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A simple model for the data

Observations alalT
—
D22sensors{ = EZT H T +. +H0'T
R
ai ar

T > 2 samples R

sum of R > 2 rank-1 terms

DxR
A - . .
A = [al a - aR] mixing matrix
RxT
~~~ .
¥ = o1 o2 -+ og| (latent) signals

@ &4t is the (d, t)th data sample (e.g., observation)

@ Each observation is a sum of contributions from R > 2 signals
@ dth sensor and ith signal are related by a coefficient ay;

e We ignore noise (any contribution not explained by this model)
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A not-so-simple model for data analysis

alalT
—
D22sensors{ = EZT H T +. +H0T
R
al ar

T > 2 samples R

sum of R > 2 rank-1 terms

Desired uniqueness: up to arbitrary scaling (a;)\fl)()\;a';r) and ordering
This factorization is generally not unique for R > 2:
==AX" =AZ 'ZX" for any nonsingular R x R matrix Z

Why do we need a unique decomposition?

Uniqueness is necessary to achieve interpretability, i.e.,
attach physical meaning to the output [Harshman, 1970], [Cattell, 1944]
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Why do we need a unique decomposition?

Uniqueness is necessary to achieve interpretability, i.e.,
attach physical meaning to the output [Harshman, 1970], [Cattell, 1944]

— Diversity
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Data with three-way diversity

A polyadic decomposition of T~ € F/*/*K in sum of R rank-1 tensors:

k. ki

— o

T =H by +--~+H br < T =[AB,Clg

ai ar

@ When R is minimal, this decomposition is called the Canonical
polyadic decomposition (CPD), and R is the rank of 7", denoted ry

@ The CPD of a tensor is unique if it is subject only to trivial
indeterminacies: arbitrary permuting of rank-1 terms, and arbitrary
scaling of vectors within each rank-1 term
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Collinearity and Kruskal rank

The concept of collinearity, and linear dependence among columns of factor
matrices, is fundamental to the uniqueness of tensor decompositions
@ If two or more columns of a factor matrix of a tensor 7 have collinear
columns, then the overall CPD is not unique
@ For more than two columns, we have

Kruskal Rank or k-rank [Kruskal, 1977]

ka is the largest number such that any set of ka columns (vectors) of A is
linearly independent

Generically, ka = min(/, R) if A € F/*R

Kruskal's condition [Kruskal, 1977]

Let 7 =[A,B,C|g and ka + kg + k¢ > 2R+ 2. Then rr = R and the
CPD of 7T is unique.
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Collinearity and Kruskal rank

The concept of collinearity, and linear dependence among columns of factor
matrices, is fundamental to the uniqueness of tensor decompositions
@ If two or more columns of a factor matrix of a tensor 7 have collinear
columns, then the overall CPD is not unique
@ For more than two columns, we have

Kruskal Rank or k-rank [Kruskal, 1977]

ka is the largest number such that any set of ka columns (vectors) of A is
linearly independent

Generically, ka = min(/, R) if A € F/*R

Kruskal's condition [Kruskal, 1977]

Let 7 =[A,B,C|g and ka + kg + k¢ > 2R+ 2. Then rr = R and the
CPD of 7T is unique.

In this talk, we suggest generalizations to these concepts
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From rank-1 to rank-L;, L; >1

v/ Many types of latent phenomena are not rank-1
Fetal electrocardiogram (FECG) [De Lathauwer et al., 1995]

Cosmic microwave background radiation (CMB) [Cardoso et al., 2008]

v Higher accuracy, better interpretability
v" Computational advantages: no need to separate within subspaces

—— )L
D22{ = = [A||xT | = :]>L1_|_...+H IR
= X i
T>2 YR A Ar "
= > i1 Li
A= [A1 A, - AR] , X = [}:1 >, - }:R]
Desired uniqueness: up to arbitrary L; x L; nonsingular Z;:
(A;Z;1)(Z;Z]) Vr, and ordering
— Only span(A;) can be uniquely identified
This factorization is generally not unique for R > 2
TRICAP 2018 6 /23
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Do the rank-L; terms exist?

Let us look again at the decomposition

— )L — ) Llg
p3 p3
A, 1 Agr R
with L; > 2 for at least one i = 1,...,R.

Why (or when) can't we write = as a sum of (D> _._; L;) rank-1 terms?

Reducibility and irreducibility

When a term of rank > 2 can be factorized into several terms of smaller
rank, we say that it is reducible. Otherwise, it is irreducible.

