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General introduction 

This booklet gathers 52 papers, either in the form of articles or posters, presented during the second 
edition of the Confiance.ai Days held in Saclay on October 4-6, 2022. Altogether they give a good snapshot 
of the research and development work done in the Confiance.ai program, an industrial and academic 
initiative of the national Grand Challenge on provable and certifiable AI, launched in support of the France 
2030 strategy. 

Among these papers, a dozen are presented as « external contributions » that were selected by an ad-hoc 
committee following a call for papers. All other communications belonged to one of five so-called « villages 
» with physical implementation in the conference hall, distributing the work done in Confiance.ai into
five topics : « End-to-end approach » ; « from Operational Design Domain to Data » ; « Explainability
and Understanding» ; « Robustness and Monitoring » ; « Embedded AI ».

After two years of activity, and complementing the Confiance.ai white paper, this document shows the 
diversity and the quality of the work done in the programme. Some important and up-to-date subjects are 
addressed, such as – only to name a few - out-of-distribution detection, adversarial robustness, semi- or 
self-supervised learning, explainability by design, verification and validation, embedded AI etc. We hope 
that you will enjoy reading parts of this document as much as we enjoyed preparing and attending the 2022 
Confiance AI days. 
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Summary 

External contributions 

• Héléna Vorobieva. Design method for improving the detection of out of distribution data of type 
anomaly by multi-epoch ensemble method  

• Thomas Cordier, Victor Bouvier, Gilles Hénaff, Céline Hudelot. Test-Time Adaptation with Principal 
Component Analysis 

• Adrien Chan Hon Tong. Features which are robust to adversarial attacks are also robust to several
poisoning attacks

• Timothée Fronteau, Arnaud Paran, Aymen Shabou. Evaluating Adversarial Robustness on Document
Classification

• Etienne Bennequin, Myriam Tami, Antoine Toubhans, Céline Hudelot. Few-Shot Image Classification
Benchmarks are Unrealistic: Build Back Better with Semantic Task Sampling

• Ramzi Ben Mhenni, Mohamed Ibn Khedher, Stéphane Canu. Robustness of Neural Networks Based on
MIP Optimization

• Loris Berthelot, Andrés Troya-Galvis, Christophe Gouguenheim. A method and metrics to evaluate
confidence score performances

• Arthur Ledaguenel, Céline Hudelot, Mostepha Khouadjia. Multi-Category Classification with Semantic
Projection and Semantic Regularization

• Mehdi Elion, Sonia Tabti, Julien Budynek. Interpretability of deep learning models for visual defect
detection: a preliminary study

• Fateh Boudardara, Abderraouf Boussif, Mohamed Ghazel, Pierre-Jean Meyer. Deep Neural Networks
Abstraction using An Interval Weights Based Approach

• Tarek Ayed, Etienne Bennequin, Antoine Toubhans. Detecting Outliers in Few-Shot-Learning Support
Sets

• Romain Xu-Darme, Georges Quénot, Zakaria Chihani, Marie-Christine Rousset. CASUAL: Case-based
Reasoning using Unsupervised Part Learning

Village Bringing trust from ODD to Data (posters) 

Introduction to the themes of the village 
Flora Dellinger, Morayo Adedjouma 

• Benoît Langlois, Jean-Luc Adam, Xavier Baril, Eric Feuilleaubois, Faouzi Adjed, Flora Dellinger. Towards
Trustworthiness for Data Engineering in AI

• Adrien Le Coz, Stéphane Herbin, Faouzi Adjed. Expression and validation of an operational domain using
extreme examples for computer vision applications

• Olivier Antoni, Marielle Malfante. Self-supervised Learning for Anomaly Detection on Time Series using
1D-CNN

• Laurence Guillon, Amélie Bosca, Michel Poujol. Anomaly Detection on Vibratory Sensors with Perceivers
• Evgenii Chzhen, Mohamed Hebiri, Jean-Michel Loubes, Gayane Taturyan. Robustness using fairness:

problem formulation
• Fred Ngole Mboula. Sparsity based anomaly detection framework
• Fritz Poka Toukam, Nicolas Granger, Oriane Siméoni, Angélique Loesch. Leveraging unlabeled data to

improve active learning for trustworthy data selection and annotation
• Christophe Bohn, Kévin Mantissa, Gabriel Burtin. Proposition of an ODD engineering process
• Georges Jamous, Morayo Adedjouma. ODD usages in a data and ML monitoring perspectives



Village End-to-end approach for trusted AI systems and V&V (posters) 
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Guillermo Chaley Gongora, Boris Robert, Cyprien de la Chapelle 
 
• Boris Robert. Modeling for the description of use and architecture of Confiance.ai’s Trustworthy 

Environment 
• Boris Robert, Afef Awadid. Capturing and modeling the engineering processes for trustable AI based 

systems 
• Boris Robert, Xavier Le Roux, Christophe Alix. End to end method for the engineering of trustable AI 

based systemssystems 
• Christophe Alix, Guillermo Chale-Gongora, Jean-Luc Voirin. Engineering Trustworthy AI Systems End to 

End Visio 
• Juliette Mattioli, Agnès Delaborde, Henri Sohier. Can we assess AI based system trustworthiness ? 
• Morayo Adejouma, Christophe Alix, Loic Cantat, Eric Jenn, Juliette Mattioli, Boris Robert, Fabien 

Tschirhart, Jean-Luc Voirin. Engineering Dependable AI Systems 
• Eric Jenn, Ramon Conejo, Vincent Mussot, Florent Chenevier. Assurance Cases and V&V Strategy 
• Cyprien De La Chapelle, Ingrid Fiquet, Josquin Foulliaron. End to end use of trustworthy environment 
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• Fabio Arnez, Ansgar Radermacher. Out-of-Distribution Detection using DNN Latent Space Uncertainty 
• Héléna Vorobieva. Design method for improving the detection of out of distribution data of type 

anomaly by multi-epoch ensemble method 
 
 
Posters Village: Trustworthy Embedded AI 
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Jacques Yelloz, Thomas Wouters 
 
• Jacques Yelloz, Thomas Wouters. Trustworthy Embedded AI : scope and challenges 
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• Michaël Adalbert, Christine Rochange, Thomas Carle, Serge Tembo Mouafo, Eric Jenn, Makhlouf Hadji. 

Worst-Case Execution Time Analysis of Neural Networks on GPU accelerators 
• Houssem Ouertatani, Cristian Maxim, El Ghazali Talbi, Smail Niar. Bayesian optimization with deep 

ensembles for AutoDL 
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Design method for improving the detection of out of distribution data of type anomaly by multi-
epoch ensemble method 

Héléna Vorobieva *° 

*Safran Tech, Digital Sciences & Technologies Department, Magny-Les-Hameaux, France, helena.vorobieva@safrangroup.com  
°IRT SystemX, Palaiseau, France, helena.vorobieva@irt-systemx.fr 

Ensemble methods with the training of a single neural network, but taken at different epochs are known to improve results in 
deep learning. In this work, we propose a new score to choose the best epochs, which is adapted to use cases of non-destructive 
testing of industrial parts where images have to be divided into patches before being proceeded by the network. This score is 
tested on the Safran use case of the Confiance.ai program. 

I Introduction 
In the context of non-destructive testing of industrial parts, 
one possible solution for automatic inspection, is to place 
the part on a support, to illumination it and to take good 
resolution photos. From these photos, it is then required to 
automatically determinate whether an anomaly is present 
and it approximate location, while making few false alarms. 
Either when the system returns an alert with an anomalous 
area, the part is discarded, or it is examined by hand, or the 
area is given for inspection to another system that is more 
expensive in terms of computational time or power. 

For this study, we consider use cases where the images 
cannot be directly proceeded and have to be inspected as 
patches by the system. This can occur for example when the 
parts have a specular and textured surface that can vary or 
have a non-trivial curvature. In these cases, it is possible to 
take pictures with different illuminations of the same 
position of the part, and then select only the best 
illumination of each patch. Two strategies are then possible 
to find the anomalies: a classification strategy of the whole 
patch or a semantic segmentation strategy inside each 
patch. To train a neural network to perform these tasks, cost 
functions are used. They penalize a bad response: 
misclassified patch or pixel.  

