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A simple model for the data

ΞD ≥ 2 sensors

T ≥ 2 samples

Observations

= A

R

Σ> =

a1

σ>1

a1σ
>
1

+ · · ·+
aR

σ>R

sum of R ≥ 2 rank-1 terms

D×R︷︸︸︷
A =

[
a1 a2 · · · aR

]
mixing matrix

R×T︷︸︸︷
Σ =

[
σ1 σ2 · · · σR

]
(latent) signals

ξdt is the (d , t)th data sample (e.g., observation)

Each observation is a sum of contributions from R ≥ 2 signals

dth sensor and ith signal are related by a coefficient adi
We ignore noise (any contribution not explained by this model)
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A not-so-simple model for data analysis

ΞD ≥ 2 sensors

T ≥ 2 samples

= A

R

Σ> =

a1

σ>1

a1σ
>
1

+ · · ·+
aR

σ>R

sum of R ≥ 2 rank-1 terms

Desired uniqueness: up to arbitrary scaling (aiλ
−1
i )(λiσ

>
i ) and ordering

This factorization is generally not unique for R ≥ 2:

Ξ = AΣ> = AZ−1 ZΣ> for any nonsingular R × R matrix Z

Why do we need a unique decomposition?

Uniqueness is necessary to achieve interpretability, i.e.,
attach physical meaning to the output [Harshman, 1970], [Cattell, 1944]

=⇒ Diversity
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Data with three-way diversity

A polyadic decomposition of T ∈ FI×J×K in sum of R rank-1 tensors:

T =

a1

b1

c1

+ · · ·+

aR

bR

cR

⇔ T = [A,B,C]R

A︸︷︷︸
I×R

=
[
a1 · · · aR

]
, B︸︷︷︸

J×R

=
[
b1 · · · bR

]
, C︸︷︷︸
K×R

=
[
c1 · · · cR

]

When R is minimal, this decomposition is called the Canonical
polyadic decomposition (CPD), and R is the rank of T , denoted rT

The CPD of a tensor is unique if it is subject only to trivial
indeterminacies: arbitrary permuting of rank-1 terms, and arbitrary
scaling of vectors within each rank-1 term
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Collinearity and Kruskal rank

The concept of collinearity, and linear dependence among columns of factor
matrices, is fundamental to the uniqueness of tensor decompositions

If two or more columns of a factor matrix of a tensor T have collinear
columns, then the overall CPD is not unique

For more than two columns, we have

Kruskal Rank or k-rank [Kruskal, 1977]

kA is the largest number such that any set of kA columns (vectors) of A is
linearly independent

Generically, kA = min(I ,R) if A ∈ FI×R .

Kruskal’s condition [Kruskal, 1977]

Let T = [A,B,C]R and kA + kB + kC ≥ 2R + 2. Then rT = R and the
CPD of T is unique.

In this talk, we suggest generalizations to these concepts
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From rank-1 to rank-Li , Li ≥1

X Many types of latent phenomena are not rank-1
I Fetal electrocardiogram (FECG) [De Lathauwer et al., 1995]
I Cosmic microwave background radiation (CMB) [Cardoso et al., 2008]

X Higher accuracy, better interpretability

X Computational advantages: no need to separate within subspaces

ΞD ≥ 2

T ≥ 2

=∑R
i=1 Li

A Σ> =

A1
Σ>1

L1
+ · · ·+

AR
Σ>R

LR

A =
[
A1 A2 · · · AR

]
, Σ =

[
Σ1 Σ2 · · · ΣR

]
Desired uniqueness: up to arbitrary Li × Li nonsingular Zi :
(AiZ

−1
i )(ZiΣ

>
i ) ∀r , and ordering

→ Only span(Ai ) can be uniquely identified
This factorization is generally not unique for R ≥ 2
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Do the rank-Li terms exist?

Let us look again at the decomposition

Ξ = A Σ> =

A1
Σ>1

L1
+ · · ·+

AR
Σ>R

LR

with Li ≥ 2 for at least one i = 1, . . . ,R.
Why (or when) can’t we write Ξ as a sum of (

∑
i=1 Li ) rank-1 terms?

Reducibility and irreducibility

When a term of rank ≥ 2 can be factorized into several terms of smaller
rank, we say that it is reducible. Otherwise, it is irreducible.

Reducible terms may cause non-uniqueness and non-identifiability

Reducibility and irreducibility depend on
I data
I model
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Decomposition of K ≥ 2 datasets in sum of rank-Li terms

D Ξ[1]

T

= A[1]

∑R
i=1 Li

Σ[1]> =

A
[1]
1

Σ
[1]>
1

L1

+ · · ·+

A
[1]
R

Σ
[1]>
R

LR

...
...

...