@ Reducible terms may cause non-uniqueness and non-identifiability
@ Reducibility and irreducibility depend on

» data

> model
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Decomposition of K > 2 datasets in sum of rank-L; terms

T Z,R:1 L
—— L
D{ =011 || At | grum | = H = I %‘”R
1 >
Al .oAll TR
1 : R
—) [, 1Lk
pl| =t|_| ara|grar|_ H
{ Z[IK]T + + Z%QT
=S K
T Z?:l Lj A[lK] AE"]

AW = (AW alk Al e RO g1 K
AT — AlM 7 HZIs T 710 ¢ bt nonsingular Vk, i, t

Potential applications: Data fusion, multiset data analysis, frequency
domain analysis of convolutive mixtures, and more
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Decomposition of K > 2 datasets in sum of rank-L; terms

Independent multivariate random processes

T SEL /_\

f: ----- |L (——— ‘I

D{ =0 = |all]| 0T [= H. [T +1+ ::I:>LR
R D XA
Al ' Al R
1, Vo R, ;

:I:IE} Ly :I:IE>LR
D{ =[K]| _| alKl| gt<IT| _ H: et |
1 1 R 1
Y K ' Kl "
TR A[l ;'\ _____ ; AE"]'\ _____ ;
dependent dependent

For a specific dataset (mixture) k (or K = 1)

@ Independent subspace analysis (lSA) [Comon, 1995], [De Lathauwer et al.,
1995] [Cardoso, 1998]

e If L; =1 Vi, independent component analysis (ICA) [Comon, 1994]

Therefore, this model subsumes and generalizes tensor-related ICA results
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Decomposition of K > 2 datasets in sum of rank-L; terms

Independent multivariate random processes

T SEL VRN

e T (s 1

D{ E[l] e A[l] Z[l]T = H: Z:[ll]‘r : + + : z[l]T: R
A[1]: : A[l]: R
1 P R\ :

:I:IE} Ly :I:IE>LR
ol | =i | ava g | 2R D T
—— K| 1 (]! R
TR A AR
dependent dependent

Soft links among datasets [Lahat, Adali, Jutten, 2015]
Uniqueness: up to (AE-k]Z,-_[k])(ZE-k]ZE-k]T) and global ordering

Joint independent subspace analysis (JISA) [Lahat and Jutten, 2014]

L; =1 VYk,i — Independent vector analysis (IVA) [Kim et al., 2006]
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A simple JISA model based on second-order statistics

@ Simplest JISA model, no diversity among samples within dataset
@ Each dataset not unique and not identifiable individually

@ Uniqueness, identifiability, and irreducibility, only due to the link
among the datasets

Cross-correlation between ith and jth elements in datasets k and ¢:

(ke E{ZEHTZEQ} nonsingular | =j
L EETED o i # )
L,'><LJ'

Cross-correlation between all the elements in datasets k and /:

sl o »
S[kj] _ E{z[k]—rz[f]} _ . e = Sgﬁvé] DD S%(RL]
RL;xRL; 0 SkR block-diagonal
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JISA as a coupled block decomposition (or diagonalization)

Cross-correlation between observations in datasets k and /:

R
Xkl = p(==1ATy = Al gl AT — E :A[k]s[kyflA[f]T Vk. ¢
N~ / 1" / ?

block-diagonal i=1

Coupled block decomposition (CBD) of {XIKA}K,_,

When Al is nonsingular Vk:

[k
A—[k]x[k,[]A-[ﬁ]T = s[k,e] = Sll . 0 Vk,€
RR

Coupled block diagonalization (CBD) of {X[k’e]}k’(’e:1

Here, the data cannot be stacked in a single tensor
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Coupled block diagonalization — example

A-[l %[Kl
sli1] slL.K]
ol - P o
w o ged P P

S[LK] T S[KvK]

A0l x]

Ng

@ R = 3 low-rank terms in each dataset
@ Dimensions of low-rank terms in each dataset: L1 =2, [, =1, [3=3
@ K > 2 datasets
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Coupled block diagonalization — example

Al %[Kl
sli1] slL.K]
ol - P o
w o ged P P

S[LK] T S[KvK]

A0l x]

Ng

Reducibility and irreducibility in CBD

o If, for fixed i/, all blocks SE-;(’E] can be further block-diagonalized with
the same block pattern, the CBD of {X[k’e]},’f’e:1 is said to be
reducible. Otherwise, it is irreducible.