The automatic control of parts by neural network is usually 
done by using a single network [1]. In order to gain in 
robustness, the use of several networks via ensemble 
methods is an approach known to the deep learning 
community [2], [3]. The classification from the obtained 
networks is classically done by calculating the average of the 
predictions, by voting or by more advanced techniques [4]. 
The authors of [5] obtain improvement of robustness by 
using a set of networks with guaranteed good coverage of 
the parameter space. When several neural networks are 
used, they can have different architectures, or the same 
architecture but a different initialization. Another way to 
gain robustness and improve results is to use ensemble 
methods on a single neural network but taken at different 
convergence points (training epoch number), with the 
advantage of training only one neural network. Thus, [4] 

randomly selects four different epochs to apply ensemble 
methods. In a more relevant way, [6] chooses the best 
epochs according to the cost function used for the training 
of the neural network.  

Various ensemble methods can then be used alone or in 
combination with each other, or in combination with other 
methods for improving the results. This work studies the 
case of ensemble methods with the training of a single 
neural network, but taken at different epochs. 

II Problem statement 
The general industrial problem is to determinate whether an 
anomaly is present in the whole image and it approximate 
location, while making few false alarms. The division of the 
images into patches does not change this problem. 

The technical problem we study here is how to select the 
epochs for the ensemble methods with the training of a 
single neural network that answers the industrial problem. 
In [6] the authors choose the best epochs according to the 
cost function used for training the neural network. 
Classically, there are other indicators in addition to the cost 
function to measure the performance of detection or 
semantic segmentation, for example Mean Intersection over 
Union (mIoU), Accuracy or Recall. To our knowledge, these 
indicators are not used in the state of the art for the 
selection of epochs in ensemble methods. 

However, these measures do not answer the industrial 
problem as they only favor a good response in relation to the 
raw ground truth (healthy or anomalous patch or pixel). 
Indeed, the industrial problem considers another level of 
precision: approximate location of anomalies in images, with 
few false alarms. Thus, the classic measurements will be very 
penalizing if, for example, only a part of the pixels of an 
anomalous area are well classified, whereas it answers 
correctly the industrial problem. Similarly, if a large area of 
anomalies is found on several patches, it would be sufficient 
to classify only some of these patches as anomalies, whereas 
the measurements will be penalizing for the other poorly 
classified patches in this area. Symmetrically for healthy 
areas, it is identical from the point of view of the industrial 



 

 

problem to return an aggregation of misclassified healthy 
pixels or patches, whatever the size of the aggregation, 
whereas the measurements will be more penalizing for 
larger aggregations. Thus, the state-of-the-art measures are 
not suitable for selecting the best epochs for our problem. 

We therefore propose in this study a new score for selecting 
the best epochs, adapted in particular to the Safran use case 
of the Confiance.ai program. 

III Detailed Design 
We describe in this section in detail our method for semantic 
segmentation networks and specify at the end the few 
modifications for a classification neural network. The 
proposed method works whatever the semantic 
segmentation neural network and whatever the associated 
semantic segmentation cost function. 

1. Calibration 
Figure 1 gives the overall view of the calibration process with 
the calculation of the proposed score. Training and 
validation images are subdivided into patches provided to 
the neural network. During the training, at the end of each 
epoch, the new performance measure proposed in this work 
and explained in the steps below is calculated on the 
validation set.  

 

Figure 1 Schematic view of the calculation of the proposed score 

Step 1: Construction of a global result matrix for each image 
of the validation set 

For each image of the validation set, we test all the patches 
and we thus obtain as many small result matrices Mpatch of 
the size of the patches, with scores between 0 and 1. As we 
know the position of the patches in the image, we construct 
a global result matrix MG of the image size by placing the 
small matrices Mpatch at the corresponding coordinates of the 
patches. 

In the case of overlay of the patches, we merge the results. 
First, in case of overlaying the results are added in MG. In 
parallel, we create a matrix Mcontribution containing for each 
coordinate, the number of small matrices having contributed 
to the score at this location. Then, when all the patches of 
the image have been tested and integrated in MG and their 
contribution in Mcontribution, we normalise MG: MGnorm = 
MG/Mcontribution. At the end, we obtain an MGnorm for each 
image in the validation set. 

2) Thresholding and classification of detected anomalies 
polygons 

We fix different thresholds S regularly spaced between 0 and 
1. The greater the number of thresholds, the more refined 
the results can be, but the longer the calculation time. The 
following is to be done for each threshold Si. 

Each MGnorm is thresholded and thus produces binary images 
Mbin where black pixels correspond to anomalies. Optionally, 
morphological smoothing can be performed.  

We list all the black polygons (for example with 
connectedness 4) Presult in Mbin whatever their size. We then 
look at whether or not these polygons intersect annotation 
polygons Pannot : 
• For each Pannot, we look if there is at least one Presult polygon 
having a non-null intersection with this Pannot. If this is the 
case, we consider that the Pannot anomaly is found. 
• For each Presult, we look if there is at least one Pannot having 
a non-null intersection with this Presult. If this is not the case, 
we consider that the polygon Presult is a false alarm. 

This operation being done for all the polygons Presult and 
Pannot of all the images of the validation set, we have a couple 
number of anomalies found and number of false alarms, for 
each threshold Si. 

3) Obtain comparable curves 

At the end of the previous step, we can plot for each epoch 
the curve of the number of anomalies found as a function of 
the false alarms (each point of the curve corresponding to a 
different threshold S). We note these points Si(nbf alsealarm, 
nbanomalies_found). 

It is then necessary to check that these curves respect some 
rules. The closer the threshold is to 0, the greater the 
number of anomalies found must be and the more false 



 

 

alarms we must see. Thus, for 2 given thresholds S1 and S2, if 
S1 is smaller than S2, then (assumption 1) the number of 
anomalies found for S1 is greater than or equal to the 
number of anomalies found with S2 and (assumption 2) the 
number of false alarms for S1 is greater than or equal to the 
number of false alarms with S2. Mathematically, (assumption 
1) is always respected. However, for too low thresholds, 
(assumption 2) is no longer respected because instead of 
having many small false alarm areas, we end up with few 
very extensive false alarm areas. We thus find the list of the 
points Sh not respecting (hypothesis 2). For these points, the 
value of the number of anomalies found and the value of the 
number of false alarms must be modified. Let SN(nbfalsealarmSN, 
nbanomalies_foundSN) be the first threshold from which 
(hypothesis 2) is respected for the considered period. Let F 
be the maximum number of false alarms over all epochs 
among the thresholds respecting (hypothesis 2). Then for 
the considered epoch, we modify the abscissa and ordinate 
of Sh such that: Sh(nbfalsealarm, nbanomalies_found) = (F, 
nbanomalies_foundSN ). This is to be done for all epochs (thus for 
all curves). Thanks to this step, the maximum abscissa for all 
curves is the same. In order to make the minimum abscissa 
the same for all curves, for the curves where there is no point 
with abscissa 0, a point S0(0, 0) is added. 

This gives curves with the same abscissa values, so that they 
are comparable. An illustration is given in Figure 2. 

 

Figure 2 Example of how obtaining comparable curves 

4) Final score 

Let Nadmitted be the maximum number of false alarms that we 
accept to have on the whole validation base in a sub-optimal 
operating regime, for example Nadmitted can be equal to the 
number of images in the validation set. We then calculate 
the area under the curve for abscises between 0 and Nadmitted, 

which gives us the final score. The higher the score, the 
better. Thus, for the ensemble methods, we use the epochs 
for which this score is the higher. 

2. Test 
The parts are tested only for the epochs selected during 
calibration and ensemble methods are then used to merge 
the results. 

3. Modifications for a classification network 
It is possible to apply this method with a classification neural 
network. In this case, instead of returning a matrix of scores 
for each pixel of the patch, the network returns a single 
score, determining whether the patch contains an anomaly 
or not. For the annotation of the patch, we also have a single 
score: classically 1 if the patch contains an anomaly and 0 
otherwise. In this case, we modify step 1 by creating a matrix 
Mpatch of the same size as the patch and by putting the score 
returned by the network at all the locations of the matrix. 
The rest is unchanged. 

IV Experiment 

1. Use case and used parameters 
The method was experimented on the Safran use case, 
presenting 5-channels images of 2432x2050 pixels with 
delimited areas of interest and anomalies polygonal 
annotation. The images are divided into patches of 256x256 
pixels with overlap. We used the training, validation and test 
sets provided with this use case. The network for which we 
tested our method is the resnet-18 classification network 
also provided with the use case. 

