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Recently, [Herrada, M. A. and Eggers, J. G., Proc. Natl. Acad. Sci. U.S.A. 120,
e2216830120 (2023)] reported predictions for the onset of the path instability of an
air bubble rising in water and put forward a physical scenario to explain this intriguing
phenomenon. In this Brief Report, we review a series of previously established results,
some of which were overlooked or misinterpreted by the authors. We show that
this set of findings provides an accurate prediction and a consistent explanation of
the phenomenon that invalidates the suggested scenario. The instability mechanism
actually at play results from the hydrodynamic fluid-body coupling made possible by
the unconstrained motion of the bubble which behaves essentially, in the relevant size
range, as a rigid, nearly spheroidal body on the surface of which water slips freely.

bubbles | hydrodynamic stability | numerical methods

Daily experience reveals that millimeter-sized air bubbles rising in still water generally
follow zigzagging or spiraling paths rather than the expected rectilinear vertical
trajectory. The physical processes governing this intriguing behavior have challenged fluid
dynamicists since the early days of the discipline (1). Only recently has the combination of
controlled laboratory experiments, direct numerical simulation, and global linear stability
analysis led to the elucidation of this puzzle.

With water being a polar liquid, air–water interfaces are extremely sensitive to minute
amounts of surfactants. This is why reference data for the onset of the path instability
of air bubbles rising in ultrapure water have only been available for a few decades (2).
These results reveal that, under standard conditions, the instability threshold is reached
with bubbles of equivalent radius* R ≈ 0.91 mm, which corresponds to a Bond number
Bo = ρg(2R)2/γ ≈ 0.45 and a Galilei number Ga = ρ(2R)3/2g1/2/µ ≈ 243, with
ρ = 103 kg m−3, µ = 10−3 kg.m−1s−1, and γ = 7.28 × 10−2 kg s−2 being the
density, viscosity, and surface tension of water, respectively, and g denoting gravity.
Predicting this threshold resisted repeated attempts until numerical codes capable of
handling the global linear stability of the body+fluid system for bubbles that move and
deform freely became available. Such a tool, based on an arbitrary Lagrangian–Eulerian
formalism combined with a Newton method, was developed by Bonnefis (3); see ref. 4
for a technical overview. Results from ref. 3, obtained under the assumption that the flow
past the bubble obeys a shear-free condition at the air–water interface, yield a critical
radius Rc = 0.927 mm, implying Boc = 0.463 (Fig. 1A) and Gac = 250 (Figure 5.7
in ref. 3). This prediction, which differs from the experimental threshold of ref. 2 by
only 2%, has just been confirmed by Herrada and Eggers (5) using a different numerical
approach.

In ref. 3, path instability was shown to arise through a Hopf bifurcation, the frequency
associated with the unstable nonaxisymmetric mode being f = 6.28 Hz at the threshold
(Fig. 1B). The conclusions of ref. 5 are identical. The resulting bubble path may be a
circular or flattened helix or a planar zigzag, depending on initial conditions and weakly
nonlinear effects (6).

Increasing R, a second oscillatory mode with a much higher frequency becomes
unstable at Bo = 0.525 (Fig. 1). This mode is axisymmetric and is associated with shape
oscillations combining components with two and three wavelengths along the bubble
perimeter in each vertical diametrical plane (Figure 5.19 in ref. 3). For R = 1.08 mm
(Bo = 0.63), the previous low-frequency mode splits into two branches, both of which
are stationary, i.e., nonoscillatory (Fig. 1).

Prior to ref. 3, several global stability analyses of the bubble motion and the
surrounding flow were carried out by constraining the bubble to keep a frozen shape
throughout its ascent (7, 8). In ref. 7, a strictly oblate spheroidal shape was prescribed,

*Radius of the sphere having the same volume V as the bubble, i.e., R = ( 3
4� V)1/3 .
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A B

Fig. 1. Unstable eigenvalues of the system up to Bo = 0.8. (A) growth rate �r , normalized by the gravitational time tg = (R/g)1/2; (B) reduced frequency
�i = 2�ftg (tg = 9.7× 10−3 s at the threshold). Adapted from Figure 5.15 of ref. 3.