@ Generally irreducible as soon as K > 3

v
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CBD uniqueness through JISA identifiability

@ Since our statistical model is simple, we can derive the Fisher
information matrix (FIM) in closed form

The inverse of the FIM is a lower bound on the covariance of the
parameters

A singular FIM means that the model is not identifiable
When {X[k’E]}f&:l represents the sufficient statistics of JISA,
CBD uniqueness < JISA identifiability

@ We assume irreducibility (i.e., reducible solutions excluded)
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CBD uniqueness and JISA identifiability

Theorem ([Lahat & Jutten, 2015, 2018])

A coupled block diagonalization of {XIK}K,_, with irreducible block
terms is not unique iff there exists at least one pair (i,j), i # j, for which
Lj = L,' and

S[H] w[k]s[ QylaT Vk, £

where {WIKI} K are nonsingular L; x L; matrices.

If {X["’Z]}f[:1 are the sufficient statistics of the JISA model, then this

theorem equally characterizes the necessary and sufficient conditions for
JISA identifiability.
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JISA uniqueness and non-identifiability [Lahat & Jutten, 2015]

In this example, R = 3, {Slk’e]}/’f,ezl

i
irreducible and with no zero values.

" M
g
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JISA uniqueness and non-identifiability [Lahat & Jutten, 2015]

In this example, R = 3, {ng’el},’fezl
irreducible and with no zero values.

@ Collect all rth blocks of all diagonals in
one matrix, whose (k, ¢)th element is

oy a "
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JISA uniqueness and non-identifiability [Lahat & Jutten, 2015]

In this example, R = 3, {Slk’e]}/’f,ezl

i
irreducible and with no zero values.
@ Collect all rth blocks of all diagonals in
one matrix, whose (k, ¢)th element is

Gy &y
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JISA uniqueness and non-identifiability [Lahat & Jutten, 2015]

In this example, R = 3, {Slk’e]}f,e:l

i
irreducible and with no zero values.

=, "

T

This CBD is not unique iff for some pair (i,j), L; = L and
st — wlkslAwlaT v
1 ] ’

@ Collect all rth blocks of all diagonals in
one matrix, whose (k, ¢)th element is

.0 vl o 7. witl o 7"
o - . o wkk| |l . [ 0 wlk
where WK are nonsingular L; X L; matrices [Lahat et al., 2015]
= Signals with different block sizes are always identifiable
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How is CBD related to tensor decompositions?
Let Al — A Yk, (k, 5)»—>q g=1:Q. Then

R
X@ = AS@AT = ZA SOATVG & x=CixiA A
i=1 i=1
D M
1A A Cy Al + Co A, +..
A;

o X € RDXDXQ A —[A;,...,Ag], A; € RD*Li, §(0) ¢ RLixL;
s@=sWMg...ps@ ¢ cRrLxLxQ
@ Each core tensor C; is irreducible

@ A special case of rank-(L,, M,, ) block term decomposition (BTD) [De
Lathauwer, 2008]
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How is CBD related to tensor decompositions?
Let Al — A Yk, (k, E)»—>q g=1:Q. Then

R
X(@ = AS@WAT = ZA SOATVG & x=> CixiA A
i=1 i=1
D M
A A | Cy Al + Co A, +..
A;

X € RP*DXQ A = [Ay,...,Ag], A; € RPL, 849) ¢ Ry,
s@=sWg.. 5@ ¢ cRrLxLxQ
@ Each core tensor C; is irreducible

A special case of rank-(L,, M,, ) block term decomposition (BTD) [De
Lathauwer, 2008]
If A is nonsingular: joint block diagonalization (JBD) of X by A~1

AXOAT=SWvg o XxAlx,Al=C
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CBD uniqueness versus JBD uniqueness

Recall the equivalence relation for CBD non-uniqueness:

slkl — WlHslMlT v g

where {WIKI}X are nonsingular L; x L; matrices

Applying the same type of simplification, (k,¢) — g, to the CBD
uniqueness results, and setting Wik 5 @, we obtain

SJ(Jq) :¢SEIQ)¢T Vq = CJ':C; X1¢ ><2¢

where @ is a nonsingular L; x L; matrix.
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CBD uniqueness versus JBD uniqueness

Recall the equivalence relation for CBD non-uniqueness:

S[H] u,[k]s[kf]u,[m vk, £

where {WIKI}X are nonsingular L; x L; matrices

Applying the same type of simplification, (k,¢) — g, to the CBD
uniqueness results, and setting Wik 5 @, we obtain

s =0siPeTvg o C=Cixi®x0

where ® is a nonsingular L; x L; matrix.