The tuning elements during training are as follows: 
• The training was done on 182 epochs using the 5 channels 
for each patch, directly masking the areas outside the masks 
on these patches. 
• As suggested in step 4 for the calculation of the final score, 
we took Madmitted equal to the number of images in the 
validation set (273 in our case). 
• When searching for the polygons, we used a connection 4. 
• We did not use any morphological operations 

The consolidation during test was done by averaging the 
results over the N best epochs found during training.  

2. Results 
We present the results in the form of the industrial problem 
we have highlighted, i.e. giving the detection rate as a 
function of the number of false alarms (the same method as 
for steps 1 and 2 is used for this). In order to obtain result 
curves, we performed several thresholds, in a similar way to 
the thresholds in step 2. We thus present the results for the 
5 best epochs and 5 thresholds on the final result in Figure 3 
and the results for the 10 best epochs and 7 thresholds on 
the final result in Figure 4. 

Note: we present the results according to the mean number 
of false alarms per image (1148 images on the test set).  



 

 

 

Figure 3 Detection rate function of mean number of false alarms 
per image, consolidation over 5 epochs 

 

Figure 4 Detection rate function of mean number of false alarms 
per image, consolidation over 10 epochs 

Our score (new score, in red) is compared to the scores 
considering the cost function (loss), the mean Intersection 
over Union (mIoU), the mean precision (mPrec) and the 
mean recall (mRec). We can notice that the score we 
propose is equivalent or better (depending on the points of 
the abscissa where we place ourselves) to the other scores, 
knowing that a perfect result would be a detection rate of 1 
with no false alarm. 

V Conclusions and future work 
This work proposes a design method to improve the results 
of a neural network for anomaly detection. Without 
changing the learning strategy (same network, same cost 
function, same meta-parameters), the final decision is made 
from several epochs, chosen according to a new score. This 
score is particularly adapted to use cases with images 
divided into patches. This method can be used either alone 
or to monitor the initial neural network results (taken at the 
epoch of convergence of the cost function). In this case, a 
possible strategy could be to filter out discrepancies in the 
results of the two methods. 

As a future work, this method will be tested on the Renault 
Welding use case of the Confiance.ai program. It will also be 
combined with other anomaly and out-of-domain detection 
networks. 
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Test-Time Adaptation with Principal Component Analysis

Thomas Cordier 1 2 Victor Bouvier 3 Gilles Hénaff 1 Céline Hudelot 2

Abstract
Machine Learning models are prone to fail when
test data are different from training data, a situa-
tion often encountered in real applications known
as distribution shift. While still valid, the training-
time knowledge becomes less effective, requir-
ing a test-time adaptation to maintain high per-
formance. Following approaches that assume
batch-norm layer and use their statistics for adap-
tation(Nado et al., 2020), we propose a Test-Time
Adaptation with Principal Component Analysis
(TTAwPCA), which presumes a fitted PCA and
adapts at test time a spectral filter based on the
singular values of the PCA for robustness to cor-
ruptions. TTAwPCA combines three components:
the output of a given layer is decomposed using
a Principal Component Analysis (PCA), filtered
by a penalization of its singular values, and re-
constructed with the PCA inverse transform. This
generic enhancement adds fewer parameters than
current methods (Mummadi et al., 2021; Sun et al.,
2020; Wang et al., 2021). Experiments on CIFAR-
10-C and CIFAR-100-C (Hendrycks & Dietterich,
2019) demonstrate the effectiveness and limits of
our method using a unique filter of 2000 parame-
ters.

1. Introduction
Deep neural networks are optimized to achieve high accu-
racy on their training distribution, given the hypothesis that
they will be deployed on the same distribution during infer-
ence. However, distribution shift occurs in many industrial
applications, for instance, when a sensor malfunctions. The
accuracy of a predictive task drops as the distribution of
test data shifts (Hendrycks & Dietterich, 2019; Quionero-
Candela et al., 2009). Domain adaptation prevents such fail-

1Thales Land and Air Systems, 2 Avenue Gay-Lussac, 78990
Elancourt, France 2Université Paris-Saclay, CentraleSupélec,
Mathématiques et Informatique pour Complexité et les Systèmes,
91190, Gif-sur-Yvette, France 3Dataiku, 203 Rue de Bercy,
75012, Paris, France. Correspondence to: Thomas Cordier
<thomas.cordier@centralesupelec.fr>.

ures by jointly training on source and target data. Instead,
Test-time adaptation mitigates the domain gap either by test-
time training or fully test-time adaptation according to the
availability of source data. Test-time training augments the
training objective on source data with an unsupervised task
that remains at test time to optimize domain-invariant rep-
resentations. Fully test-time adaptation (Wang et al., 2021)
does not alter training and only needs testing observations
and a pre-trained model for privacy, applicability, or profit
(Chidlovskii et al., 2016).

To enhance generalization, Spectral regularization (Bartlett
et al., 2017) especially for GANs (Miyato et al., 2018)
and L

2�regularization are standard tools during training
(Neyshabur et al., 2017). L2�regularization reduces model
variance for different potential training sets and constrains
the model complexity by lowering the weights of its lay-
ers. Spectral normalization penalizes the weight matrices by
their largest singular value to ensure the Lipschitz continuity
of the neural network.

Taking inspiration from these previous works, we aim to
learn the best fitting parameters of a spectral filter on a
corrupted dataset without supervision. We introduce TTAw-
PCA, which projects a batch of inputs onto a spectral basis,
filters the projected data points, and reconstructs the filtered
batch. As (Wang et al., 2021), we minimize entropy to
learn the parameters of the filter. This generic unsupervised
learning loss makes few assumptions about the data.

In this paper, we first overview state-of-the-art test-time
adaptation (Sec. 2). Then, we introduce a simple yet ef-
fective method: TTAwPCA (Sec. 3). We demonstrate its
effectiveness experimentally in tackling corrupted data (Sec.
4 and we discuss our results compared with other methods
(Sec. 5).

2. Related work
Unsupervised Domain Adaptation jointly adapts on
source and target domain through transduction, thus requir-
ing both simultaneously. Several properties have been opti-
mized: cross-domain feature alignment (Gretton et al., 2009;
Baochen et al., 2017; Quionero-Candela et al., 2009), adver-
sarial invariance (Tzeng et al., 2017; Ganin & Lempitsky,
2015; Ganin et al., 2016; Hoffman et al., 2018), and shared
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proxy tasks (Sun et al., 2019) such as predicting rotation
and position. In our work, we want to use only the target
domain at test time.

Test-time adaptation indicates methods tackling the do-
main gap during inference. TTT (Sun et al., 2020) augments
the supervised training objective with a self-supervised loss
using source data. Only the self-supervised loss keeps adapt-
ing at test time on target domain. It relies on predicting the
rotation of inputs, a visual proxy task, but designing suitable
proxy tasks can be challenging. Training parameters are
altered during training and test-time adaptation. Test-time
batch normalization (Schneider et al., 2020; Nado et al.,
2020) allows statistics of batch norm layers to be tracked
during the distribution shift at test time. TENT (Wang et al.,
2021) exhibits entropy minimization at test time on feature
modulators extracted from spatial batch normalization to
adapt to distribution shift. Entropy minimization is a generic
and standard loss for domain adaptation to penalize classes
overlap. Information maximization (Krause et al., 2010; Shi
& Sha, 2012; Hu et al., 2017) used by (Liang et al., 2020;
Mummadi et al., 2021) involves entropy minimization and
diversity regularization. The diversity regularizer averts col-
lapsed solutions of entropy minimization. SLR+IT (Mum-
madi et al., 2021) argues that Information maximization
compensates for the vanishing gradient issues of entropy
minimization for high confidence predictions. Moreover,
an additional trainable network shares the input samples
with the tested network to partially correct the domain shift.
Principal Component Analysis cuts out noisy eigenvalues
to remove uncorrelated noise (Li, 2018; Murali et al., 2012).
In addition, we propose to add fully test-time learnable pa-
rameters to reduce the remaining noise of corrupted data
onto the spectral basis.

3. Filtering the corrupted Singular Values
Let a neural network f✓ with parameters ✓ be trained to com-
pletion on a source set XD of N samples from a distribution
D. Parameters ✓ are thus frozen after training. The initial-
ization of our method takes place before testing. TTAwPCA
is added after the jth layer. It consists of a Principal Com-
ponent Analysis (PCA) and, for now, a pass-through filter.
To fit its PCA, the concatenated output Aj,D of the jth layer
has to be flattened from the shape N elements of the batch
times c channels times the spatial dimensions h ⇥ w to a
rectangular matrix of size N⇥p where p = c ·h ·w and then
mean normalized. Singular Value Decomposition breaks
down the flattened training output ÃD as:

Aj,D = U⇤V > (1)

where ⇤ is an N ⇥p matrix of singular values, U an N ⇥N

matrix of left singular vectors and V an p⇥p matrix of right
singular vectors. We define a hyperparameter L such that

only the first L singular values are conserved. Note that this
operation belongs to the training procedure.

