the body that indirectly acts on the affected body.

In Table 8, we compute the contribution related to the direct
effect of the planets on each other, based on the toy model of
Sect. 3.1.3. For each planet, we give the total rate of the linear
term due to all the other planets and the amplitudes of the seven
individual terms at synodic periods. The linear terms are very
small, as already noticed for Mars. As for the indirect terms, the
synodic direct terms are mainly induced by the giant planets,
with quasi zero effect for Mercury and Venus, and the largest
term (with an amplitudes above 1 mas) applies to Saturn and is
caused by Jupiter.

The results presented in this section depend on the chosen
values for the parameters and in particular on the values of the
eccentricities. Here, we use the eccentricities obtained from the
mean orbital elements of Simon et al. (2013). If necessary, the
results can be refined by a fit to a numerical integration (as in
Sect. 3.2) or from a semi-analytical solution (as in Sect. 3.3).

6. Discussion and conclusions

We have included relativistic corrections in the orientation and
rotation model of Mars expressed in the BCRS. We estimated
the corrections in the Euler angles (ψ, ε, ϕ) describing the ori-
entation of a frame attached to the surface of Mars with respect
to its mean orbit. Given the current accuracy on radioscience
orbiter and lander data, a precision of 0.1 mas in the relativis-
tic corrections is required to avoid errors in the interpretation
of measurements of Mars rotation in terms of local physics.
An accurate estimation of the relativistic corrections in rota-
tion is also useful to define IAU standards for the rotation and
orientation of Mars (Yseboodt et al., in prep.).

We first considered the relativistic terms that impact directly
the rotation, finding that only the geodetic precession induces a
significant effect and this is only in longitude, ψ. Then we investi-
gated the terms that arise in the rotation angle, ϕ, because of the
time coordinate transformation between a local Mars reference
fame and the BCRS. For the longitude correction, our results
are in agreement with previous findings, whereas this is not the
case for the rotation correction. There is no significant relativistic
correction that applies to the obliquity, ε.

Therefore, our recommendations for the relativistic correc-
tions in Mars’ Euler angles (in mas) are as follows:

[ψ]GR(t) = 6.754 t + 0.565 sin l′, (46a)
[ε]GR(t) = 0, (46b)
[ϕ]GR(t) = 7.3088 d − 166.954 sin l′ − 7.783 sin 2l′

− 0.544 sin 3l′ + 0.567 sin
(

2π
2.235294

t + 320◦.997
)

+ 0.102 sin
(

2π
2.009124

t + 303◦.752
)
, (46c)

with t and d the time in years and days, respectively, and l′ as the
mean anomaly of Mars as given in Eq. (41c). For the longitude
angle, we kept the linear and annual terms of Eq. (13), estimated
from a Keplerian toy model, which is consistent with the results
of Baland et al. (2020). The precision on those terms is of about
0.05%, as estimated from the difference with a semi-analytical
derivation based on VSOP87 ephemerides (not shown here). The
linear term in [ψ]GR of 6.754 mas yr−1 is important, making a
difference in the angle up to 135 mas around the year 2020. For
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Table 8. Rate of the linear term and amplitudes of the synodic terms (in mas) in the relativistic variations in ϕ, due to the direct effects of the
planets, based on the toy model of Sect. 3.1.3.

ϕ̇GR (mas day−1) Mercury Venus Earth Mars Jupiter Saturn Uranus Neptune

Mercury 0.000 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Venus 0.000 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Earth 0.003 0.00 0.00 0.00 0.03 0.00 0.00 0.00
Mars 0.003 0.00 0.00 0.00 0.08 0.01 0.00 0.00

Jupiter 0.001 0.00 0.00 0.00 0.00 0.39 0.01 0.01
Saturn 0.003 0.00 0.00 0.00 0.00 1.23 0.06 0.03
Uranus 0.001 0.00 0.00 0.00 0.00 0.17 0.25 0.12

Neptune 0.001 0.00 0.00 0.00 0.00 0.07 0.10 0.11

Notes. Each line corresponds to the considered body and each row corresponds to the body directly acting on the affected body.

the rotation angle, we kept the linear term and the five largest
periodic terms, based on an average of the fit to the numeri-
cal solution of Table 2 and of the semi-analytical solution of
Table 3. The linear term in [ϕ]GR of 7.3 mas day−1 is very large,
shifting the rotation angle by 53, 000 mas around the year 2020,
namely, moving the prime meridian by almost 850 m in 20 yr.
The accuracy of the linear term is of the order of 10−5%, the dif-
ference between the two solutions. The precision on the periodic
terms is better than 0.01 mas. The last two terms are at the Mars-
Jupiter (2.24 yr) and Mars-Saturn (2.01 yr) synodic periods. We
note that the phase of these synodic terms is not obtained as the
difference between the phases of the mean anomalies of Mars
and of the other planet.

Our recommendation for the expression of [ϕ]GR(t) replaces
the estimate of Yoder & Standish (1997, reminded in Eq. (3)),
where only the three main periodic terms are given, with an error
of about 9 mas on the annual term. Such a difference can already
have an effect in the radioscience data analysis, since the peri-
ods of these terms are the same as the periods of the rotation
variations induced by atmosphere and surface dynamics. The
synodic terms are here computed for the first time. Since their
period is close the orbital period of Mars (1.88 yr), we recom-
mend to include them in the a priori rotation model of Mars in
order to avoid any contamination of the rotation amplitudes fitted
to the radio-science data. Not taking them into account would
likely affect the estimate of the annual term in ϕ by 0.6 mas
and 0.1 mas, respectively (if the annual term absorbs their full
contribution).

The applied methods (analytical, numerical, and semi-
analytical) presented in this study can be extended to other
bodies orbiting the Sun. In Sect. 5.2, we already demonstrated
an application of the analytical toy model to other planets of the
Solar System. These results can be refined by a fit to a numeri-
cal integration or from a semi-analytical solution. The methods
should also be upgraded to moons, such as the Galilean moons.
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