Ξ[K ]D

T

= A[K ]

∑R
i=1 Li

Σ[K ]>
=

A
[K ]
1

Σ
[K ]>
1

L1

+ · · ·+

A
[K ]
R

Σ
[K ]>
R

LR

dependent dependent

Independent multivariate random processes

A[k] = [A
[k]
1 | · · · |A

[k]
R ] , A

[k]
i ∈ RD×Li , k = 1, . . . ,K

A
[k]
i Σ

[k]>
i = A

[k]
i Z

−[k]
i Z

[k]
i Σ

[k]>
i , Z

[k]
i ∈ RLi×Li nonsingular ∀k , i , t

Potential applications: Data fusion, multiset data analysis, frequency
domain analysis of convolutive mixtures, and more
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Decomposition of K ≥ 2 datasets in sum of rank-Li terms

D Ξ[1]

T

= A[1]
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i=1 Li

Σ[1]> =

A
[1]
1

Σ
[1]>
1

L1
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A
[1]
R

Σ
[1]>
R

LR

...
...

...

Ξ[K ]D

T

= A[K ]

∑R
i=1 Li

Σ[K ]>
=

A
[K ]
1

Σ
[K ]>
1

L1

+ · · ·+

A
[K ]
R

Σ
[K ]>
R

LR

dependent dependent

Independent multivariate random processes

For a specific dataset (mixture) k (or K = 1)

Independent subspace analysis (ISA) [Comon, 1995], [De Lathauwer et al.,

1995] [Cardoso, 1998]

If Li = 1 ∀i , independent component analysis (ICA) [Comon, 1994]

Therefore, this model subsumes and generalizes tensor-related ICA results
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Decomposition of K ≥ 2 datasets in sum of rank-Li terms

D Ξ[1]

T

= A[1]

∑R
i=1 Li

Σ[1]> =

A
[1]
1

Σ
[1]>
1

L1

+ · · ·+

A
[1]
R

Σ
[1]>
R

LR

...
...

...

Ξ[K ]D

T

= A[K ]

∑R
i=1 Li

Σ[K ]>
=

A
[K ]
1

Σ
[K ]>
1

L1

+ · · ·+

A
[K ]
R

Σ
[K ]>
R

LR

dependent dependent

Independent multivariate random processes

Soft links among datasets [Lahat, Adalı, Jutten, 2015]

Uniqueness: up to (A
[k]
i Z

−[k]
i )(Z

[k]
i Σ

[k]>
i ) and global ordering

Joint independent subspace analysis (JISA) [Lahat and Jutten, 2014]

Li = 1 ∀k , i → Independent vector analysis (IVA) [Kim et al., 2006]
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A simple JISA model based on second-order statistics

Simplest JISA model, no diversity among samples within dataset

Each dataset not unique and not identifiable individually

Uniqueness, identifiability, and irreducibility, only due to the link
among the datasets

Cross-correlation between ith and jth elements in datasets k and `:

S
[k,`]
i j︸ ︷︷ ︸

Li×Lj

=

{
E{Σ[k]>

i Σ
[`]
i } nonsingular i = j

E{Σ[k]>
i Σ

[`]
j } 0 i 6= j

Cross-correlation between all the elements in datasets k and `:

S[k,`]︸ ︷︷ ︸
RLi×RLi

= E{Σ[k]>Σ[`]} =

S
[k,`]
11 0

. . .
0 S

[k,`]
RR

 = S
[k,`]
11 ⊕ · · · ⊕ S

[k,`]
RR︸ ︷︷ ︸

block-diagonal

D. Lahat, C. Jutten TRICAP 2018 9 / 23



JISA as a coupled block decomposition (or diagonalization)

Cross-correlation between observations in datasets k and `:

X[k,`] = E{Ξ[k]Ξ[`]>} = A[k] S[k,`]︸ ︷︷ ︸
block-diagonal

A[`]> =
R∑
i=1

A
[k]
i S

[k,`]
ii A

[`]>
i ∀k, `

Coupled block decomposition (CBD) of {X[k,`]}Kk,`=1

When A[k] is nonsingular ∀k :

A−[k]X[k,`]A−[`]> = S[k,`] =

S
[k,`]
11 0

. . .
0 S

[k,`]
RR

 ∀k , `

Coupled block diagonalization (CBD) of {X[k,`]}Kk,`=1

Here, the data cannot be stacked in a single tensor
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Coupled block diagonalization – example

A−[1]
· · · A−[K ]

A−[1] X[1,1]
· · · X[1,K ]

...
...

...

A−[K ] X[K ,1]
· · · X[K ,K ]

=

S[1,1]

· · ·
S[1,K ]

...
...

S[1,K ] · · · S[K ,K ]

R = 3 low-rank terms in each dataset

Dimensions of low-rank terms in each dataset: L1 = 2, L2 = 1, L3 = 3

K ≥ 2 datasets
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Coupled block diagonalization – example
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· · · A−[K ]

A−[1] X[1,1]
· · · X[1,K ]

...
...