At test time, the filter F� is enabled to optimize its parame-
ters � = {�i; i 2 [0, L�1]} of the corrupted singular values.
Let the t-th batch of corrupted observation xt ⇠ D

0 be pre-
sented to the model f✓,�. Let Aj,D0,t be the tth batched
output of the jth layer. After the flatten operation and the
mean normalization, Aj,D0,t is projected onto the singular
basis vectors by VL, filtered by F� and reconstructed by V

>
L

as Ot,D0 in its original basis:

Ot,D0 = Aj,D0,tVLF�V
>
L (2)

We designed a filter F� related with L
2�regularization as

demonstrated in A of diagonal element Fi,i based on the
singular values ⇤L of the training set and L learning param-
eters �i:

Fi,i(�i) =
�i

�i,i +ReLU(�i)
(3)

The ReLU activation assures the stability of the filter.

Similarly, we designed a negative exponential filter F� of
diagonal element Fi,i:

Fi,i(�i) =
1

1 + exp(�2
i � �i)

(4)

We denote this model f✓,� composed of f✓ and TTAwPCA.
The learning parameters � are optimised over the batch
xt using entropy minimization of model prediction ŷt =
f✓,�(xt) as test-time objective.

4. Experiments
Dataset. We classify CIFAR-10-C and CIFAR-100-C
(Hendrycks & Dietterich, 2019). Both test sets contain
10,000 images of CIFAR-10 and CIFAR-100 (Krizhevsky,
2009) augmented by 15 common corruptions and five sever-
ity levels.

Models. We use pre-trained WideResNets-28-10
(Zagoruyko & Komodakis, 2016). TTAwPCA is set after the
first convolutional layer with only 2000 parameters for our
best results on both datasets. We compare our two different
filters with TENT (Wang et al., 2021) and test-time batch
statistics updates (Schneider et al., 2020; Nado et al., 2020).

Settings. Episodic and online settings describe whether
the model is reset after optimization on each batch or after
optimization on the corruption at a given severity.

Optimization. We optimize the parameters � of the filter
by Adam (Kingma & Ba, 2015) for one step on both offline
and episodic fully test-time adaptation settings. We set the
batch size at 200 samples and the learning rate at 0,001.
L = 2000 proved to be sufficient for our method, as shown
in B.1.
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Table 1. Episodic corruption error benchmark on CIFAR-10-C and CIFAR-100-C with the highest severity [in %].
Dataset Method Mean Gauss Shot Impulse Defocus Glass Motion Zoom Snow Frost Fog Bright Contrast Elastic Pixel JPEG

CIFAR-10-C

No Adaptation 43.53 72.33 65.71 72.92 46.94 54.32 34.3 42.02 25.07 41.30 26.01 9.30 46.69 26.59 58.45 30.30
BN 20.44 28.08 26.12 36.27 12.82 35.28 14.17 12.13 17.28 17.39 15.26 8.39 12.63 23.76 19.66 27.30

TENT 19.96 28.05 26.11 36.31 12.80 35.28 14.16 12.14 17.27 17.36 15.23 8.37 12.59 23.77 19.61 27.31
exp-TTAwPCA (ours) 20.35 25.5 23.55 33.77 14.82 35.04 15.24 13.76 17.73 17.43 16.09 8.62 14.58 24.44 20.00 24.68

ReLU-TTAwPCA (ours) 20.42 28.10 25.99 36.13 12.72 34.93 14.00 12.24 17.29 17.8 15.07 8.26 13.09 23.47 19.76 27.41

CIFAR-100-C

No Adaptation 85.54 93.84 93.60 96.63 91.49 92.79 86.51 88.69 70.91 82.30 84.74 47.26 96.30 85.02 89.50 83.49
BN 36.61 47.21 46.72 55.59 27.33 47.75 28.23 26.65 32.74 33.63 32.92 21.35 29.64 37.79 33.99 47.56

TENT 34.56 42.91 41.94 49.76 28.27 44.55 28.75 27.38 30.99 31.59 30.72 21.88 30.81 35.42 31.27 42.09
exp-TTAwPCA (ours) 37.89 45.92 45.71 54.23 32.82 47.88 31.98 30.04 33.53 35.12 36.26 22.46 32.92 39.18 34.91 45.37

ReLU-TTAwPCA (ours) 36.62 47.41 46.80 55.50 27.61 47.76 28.28 26.54 32.67 33.46 32.80 21.41 29.55 37.67 34.25 47.53

Table 2. Online corruption error benchmark on CIFAR-10-C and CIFAR-100-C with the highest severity [in %].

Dataset Method Mean Gauss Shot Impulse Defocus Glass Motion Zoom Snow Frost Fog Bright Contrast Elastic Pixel JPEG

CIFAR-10-C
TENT 18.57 25.09 22.76 32.71 12.01 31.88 13.25 11.12 15.9 16.32 ± 0.59 13.82 8.21 11.66 22.02 17.29 24.5 ± 0.43

exp-TTAwPCA (ours) 20.28 25.42 23.44 33.92 14.79 34.81 15.18 13.71 17.52 17.53 ± 0.17 16.09 8.62 14.58 24.44 20.00 24.68 ± 0.12
ReLU-TTAwPCA (ours) 20.45 28.14 25.84 36.23 12.85 35.04 14.01 12.22 17.27 17.63 15.08 8.37 13.05 23.58 19.93 27.44

CIFAR-100-C
TENT 31.7 38.74 36.88 44.00 26.91 41.03 27.33 25.54 28.18 28.85 28.03 20.44 28.81 33.93 28.41 38.41

exp-TTAwPCA (ours) 37.89 46.02 45.8 54.15 32.56 47.87 31.91 30.14 33.62 35.19 35.98 22.33 33.08 39.18 34.93 45.51
ReLU-TTAwPCA (ours) 36.83 47.39 46.82 55.95 27.80 48.30 28.49 26.85 32.92 33.78± 0.20 32.91 21.64 29.58 37.94 34.48 47.59± 0.10

5. Discussion
TTAwPCA tackles common corruptions (Hendrycks & Di-
etterich, 2019) by improving the accuracy of each perturbed
set. With only the 2000 parameters, TTAwPCA achieves
state-of-the-art performance on various corruptions in the
episodic CIFAR-10-C setting. Namely: Gaussian Noise,
Shot Noise, Impulse Noise, Glass Blur, and JPEG com-
pression for the exponential filter and Defocus Blur, Glass
Blur, Motion Blur, Fog, Brightness, and Elastic Transforma-
tion for the ReLU filter whereas performing close to TENT
(Wang et al., 2021) on the rest. Our method achieves a
better trade-off between accuracy retrieval and the number
of parameters. On the other hand, TTAwPCA does not take
advantage of the online setting and does not scale well to
CIFAR-100-C. We provide intuitions to explain this obser-
vation.

TTAwPCA enables PCA to filter noisy singular values on the
remaining dimensions, assuming additive noises increase
singular values. However, we observe some corruptions
to reduce singular values effectively, thus filtering crucial
information to the tested task. A penalizing filter is unable
to recover this loss of information. Adding a multiplicative
parameter to each diagonal element of our filter became a
subject of our interest but was found unstable. To increase
stability, we normalized each singular value �i by its higher
value: �0. The instability of the tested filter prevents its
convergence in an online setting.

Our results on CIFAR-100-C tend to be underperforming.
High similarity between classes of CIFAR-100 might be too
complex for TTAwPCA to reach over-parametrized methods
such as TENT. A subtle change in the first principal compo-
nents of the PCA can significantly affect the discriminability

of the model if corruption occurs and the classes are too
close. The first convolutional layer might not be discrimina-
tive enough to perform reliable principal components. On
the other hand, the following layers merge the corruption
and the features relevant to the task.

We argue that TTAwPCA follows the setting of Fully test-
time adaptation (Wang et al., 2021) as TTAwPCA does not
change the training objective. TTAwPCA expects a model
to have a fitted PCA after completing the training procedure.
Equivalently TENT needs spatial batch normalization layers
to operate.