These are the necessary and sufficient conditions for uniqueness of JBD
[Lahat, Messer, Cardoso, 2012]
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CBD uniqueness versus JBD uniqueness
Compare with JBD:

%
By B

CJ':C,'X1¢><2¢

Not unique iff for some pair (i, ), SJ[.J’.(’E] = W[k]SEf’K]\IJ[Z]T Vk, £
WO il 0 B B el 01"

O --m o wk| |B. [] 0 wlKl
where WK are nonsingular L; x L; matrices [Lahat et al., 2015]

@ A pair (i,j) of block terms is not identifiable iff its covariance profiles
satisfy the given equivalence relation

@ Only pairs of sources with the same size can cause non-identifiability
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Implications

We now argue that
@ Our results are useful also for more general types of data, e.g.,
» Complex-valued
» Singular factor matrices
> Not necessarily positive-definite covariance matrices
@ Our results can be regarded as generalizations to the concept of
Kruskal's rank

D. Lahat, C. Jutten TRICAP 2018

18 / 23



Non-uniqueness of rank-(L, M,-) BTD
Consider the rank-(L, M, -) block decomposmon with R =2

%@@l A=

B>

where T € C/XIxK ¢; e CLXMxK A, e C/*L B e CI*M j=1,2.
Consider an alternative rank-(L, M,-) BTD of T with

— It -
A_\sz[l w—l} , B=12B L ¢_1]
where W € FLXL and & € FM*M are nonsingular matrices.
If Co =Cq1 x1 W X, ®, then

o Vv 0 -0 g
72 | B A A | T el B %)

e Rank-(L,, M;,-) BTD not unique if C; = C; x; W x5 ® for some (i, )

@ An analogous result can be shown for the CBD
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Generalizing k-rank to core tensors in rank-(L,, M,,-) BTD

Definition: k-rank for core tensors in rank-(L,, M,,-) BTD

2]
o

kg>re = 1 if for at least one pair (i, /), i # j, Ci = Cj x1 W x2 ® with
W and ® nonsingular

ke > 2 if kg°¢ #1and C, # O Vr

kg>'® = 2 if kg > 2, and there is a triplet (i, j, k), i #j # k
satisfying

Ck:Cj X1WX2¢+CJ' ><1\II’><2¢’

with W, W' &, and ®' nonsingular matrices

k™ = n n > 3: defined analogously

© 00 ©

Kruskal's rank is a special case when L, =1= M, Vr

k&®"® may be larger than 1 even if some, but not all, columns in the
core tensors are proportional

Generically, k& = min(K, R) if C; € Ct*t*K and L; = L Vi
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Previous generalizations to Kruskal's rank and condition

Motivation: uniqueness of different types of BTD

Generalizing k-rank to partitioned matrices [De Lathauwer, 2008]

The k'-rank of a (not necessarily uniformly) partitioned matrix A, denoted
by kj, is the maximal number r such that any set of r submatrices of A
yields a set of linearly independent columns.

Let A=[A; --- Ag] € F'*LR be uniformly partitioned in R matrices
A, €'<L. Generically, ky = min(|{], R).

@ The k'-rank still depends on individual columns of A

The uniqueness results for BTD in [De Lathauwer, 2008]
@ Only for generic block terms = in particular, generic core tensors
@ In the nongeneric case, considers lack of uniqueness only due to
reducibility
e No Kruskal-like conditions for the rank-(L,, M,,-) BTD
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A suggested generalization to Kruskal's condition

Conjecture

The rank-(L;, M,,-) BTD of a tensor T is unique if each rank-(L,, M, -)
term is irreducible, and

kn + kg + k& > 2R + 2

@ R must reflect the number of irreducible terms
@ Kruskal's condition is a special case when L, =1 = M, Vr
@ Explains all rank-(L;, M;,-) BTD cases in [De Lathauwer, 2008]
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Concluding remarks

@ k-rank for CBD can be defined analogously.

@ However, extending Kruskal's condition for CBD is less obvious,
because of the multiple datasets

© We presented results on the uniqueness of rank-(L,, M,,-) BTD and
CBD that indicate that the concept of Kruskal's rank may —and
sould— be generalized in new directions, to accommodate more
elaborate structures in the data

@ Validation and/or proof needed for conjectures

© Potentially useful for new uniqueness results on BTD and coupled
decompositions

@ Irreducibility of the block terms is a prerequisite for uniqueness

This work was supported by the project CHESS,
2012-ERC-AdG-320684. GIPSA-Lab is a partner of the LabEx
PERSYVAL-Lab (ANR-11-LABX-0025).
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