...

A−[K ] X[K ,1]
· · · X[K ,K ]

=

S[1,1]

· · ·
S[1,K ]

...
...

S[1,K ] · · · S[K ,K ]

Reducibility and irreducibility in CBD

If, for fixed i , all blocks S
[k,`]
ii can be further block-diagonalized with

the same block pattern, the CBD of {X[k,`]}Kk,`=1 is said to be
reducible. Otherwise, it is irreducible.

Generally irreducible as soon as K ≥ 3
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CBD uniqueness through JISA identifiability

Since our statistical model is simple, we can derive the Fisher
information matrix (FIM) in closed form

The inverse of the FIM is a lower bound on the covariance of the
parameters

A singular FIM means that the model is not identifiable

When {X[k,`]}Kk,`=1 represents the sufficient statistics of JISA,

CBD uniqueness ⇔ JISA identifiability

We assume irreducibility (i.e., reducible solutions excluded)
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CBD uniqueness and JISA identifiability

Theorem ([Lahat & Jutten, 2015, 2018])

A coupled block diagonalization of {X[k,`]}Kk,`=1 with irreducible block
terms is not unique iff there exists at least one pair (i , j), i 6= j , for which
Lj = Li and

S
[k,`]
jj = Ψ[k]S

[k,`]
ii Ψ[`]> ∀k, `

where {Ψ[k]}Kk=1 are nonsingular Li × Li matrices.

If {X[k,`]}Kk,`=1 are the sufficient statistics of the JISA model, then this
theorem equally characterizes the necessary and sufficient conditions for
JISA identifiability.
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JISA uniqueness and non-identifiability [Lahat & Jutten, 2015]

· · ·
...

...

· · ·

In this example, R = 3, {S[k,`]
ii }Kk,`=1

irreducible and with no zero values.

Collect all r th blocks of all diagonals in
one matrix, whose (k , `)th element is

S
[k,`]
rr

This CBD is not unique iff for some pair (i , j), Li = Lj and

S
[k,`]
jj = Ψ[k]S

[k,`]
ii Ψ[`]> ∀k, ` · · ·...

...
· · ·

 =

Ψ[1] 0
. . .

0 Ψ[K ]

 · · ·...
...

· · ·

Ψ[1] 0
. . .

0 Ψ[K ]

>

where Ψ[k] are nonsingular Li × Li matrices [Lahat et al., 2015]

⇒ Signals with different block sizes are always identifiable
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How is CBD related to tensor decompositions?

Let A[k] 7→ A ∀k , (k , `) 7→ q, q = 1 : Q. Then

X(q) = AS(q)A> =
R∑
i=1

AiS
(q)
ii A>i ∀q ⇔ X =

R∑
i=1

Ci ×1 Ai ×2 Ai

X = A

C
A =

A1

C1 A1
+

A2

C2 A2
+. . .

X ∈ RD×D×Q , A = [A1, . . . ,AR ], Ai ∈ RD×Li , S
(q)
ii ∈ RLi×Li ,

S(q) = S
(1)
ii ⊕ · · · ⊕ S

(Q)
ii , Ci ∈ RLi×Li×Q

Each core tensor Ci is irreducible

A special case of rank-(Lr ,Mr , ·) block term decomposition (BTD) [De

Lathauwer, 2008]

If A is nonsingular: joint block diagonalization (JBD) of X by A−1

A−1X(q)A−> = S(q) ∀q ⇔ X ×1 A−1 ×2 A−1 = C
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CBD uniqueness versus JBD uniqueness

Recall the equivalence relation for CBD non-uniqueness:

S
[k,`]
jj = Ψ[k]S

[k,`]
ii Ψ[`]> ∀k, `

where {Ψ[k]}Kk=1 are nonsingular Li × Li matrices

Applying the same type of simplification, (k , `) 7→ q, to the CBD
uniqueness results, and setting Ψ[k] 7→ Φ, we obtain

S
(q)
jj = ΦS

(q)
ii Φ> ∀q ⇔ Cj = Ci ×1 Φ×2 Φ

where Φ is a nonsingular Li × Li matrix.

These are the necessary and sufficient conditions for uniqueness of JBD
[Lahat, Messer, Cardoso, 2012]
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CBD uniqueness versus JBD uniqueness

· · ·
...

...

· · ·

Compare with JBD:

⊤

· · ·

· · ·

... ...

· · ·

· · · · · ·

· · ·

...
... ... ...

Cj = Ci ×1 Φ×2 Φ

Not unique iff for some pair (i , j), S
[k,`]
jj = Ψ[k]S

[k,`]
ii Ψ[`]> ∀k, ` · · ·...