Lastly, TTAwPCA is the only method that does not alter
any training parameter. Its test-time update can be fully
deactivated without reloading the model instead of TENT or
batch adaptation at test time (BN). The batch normalization
parameters are forgotten through their processes. PCA also
offers a linear adaptation of the model.

6. Conclusion
This paper introduced a new layer called TTAwPCA, filter-
ing the singular values to tackle the out-of-distribution shift
at test time. This spectral filter, initialized after training, is
optimized on the test dataset with a task agnostic loss. We
compared the effectiveness of our method in an online and
an episodic setting to TENT (Wang et al., 2021) on CIFAR-
10-C and CIFAR-100-C (Hendrycks & Dietterich, 2019).
We argue our technique to adapt efficiently, reaching a new
state-of-the-art on some corruptions without altering train-
ing parameters. We provided explanations of the success
and the flaws of spectral penalization and its connections
with standard methods in Machine Learning.
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A. Connection with L2�Regularization
Let X 2 Rn⇥d, where n is the number of samples and d is the number of features. We consider the simple case of linear
regression where Y = X✓ where ✓ is the parameter of the model. The optimal parameter are defined as follows:

✓
? := argmin

✓
||Y �X✓||2 (5)

and it is straightforward to observe the following closed form:

✓
? =

�
X

>
X
��1

X
>
Y (6)

it is also straightforward to observe that:

✓
?
� := argmin

✓
||Y �X✓||2 + � · ||✓||2 (7)

leads to the close form:
✓
?
� =

�
X

>
X + �Id

��1
X

>
Y (8)

In the following, we note C = X
>
X . C is has an orthogonal eigen decomposition (symmetric, positive and definite).

C = U
>
DU (9)

where U 2 U(d) which is the unitary group U
>
U = Id. We note the basis change of X as follows:

X̃ := XU
> (10)

By construction, X̃ has a diagonal covariance,

X̃
>
X = UX

>
XU

> = UX
>
XU

> = UCU
> = D (11)

Now, what happens when regressing from X̃ to obtain ✓̃
?:

✓̃
? := D

�1
X̃Y (12)

Now,
X̃ ✓̃

? = X̃D
�1

X̃
>
Y = Y (13)

X U
>
D

�1
UX

>
Y| {z }

=✓

= X̃D
�1

X̃
>
Y = Y (14)

X U
>(D + �Id)

�1
UX

>
Y| {z }

=✓

= X̃D
�1

X̃
>
Y = Y (15)

✓
?
X̃ = ✓

?
X (16)

Let break the equation of ✓?� :

✓
?
� =

�
X

>
X + �Id

��1
X

>
Y (17)

=
�
U

>(D + �Id)U
��1

X
>
Y (18)

= U
>(D + �Id)

�1
UX

>
Y (19)

= U
>
D(D + �Id)

�1

| {z }
F�

D
�1

UX
>
Y (20)

= U
>
F�UU

>
D

�1
UX

>
Y (21)

= U
>
F�U✓

?
0 (22)
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where F� is a diagonal matrix such that:

F�,i,i =
�i

�i + �
(23)

where �i is the i�th eigen-value of C.

B. Ablation Studies
B.1. PCA rank and parameters of the filter

(a) CIFAR-10-C (b) CIFAR-100-C

Figure 1. Episodic mean error along all corruptions at severity 5 for different rank of the PCA of TTAwPCA.

Our experiments investigated how many parameters are enough to tackle corrupted data points. While these results only
apply to CIFAR-10-C and CIFAR-100-C, we experienced that 2000 parameters are enough to effectively train a model to
regain accuracy after a distributional shift at test time. In Figure 1, we show the mean error on all corruptions at severity 5
for different ranks of the PCA on both datasets. We averaged over three runs for each PCA rank with minor variations. The
optimization has been done in an episodic setting.

B.2. Optimizing steps

(a) CIFAR-10-C (b) CIFAR-100-C

Figure 2. Online mean error along all corruptions at severity 5 for different number of learning steps of TTAwPCA.

As shown in (Mummadi et al., 2021), error degrades over optimization steps as entropy minimization lacks target distribution
regularization. Still, this effect is minor compared with the accuracy retrieval achieved by our simple method.
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C. Insight on CIFAR-10-C

Gaussian Noise Shot Noise Impulse Noise Defocus Blur Glass Blur

Motion Blur Zoom Blur Snow Frost Fog

Brightness Contrast Elastic Pixelate JPEG

Figure 3. CIFAR-10-C (Hendrycks & Dietterich, 2019) consists of 15 corrupted versions of the CIFAR-10 test dataset (Krizhevsky, 2009)
with 5 levels of severity (level 5 here).

D. Insight on Principal Component Analysis
Principal Component Analysis (PCA) linearly separates multivariate systemic variation from noise. Consider A an N ⇥ p

data matrix. PCA defines its principal components as the q  p unit vectors such that the i-th vector satisfy orthogonality
with the first i� 1 and best fits the direction of data. The process performs a change of basis on the data according to the
principal components. They are computed by Singular Value Decomposition (SVD) of A and ranked by the corresponding
singular value scale. Thus irrelevant principal components can be ignored.

Incremental PCA can be performed if the dataset is too large to fit in the memory. Incremental PCA uses an amount of
memory independent of the number of input data samples to build a low-rank approximation.



Features which are robust to adversarial attacks
are also robust to several poisoning attacks

Adrien CHAN-HON-TONG

June 10, 2022

Abstract

Most data poisoning methods target naive deep networks. Yet, it is
well known that those networks exhibit strong sensitivity to perturbations.

Inversely, in this paper, I show that several data poisoning attacks
(e.g. poison frog) are ine↵ective as soon as there are applied on features
made robust to adversarial attacks, on both CIFAR and MNIST datasets.

1 Introduction

Deep learning (DL) which appears with [7] (see [9] for a review) is now at the
core of most computer vision pipelines. Yet, many challenges have to be tackled
before real life applications of deep learning for critical tasks: fairness, privacy,
explainability...

One of these challenge, which has received a very strong attention from
the community, is robustness. Indeed, it is known that naive deep learning is
vulnerable under adversarial attacks [12, 20, 17, 19, 16, 4]: at test time, it is
possible to design a specific invisible perturbation such as a targeted network
eventually predicts di↵erent outputs on original and disturbed input. Worse,
producing adversarial examples does not require to have access to the internal
structure of the network [2, 14] and can have physical implementation [8].

Another issue is data poisoning [13] where an hacker modifies the training
data to force the model to get a specific behavior.

Even more, the motivation of this paper is that both issues may be related.
Indeed, both data poisoning and adversarial attacks are related with the idea
of moving some data in a feature space (despite adversarial attack moves after
decision boundary is selected while poisoning tries to change this boundary).

Yet, adversarial defenses had never been considered as potential way to mit-
igate some data poisoning attack in particular the ones based on small pertur-
bation of the input image. The contribution of this paper is to prove that deep
features trained with adversarial defense are more robust to those poisoning
attacks than naive ones.

Precisely, three poisoning attacks are considered: PoisonFrog [18], adver-
sarialpoisoning [1] and a labelflip attack (related to [13]). The evaluations will

1



Figure 1: Illustrations of the framework to evaluate the impact of adversarial
defense (and so feature robustness) on poisoning attacks.

rely on classical computer vision datasets CIFAR10 and CIFAR100 [6], MNIST
[10], SVHN [15] with or without adversarial retraining (as adversarial defense).
Consistently with [18, 1], deep features rather than full deep networks are con-
sidered. A consistent trend in all those experiments is that adversarial defense
prevents poisoning attack based on small perturbations of the input image.

2 Adversarial defense against data poisoning

In order to evaluate the di↵erent poisoning attacks against the di↵erent features
with more or less robustness, I rely on the following framework illustrated by
figure 1. Importantly, the framework relies on frozen features following [18, 1].
Yet, both those papers have then been extended to poisoning against deep
networks. Thus, the fact to rely on frozen features may not restrict too much
the scope of the paper.

Classically, data poisoning is about comparing poisoned/clean behaviour re-
lated to poisoned/clean model where the poisoned model is trained on poisoned
data (and clean model on clean data). This is the right part of the figure 1.
Here, the objective is to see how those poisoning attacks behave as function of
the features (brown lozenge in figure 1). Those features are produced from an
external data (e.g. Imagenet [3] in [18, 1]). This is the left part of the figure 1
which corresponds to the classical training of a deep network with or without
adversarial defense (e.g. FSGM from [5] or PGD from [11]).