while in ref. 8, the shape was computed by solving the axisym-
metric Navier–Stokes equations. Then, this more realistic fore-
aft asymmetrical shape was introduced in the global stability
solver, together with the corresponding rise speed. Both studies
concluded that, in the low-Bo high-Ga range relevant to
millimeter-sized bubbles in water, the path first becomes unstable
through a Hopf bifurcation. Increasing the bubble size, the nature
of the most unstable mode was found to switch from oscillatory
to stationary beyond a second threshold. Thus, the qualitative
conclusions of refs. 7 and 8 are identical to those of ref. 3. Only the
threshold and the associated oscillation frequency differ, Figure
7 of ref. 8 indicating critical conditions Boc ≈ 0.557, Gac ≈ 287
in the case of water. Compared with the prediction of ref. 3, this
represents a mere 10% overestimate of the critical radius. As for

the frequency at threshold (Figure 8 of ref. 8), it translates into
λi ≈ 0.275 in Fig. 1B, which is within 3% of the frequency
predicted in ref. 3 for the nonaxisymmetric unstable mode at the
same Bo. Last, in ref. 3, the instantaneous displacement of each
point of the air–water interface was decomposed into a translation
of the bubble centroid, a rigid-body rotation, and a volume-
preserving deformation, the magnitude of each contribution
being determined with a least-squares fitting technique. Figure
5.22 of ref. 3 reveals that the time-dependent deformations are
about 300 times smaller than the horizontal displacements of the
bubble centroid at the threshold. These various findings establish
that, although deformations accounted for in refs. 3 and 5 but not
considered in refs. 7 and 8 have some influence on the threshold
of the path instability, they are by no means its cause, ruling

A B

Fig. 2. Nonaxisymmetric unstable mode slightly above the threshold (Bo = 0.48). (A) real part, associated with the horizontal displacement of the
bubble centroid; (B) imaginary part, associated with the rigid-body bubble rotation. Colors in the left and right halves of each frame correspond
to isolevels of pressure and azimuthal vorticity disturbances, respectively. Streamlines are depicted with thin lines. The bubble aspect ratio is 1.98;
the rotation-induced displacements of its surface are 14 times smaller than those due to its lateral translation. Reproduced from Figure 5.16
of ref. 3.
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out the scenario developed in ref. 5 which is grounded on this
causality.

To identify the actual origin of the instability, one has to
compare the assumptions framework of refs. 7 and 8 with that
of refs. 9 and 10 in which the stability of the wake of an oblate
spheroidal bubble held fixed in a uniform stream was examined.
In (9, 10), it was established that wake instability first arises
through a stationary bifurcation when the bubble aspect ratio
(ratio of the major and minor axes lengths) exceeds 2.21. Hence,
in this constrained configuration, the nature of the primary
bifurcation differs from that encountered with a freely rising
bubble. Moreover, the critical bubble determined in ref. 3 has an
aspect ratio slightly below 2.0 (Fig. 2), so that its wake is stable
according to refs. 9 and 10.

That the bubble wake is still stable at the onset of path
instability is typical of liquids characterized by a low value of
the Morton number Mo ≡ Bo3/Ga4 = gµ4/(ργ 3). Indeed,
Figure 7 of ref. 8 reveals that bubbles with a realistic frozen
shape rising in liquids such that Mo ≤ 1.2 × 10−9 undergo
path instability at a critical Galilei number somewhat lower than
that at which their wake becomes unstable. The lower Mo, the
larger the gap between the two critical Ga, so that this gap is
significant for low-viscosity, high-surface-tension liquids such as
water (Mo = 2.54× 10−11).

From the above, it appears that neither wake instability nor
time-dependent deformations are responsible for the path insta-
bility in the case of small bubbles rising in water. Consequently,
the only explanation left is the coupling of the body and fluid
motions which was not taken into account in refs. 9 and 10 but
was in refs. 7 and 8 and turned out to change the nature of the
primary bifurcation. Because of this coupling, flow disturbances
influence the bubble motion through the surface distributions of
pressure and viscous stress. Disturbances in the translational and
angular bubble movements in turn influence the fluid motion
through the boundary conditions at the bubble surface (Fig. 2).
It is well-established for solid bodies, e.g., buoyancy-driven short
cylinders and disks (11) or two-dimensional rods (12) that within
certain parameter ranges, this fluid–body coupling makes the
path of the body unstable via a Hopf bifurcation significantly
below the wake instability threshold (see, e.g., Figure 15 in
ref. 12). This is the essence of what happens to millimeter-sized
bubbles rising in pure water.

Data, Materials, and Software Availability. Previously published
data were used for this work, https://hal.science/tel-03982380v1/
document, https://doi.org/10.1103/PhysRevFluids.7.113603, https://doi.org/
10.1017/jfm.2014.340, http://dx.doi.org/10.1063/1.4939703, https://doi.org/
10.1017/S0022112006003442 and https://doi.org/10.1017/jfm.2013.642.
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