...
· · ·

 =

Ψ[1] 0
. . .

0 Ψ[K ]

 · · ·...
...

· · ·

Ψ[1] 0
. . .

0 Ψ[K ]

>

where Ψ[k] are nonsingular Li × Li matrices [Lahat et al., 2015]

A pair (i , j) of block terms is not identifiable iff its covariance profiles
satisfy the given equivalence relation

Only pairs of sources with the same size can cause non-identifiability
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Implications

We now argue that
1 Our results are useful also for more general types of data, e.g.,

I Complex-valued
I Singular factor matrices
I Not necessarily positive-definite covariance matrices

2 Our results can be regarded as generalizations to the concept of
Kruskal’s rank
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Non-uniqueness of rank-(L,M , ·) BTD

Consider the rank-(L,M, ·) block decomposition with R = 2

T = A

C
B =

A1
C1

B1
+

A2 C2

B2

where T ∈ CI×J×K , Ci ∈ CL×M×K , Ai ∈ CI×L, Bi ∈ CJ×M , i = 1, 2.
Consider an alternative rank-(L,M, ·) BTD of T with

A =
√

2A

[
I −Ψ−1

I Ψ−1

]−1

, B =
√

2B

[
I −Φ−1

I Φ−1

]−1

where Ψ ∈ FL×L and Φ ∈ FM×M are nonsingular matrices.
If C2 = C1 ×1 Ψ×2 Φ, then

1

2
C ×1

[
I −Ψ−1

I Ψ−1

]
×2

[
I −Φ−1

I Φ−1

]
=

C1

C1

Rank-(Lr ,Mr , ·) BTD not unique if Cj = Ci ×i Ψ×2 Φ for some (i , j)
An analogous result can be shown for the CBD
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Generalizing k-rank to core tensors in rank-(Lr ,Mr , ·) BTD

Definition: k-rank for core tensors in rank-(Lr ,Mr , ·) BTD

1 kcore
C = 1 if for at least one pair (i , j), i 6= j , Ci = Cj ×1 Ψ×2 Φ with

Ψ and Φ nonsingular

2 kcore
C ≥ 2 if kcore

C 6= 1 and Cr 6= O ∀r
3 kcore

C = 2 if kcore
C ≥ 2, and there is a triplet (i , j , k), i 6= j 6= k

satisfying

Ck = Cj ×1 Ψ×2 Φ + Cj ×1 Ψ′ ×2 Φ′

with Ψ, Ψ′, Φ, and Φ′ nonsingular matrices

4 kcore
C = n n ≥ 3: defined analogously

1 Kruskal’s rank is a special case when Lr = 1 = Mr ∀r
2 kcore

C may be larger than 1 even if some, but not all, columns in the
core tensors are proportional

3 Generically, kcore
C = min(K ,R) if Ci ∈ CL×L×K and Li = L ∀i
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Previous generalizations to Kruskal’s rank and condition

Motivation: uniqueness of different types of BTD

Generalizing k-rank to partitioned matrices [De Lathauwer, 2008]

The k’-rank of a (not necessarily uniformly) partitioned matrix A, denoted
by k ′A, is the maximal number r such that any set of r submatrices of A
yields a set of linearly independent columns.

Let A =
[
A1 · · · AR

]
∈ FI×LR be uniformly partitioned in R matrices

Ar ∈I×L. Generically, k ′A = min(b ILc,R).

The k’-rank still depends on individual columns of A

The uniqueness results for BTD in [De Lathauwer, 2008]

Only for generic block terms ⇒ in particular, generic core tensors

In the nongeneric case, considers lack of uniqueness only due to
reducibility

No Kruskal-like conditions for the rank-(Lr ,Mr , ·) BTD
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A suggested generalization to Kruskal’s condition

Conjecture

The rank-(Lr ,Mr , ·) BTD of a tensor T is unique if each rank-(Lr ,Mr , ·)
term is irreducible, and

k ′A + k ′B + kcore
C ≥ 2R + 2

1 R must reflect the number of irreducible terms

2 Kruskal’s condition is a special case when Lr = 1 = Mr ∀r
3 Explains all rank-(Lr ,Mr , ·) BTD cases in [De Lathauwer, 2008]
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Concluding remarks

1 k-rank for CBD can be defined analogously.
2 However, extending Kruskal’s condition for CBD is less obvious,

because of the multiple datasets
3 We presented results on the uniqueness of rank-(Lr ,Mr , ·) BTD and

CBD that indicate that the concept of Kruskal’s rank may –and
sould– be generalized in new directions, to accommodate more
elaborate structures in the data

4 Validation and/or proof needed for conjectures
5 Potentially useful for new uniqueness results on BTD and coupled

decompositions
6 Irreducibility of the block terms is a prerequisite for uniqueness
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