So classically, data poisoning papers focus on the poisoning attack (the cyan
ellipsoid in figure 1). Inversely, in this paper, the attacks are selected from state
of the art. But, the contribution is to evaluate the impact of the adversarial
defense (purple ellipsoid in figure 1).
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Dataset CIFAR MNIST

AD on naive feature 24% 68%
AD on FSGM feature 30% 93%
AD on PGD feature 34% 95%

Table 1: Features robustness has positive impact on the accuracy under adver-
sarial poisoning attack [1] on CIFAR and MNIST (here with VGG13).

3 Results

See https://github.com/achanhon/AdversarialModel for complete code and im-
plementation detail description.

" = 3
255 on CIFAR (except if specified) like in [1], resulting in an invisible

perturbation (for human eyes). But " = 7
255 on MNIST which is known to be

less prone to adversarial sensibility (except if specified).

3.1 Adversarial poisoning [1]

The table 1 shows the accuracy after an AD attacks on VGG13 with features
learnt with or without adversarial defense (for both MNIST with SVHN feature
and CIFAR10 with CIFAR100 feature). This table shows that poisoning has
less influence on PGD than FSGM, and, less influence on FSGM than on naive
feature.

Currently, the clean performance of naive feature is higher than defended
ones on CIFAR: accuracy of PGD features on clean CIFAR10 is only 41% i.e.
poisoning has almost not e↵ect but starting performances are much lower. How-
ever, it mainly show that transferring features from CIFAR100 to CIFAR10 is
not a good idea. Inversely, adversarial defenses provide a very e�cient protec-
tion with a better poisoned accuracy (despite a much lower clean accuracy).

On MNIST, the result is very interesting with a very high accuracy under
poisoning with FSGM or PGD features: AD does not work at all on MNIST
with PGD feature.

So, adversarial defenses are a data poisoning defense against [1] on MNIST
(and mitigate the loss of accuracy related to [1] on CIFAR).

3.2 Poison frog [18]

The table 2 shows the ratio of points (over 100 trial) on which poison frog attack
is successful on both naive, FSGM or PGD features on CIFAR with " = 7

255 .
The number of trial is slower than in [18]. However, it has to be stressed that
each trial require to learn a SVM on the top of the features resulting in an
expensive process (in particular with 3 di↵erent types of features).

Currently, on MNIST, PF works from Imagenet feature, but, not from SVHN
features even with " = 25

255 . So the MNIST results are not reported. Maybe,
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feature CIFAR
PF on naive feature 85%
PF on FSGM feature 53%
PF on PGD feature 16%

Table 2: Critical impact of features robustness on ratio of successful poison frog
attacks on CIFAR.

Dataset MNIST CIFAR

LF on naive feature -2% -7%
LF on PGD feature -2% -11%

Table 3: Robust features do not su↵er more than naive ones under label flip
attack (here 2% of label is random) with VGG13.

the SVHN features are very robust on MNIST (even naive ones) making PF
completely ine↵ective.

Again, this experiment shows that adversarial defense strongly decreases the
impact of a data poisoning attack (PF here). Currently, PF is still active even
with PGD feature on CIFAR (16% is still an issue) but much less than when
targeting naive features (with 85% of successful attacks in this last case).

3.3 Label flip [13]

Both previous subsections shows that adversarial defense improves robustness
to two poisoning attacks. Yet, those poisoning attacks are image-based.

Thus, it could be interesting to check if this results holds for label based
poisoning attacks. Indeed, as robust features tend to increase distance between
point in feature space, it could be even more sensible to label based attack.
Currently, [13] combines both label and image perturbation. Yet, image pertur-
bations are not bounded in [13] (see figure 5 and 6 of [13]), so there is no sense
to consider norm bounded adversarial defenses against [13]. This is why, I focus
on simple LF attack.

The table 3 shows the di↵erence of accuracy (between clean model and poi-
soned one) after an LF attacks (2% of random label) on VGG13 with features
learnt on with or without adversarial defense. The result is that adversarial
defense does not increase the sensibility to label noise (accuracy gap is only
slightly larger with robust features).

3.4 Conclusion

The main contribution of this paper is to prove that both poison frog and
adversarial poisoning lose most of their e↵ectiveness when targeting robust deep
features (produced using adversarial defense).
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Abstract

Adversarial attacks and defense have gained increasing interest on computer vision systems in
recent years, but as of today most investigations are limited to images. However, many artificial
intelligence models actually handle documentary data which is very different from real world
images. Hence, in this work, we try to apply the adversarial attack philosophy on documentary
and natural data and to protect models against such attacks. To the best of our knowledge, no
such work has been conducted by the community in order to study the impact of these attacks on
the image document classification task.

As documents contain visual data in combination with text data, we want to explore visual attacks
as well as text and multi-modal ones.

1 Introduction

Adversarial attacks targeted towards AI systems may be a new source of security vulnerabilities, as those
systems are extensively used in industry for intelligent document processing processes. In the banking
sector, humanly imperceptible adulterations of a document can create hard to detect frauds if the forgery
results in misclassification of said document during a credential check. As part of any company’s efforts
to meet the requirements of the future European AI Act, we are evaluating robustness of visual and
multi-modal approaches to document classification against state-of-the-art adversarial attacks.

In our study, we use state-of-the-art models to generate simple and efficient adversarial attacks, then
we adapt those attacks to the documentary use case which mostly uses gray-scale images and finally
we challenge our adversarial examples by using JPEG compression which considerably improves the
robustness of the classification systems.

2 Data and Models

The RVL-CDIP dataset (Harley et al., 2015) is commonly used for research in document classification.
Therefore we chose to use this dataset for the experiments we present in this paper. It is an open dataset
containing 400,000 black-and-white document images split into 16 categories.

We chose to use a simple convolutional neural network (CNN) for our first robustness evaluations.
In fact, state-of-the-art CNNs are easy to implement, light-weight and perform quite well, so they are
commonly used for industrial purposes. Furthermore, a wide variety of adversarial attacks are designed
to perform against image models like CNNs (Chakraborty et al., 2021). Following these motivations,
we have implemented the visual model that currently performs best on RVL-CDIP1, described in the
article of Ferrando et al. (2020). It is an EfficientNetB0 pre-trained on ImageNet that we fine-tuned on
RVL-CDIP.

The evaluation method presented below was also used with an inhouse database to evaluate the ro-
bustness of a model similar to EfficientNetB0, using only the visual modality, and currently being used
in production. For confidentiality reasons, the results of this study are not presented here.

1Meta AI. Document Image Classification on RVL-CDIP. June 2020. URL: https://paperswithcode.com/sota/document-
image-classification-on-rvl-cdip



Figure 1: The robustness evaluation pipeline of a target model

3 Experiments

3.1 Threat Model

In order to have correct metrics, and to assess the validity of our approach in a real-world context, it is
essential that we define a threat model using a precise taxonomy. We define this threat model according
to Carlini et al. (2019) by defining the goals, capabilities and knowledge of the target AI system that the
attacker has.

Let C(x) : X ! Y be a classifier, and x 2 X ⇢ Rd a document image entry. Let y be the ground
truth of the entry x. In our first experiments, we perform untargeted attacks: the adversary’s goal is to
generate an adversarial example xadv for x that is misclassified by C. xadv should also be as optimal as
possible, which means that it fools the model with high confidence in the wrong predicted label, with an
input xadv that is indistinguishable from x (Machado et al., 2021). Formally, we define the capability of
the adversary by defining a perturbation budget " so that kx � xadvk < " where k · k is the L1 norm.
An other factor of invisibility of the perturbation � = xadv �x specific to gray-scale document images is
whether the perturbation is in gray scale or in color. In these early works, we implement gradient-based
white-box attacks, which means that the adversary knows the architecture and parameters of the model.
We intend to extend our research to transfer-based and decision-based attacks.

3.2 Attacks and defenses

We focus our first experiments on the robustness against an attack using variations of the Fast-Gradient
Sign (FGS) method (Goodfellow et al., 2014). This easy to implement method is very efficient, enables
transfer-based attacks (a threat configuration in which the attacker does not know the exact parameters of
the model but knows the kind of architecture it uses e.g. a CNN) and is the basis of many other complex
attacks that require less adversary knowledge. In the FGS method, an untargeted adversarial example is
computed as xadv = x+ ✏ · sign(�xJ(x, y)), where J is the cross-entropy loss.

Depending on the dataset and the model, we may want to generate perturbations that are gray-scale. To
do so, we compute the mean value of each RGB pixel of the perturbation �, which gives us a gray-scale
perturbation. We call it the grayFGS method, in opposition to the FGS method where this post-processing
step is not executed.

For industrial applications, the processed documents are available in a specific format, such as JPEG.
This format has been identified by Dziugaite et al. (2016) as a factor of robustness against adversarial
attacks. This is why we have designed a second post-processing step, which consists in converting the
adversarial examples to JPEG format, then decoding them again before feeding them to the model. We
call this step the JPEG step.

The two post-processing steps combined with the FGS method provide us with four attack methods
that we use to evaluate robustness. Figure 1 summarizes our evaluation pipeline. Samples of perturba-
tions and adversarial examples generated with the FGS and grayFGS methods are saved in JPEG format
and are rendered in Figure 2.



Figure 2: A base document with the perturbations and the adversary image

Figure 3: Accuracy and Attack Success Rate depending on the perturbation budget

4 Results

Similar to Dong et al. (2020), we selected two distinct measures to assess the robustness of the
EfficientNetB0 model under attack, defined as follows. Given an attack method A that generates
an adversarial example xadv = A(x) for an input x, the accuracy of a classifier C is defined as
Acc(C,A) = 1

N

PN
i=1 1(C(A(xi)) = yi), where {xi, yi}Ni=1 is the test set and 1(·) is the indicator

function. The attack success rate of an untargeted attack on the classifier is defined as Asr(C,A) =
1
M

PN
i=1 1(C(xi) = yi ^ C(A(xi)) 6= yi), where M = ⌃N

i=11(C(xi) = yi). We performed the attacks
for perturbation budgets within the range of 0.5% to 20% and evaluated the model accuracy under no
attack. The evolution of model accuracy and attack success rate are presented in Figure 3.

The test accuracy of our EfficientNetB0 model on RVL-CDIP is 91.2%. The accuracy under attack is
rendered in Table 1. We observe that adversarial examples we computed with the grayFGS method stay
optimal with an adversarial budget of up to roughly 2%. Under such perturbation budget, the accuracy
of the model drops to 14.1%, while with the JPEG post-processing step, the model accuracy is twice as
good (30.3%) but still low. For the smallest perturbation budget of 0.5%, the accuracy is respectively
12.2% and 47.7% for the gray-scale attack without and with JPEG post-processing step.

perturbation budget 0.5% 2% 6% 20%

A
cc

ur
ac

y grayFGS 0,122 0,141 0,17 0,142
grayFGS + JPEG 0,477 0,303 0,221 0,144

FGS 0,114 0,134 0,145 0,064
FGS + JPEG 0,458 0,315 0,202 0,065

Table 1: Accuracy of EfficientNetB0 under attack for several perturbation budgets



5 Conclusion and Future Works

As expected, a convolutional model such as our EfficientNetB0, trained without any strategy to improve
its robustness, is very sensitive to optimal adversary examples generated with the new grayFGS method.
Compressing and then decompressing the adversarial examples that will be provided as input to the
model using JPEG protocol improves its robustness.

There are many ways to improve the robustness of a model that would only use the visual modality
of a document (Chakraborty et al., 2021) (Machado et al., 2021). However, state-of-the-art approaches
to document classification take advantage of other information modalities, such as the layout of the doc-
ument, and the text it contains 1. Therefore, after exploiting transfer-based and decision-based attack
methods to evaluate the robustness of our visual models, we will evaluate the transferability of the gen-
erated examples to a multimodal model such as DocFormer (Appalaraju et al., 2021), which uses optical
character recognition (OCR) and transformer layers. On the other hand, we will explore the possibility
of designing adversarial attacks to which these models are more sensitive, for example by targeting OCR
prediction errors (Song and Shmatikov, 2018) that affect the textual modality and may also affect the
robustness of such models (Zhang et al., 2020).
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2. Summary

Every day, a new method is published to tackle Few-Shot Image Classification, showing better and better performances on
academic benchmarks. Nevertheless, we observe that these current benchmarks do not accurately represent the real industrial
use cases that we encountered. We show that widely used benchmarks are strongly biased towards tasks of differentiating
between classes that would never be observed in the same context. We propose a novel task generation method to alleviate
this bias, thus bridging the gap between academic Few-Shot Learning Research and real-life applications.

(a) Coarsity histogram (top) and an example of task (bottom) of a testbed
designed from tieredImageNet with uniform class sampling. This task
presents a coarsity of 85.1, which is the median coarsity for this testbed.
”We really need a machine to distinguish bathroom tubs from cabbage,
pizzas, cardoon, and some very specific kind of dog!” said no one in the
history of humankind.

(b) Coarsity histogram (top) and an example of task (bottom) of our testbed
better-tieredImageNet. This task presents a coarsity of 15.8. Tasks with
this coarsity never occur in the uniformly sampled testbed, although they
are more representative of real few-shot classification use cases.

Figure 1. Comparison, in terms of coarsity (see Equation 2), between a testbed designed with uniform class sampling (left) and a testbed
designed with semantic awareness (right, ours). Our testbed gives a better representativity to tasks with low coarsity i.e. composed of
classes semantically relevant to one another.
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3. Motivations

Few-Shot Learning is the science of learning new concepts with only a few examples. This task is one of the key abilities
of humans but one of the major shortcomings of standard deep learning methods [4]. It is also required for the success of
many industrial applications of computer vision. Businesses that need automatic image recognition do not necessarily possess
hundreds of labeled images for each class. It can be because some (or all) classes are rare, or appeared recently, or because
classes change every day. In the last three years, our team was involved in a variety of industrial use cases: retrieving a tool
in a merchant’s catalog, identifying a floor to facilitate recycling, recognizing dishes in a cafeteria given today’s menu, or
finding the reference of a printed circuit board. In all of these use cases, some or all classes were represented in our database
by only 1 to 5 examples. They also had in common that they consisted in recognizing an object among many classes that
were semantically similar to one another.

Sadly, because of this, we could not rely on academic benchmarks to identify the most appropriate methods. The first
reason is that, as we show in our work, standard Few-Shot Image Classification benchmarks generate tasks using uniform
random sampling from a wide range of semantically dissimilar or unrelated classes, which leads to evaluating our models
mostly on tasks composed of objects that we would never need to distinguish in real-life use cases (see Figure 1a). The
second reason is that the Few-Shot Learning community has chosen to formalize the Few-Shot Image classification problem
as an accumulation of n-way k-shot classification tasks i.e. classifying query images, assuming that they belong to one of
n classes for which we have k labeled examples each. In practice, most works compared their methods on benchmarks for
which they fixed n = 5 (sometimes n = 10) and k = 1 or k = 51. To the best of our knowledge, only one method was
evaluated with n > 50 [7]. The choice made by the community, while relevant to facilitate experiments in the early stages
of Few-Shot Learning research, casts a dark shadow on the robustness of state-of-the-art few-shot learning methods when
discriminating between a large number of classes.

4. Contributions

How can we improve our current evaluation processes to better fit real-life use cases? In this work, we bring out the
limitations of current Few-Shot Classification benchmarks with both quantitative and qualitative studies and propose new
benchmarks to get past these limitations. More specifically:

1. We use the WordNet taxonomy [6] to evaluate semantic distances between classes of the popular Few-Shot Classifi-
cation benchmark tieredImageNet. Based on these semantic distances we put forward the concept of coarsity of an
image classification task, which quantifies how semantically close are the classes of the task.

2. We conduct both quantitative and qualitative studies of the tasks generated from the test set of tieredImageNet i.e. the
tasks composing the benchmark on which most papers evaluate different methods. We show that this benchmark is
heavily biased towards tasks composed of semantically unrelated classes.

3. We harness the semantic distances between classes to generate the improved benchmark better-tieredImageNet reestab-
lishing the balance between fine-grained and coarse tasks. We compare state-of-the-art Few-Shot Classification meth-
ods on this new benchmark and bring out the relation between the coarsity of a task and its difficulty.

These contributions are part of our paper Few-Shot Image Classification Benchmarks are Too Far From Reality: Build Back
Better with Semantic Task Sampling [1], presented at CVPR 2022 in the 1st Workshop on Vision Datasets Understanding.
All our implementations, datasets and experiments are publicly available2.

4.1. Measure the bias in tieredImageNet

Since tieredImageNet is a subset of ImageNet, its classes are the leaves of a directed acyclic graph which is a subgraph of
the WordNet graph [6] (see Figure 2). Using this graph, it is possible to establish a semantic similarity between classes. We
use the Jiang & Conrath pseudo-distance between classes [3], which is defined for two classes c1 and c2 as:

DJC(c1, c2) = 2 log |lso(c1, c2)|� (log |c1|+ log |c2|) (1)

1https://paperswithcode.com/task/few-shot-image-classification
2https://github.com/sicara/semantic-task-sampling



Figure 2. Subgraph of the Directed Acyclic
Graph WordNet [6] spanning the 160 classes of
tieredImageNet’s test set, which are shown in red. The
root (in green) corresponds to the concept of “entity”.
This is a Directed Acyclic Graph. Best viewed in color.

where |c| is the number of instances of the dataset with class c, and
lso(c1, c2) is the lowest superordinate, i.e. the most specific common
ancestor of c1 and c2 in the directed acyclic graph.

From this pseudo-distance, we define the coarsity  of a task TC

constituted of instances from a set of classes C as the mean square
distance between the classes of C i.e.

(TC) = mean
ci,cj2Cci 6=cj

DJC(ci, cj)
2 (2)

This coarsity is an indicator of how semantically close are the
classes that constitute a task. As shown in [2], on datasets derived
from ImageNet, this measure is closely linked to the visual similarity
between items of these classes.

4.2. Generate more informative tasks with semantic task

sampling

We define a unique, reproducible set of testing tasks to evaluate all
models. This testbed is built with a dual objective:

• We want tasks with a smooth repartition in terms of coarsity to ensure that the testbed also evaluates the ability of a
model to distinguish between classes close to each other. Providing a good span of coarsities also allows to compare
models on different types of tasks: a model might be better for coarse tasks but not for fine-grained tasks.

• This first objective inherently creates a bias towards classes with many neighboring classes. However, we want our
testbed to be balanced, i.e. all images must be sampled roughly as many times as the others 3.

To achieve these goals, we define a semantic task sampler based on the Jiang & Conrath pseudo-distance (see Equation 1).
We build an initial potential matrix [5] P0 such that P0(i, j) = e�↵DJC(ci,cj) with ↵ 2 R+ an arbitrary scalar. For the first
task, the probability for a pair of classes (ci, cj) to be sampled together is proportional to P0(i, j). To enforce that the testbed
is balanced, once the t� 1th task is sampled we update the number occt(i) of occurrences of class ci in previous tasks. Then
we update the potential matrix to penalize classes with higher values of occt:

Pt(i, j) = P0(i, j)⇥ exp(��
occt(i) + occt(j)
maxk(occt(k))

) (3)

with � 2 R+ an arbitrary scalar. Intuitively, a larger ↵ gives more weight to pairs of semantically close classes, while a larger
� forces a stricter balance between classes.

We then sample instances from these classes uniformly at random. As shown in Figure 1b, our 5000-tasks testbed gives
far greater representation to fine-grained tasks compared to a uniformly sampled testbed. Our testbed offers a wide range and
balance of task coarsities, allowing to test models on both coarse and fine-grained tasks, while the uniformly sampled testbed
only allows the evaluation on coarse tasks.

4.3. Experiments

We conducted the necessary experiments to bring out the need for novel few-shot classification benchmarks and showcase
the limitations of state-of-the-art methods in more challenging settings. All parameters of our experiments can be found on
our publicly available code 4.

The results are detailed in our paper [1] and show that changes in coarsity are strongly linked with the performance of
Few-Shot Learning models.

3In the case of tieredImageNet, which presents as many images for each class, this is equivalent to ensuring the balance between classes.
4https://github.com/sicara/semantic-task-sampling



4.4. Conclusion

We used to define a few-shot classification task by its number of ways and its number of shots, addressing n-way k-shot
classification as an indivisible problem. What we did here can be seen as a novel framework, in which the number of classes
is not sufficient to define a task: we need to know what these classes are. In the same fashion, future works may go beyond
tasks defined by their number of shots, and consider which images are chosen for the support set.

In this work, we addressed what we believe to be a very limiting bias of current Few-Shot Learning benchmarks i.e. a bias
towards coarse tasks. We chose to tackle this particular shortcoming because we observed that it was the main difference
between academic benchmarks and the industrial applications of Few-Shot Learning that we encountered. However, many
more limitations of few-shot learning benchmarks are yet to address: the fixed shape of the tasks, the strict balance in both
support and query sets, the empty overlap between large-scale classes (currently only used for base training) and few-shot
classes, no prior in the choice of support instances, and many other of which we did not think yet. We believe that addressing
these shortcomings must be considered a priority in our field, and we encourage any and all who agree to join us in this effort.
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Abstract:

Even though Deep Learning methods have demonstrated their efficiency, they do not currently

provide the expected security guarantees. They are known to be vulnerable to adversarial attacks

where malicious perturbed inputs lead to erroneous model outputs. The success of Deep Learn-

ing and its potential use in many safety-critical applications has motivated research on formal

verification of Neural Network models. A possible way to find the minimal optimal perturbation

that change the model decision (adversarial attack) is to transform the problem, with the help

of binary variables and the classical bigM formulation, into a Mixed Integer Program (MIP). In

this paper, we propose a global optimization approach to get the optimal perturbation using a

dedicated branch-and-bound algorithm. A specific tree search strategy is built based on greedy

forward selection algorithms. We show that each subproblem involved at a given node can be

evaluated via a specific convex optimization problem with box constraints and without binary

variables, for which an active-set algorithm is used. Our method is more efficient than the generic

MIP solver Gurobi and the state-of-the-art method for MIPs such as MIPverify.

1 Introduction

Evaluating Robustness to adversarial exam-
ples is a very active research field in Deep Learn-
ing, which aims at finding an adversarial attack
a P RN "–perturbed inputs vector that are very
similar to some regular input but for which the
output is radically different [Szegedy et al., 2014]–
", approximating original data vector x P RN .
This problem can be tackled through the mini-
mization of the least-squares approximation er-
ror constrained by the change in the model deci-
sion [Carlini and Wagner, 2017].

min
a

dpa ´ xq s.t.

#
maxi‰ypfipaqq ° fypxq

a P Xvalid

where dp´,´q denote a distance metric that
measures the perceptual similarity between two
input images and ypxq is the true label of the
input x.

To evaluate the robustness of a neural net-
work, several approaches are proposed in the state

of the art, that can be grouped according to the
formulation of the problem into: feasibility, op-
timization and reachability problems. A feasi-
bility problem consists in converting the neural
network to a feasibility problem for the existence
of a counter-example [Katz et al., 2017, Ehlers,
2017, Bunel et al., 2018]. The reachability ap-
proach based consists in computing all the reach-
able set by the neural network and given the input
dataset. Then, it checks if this set verify the de-
sired constraints [Xiang et al., 2018,Gehr et al.,
2018,Xiang et al., 2018]. Generally, the reachable
dataset is computed by approximation. Finally,
the optimization approaches consist in computing
the maximum perturbation that can be applied to
input data without changing the decision of the
neural network [Tjeng et al., 2019,Lomuscio and
Maganti, 2017]. Our approach lies in the opti-
mization based approaches.

In this paper, we build a dedicated branch-
and-bound algorithm for this problem. One key
element in our work relies on showing that each
node evaluation involved in the search tree can
be performed through the optimization of con-



vex problem without binary variables and we
build a specific tree-search exploration strategy.
Section 2 describes the branch-and-bound algo-
rithm principle, details our implementation strat-
egy and links the node evaluation. Then, nu-
merical results are given in Section 3, where the
running time of the proposed implementation is
compared to the MIP resolution with the Gurobi
solver. A conclusion and directions for future
work are finally given in Section 4.

1.1 Formulating Robustness as a
Mixed Integer Program (MIP)

In this paper, we are focusing on Feed-Forward
Neural Network where each neuron in a layer is
connected with all the neurons in the previous
layer. To simplify the process, we take a simple
example of a network with one hidden layer. The
problem can be written as follows:

min
a,h,ĥ

dpa ´ xq s.t.

$
’’’&

’’’%

h “ Wa ` �w

ĥ “ maxph, 0q

s “ Vĥ ` �v

si § sy

Formulating ReLU : Let ĥ “ maxph, 0q and
´M § h § M . There are three possibilities for
the phase of the ReLU. If ĥ “ 0, we say that
such a unit is stably inactive. Similarly, if h “ ĥ,
we say that such a unit is stably active. Other-
wise, the unit is unstable. For unstable units, we
introduce an indicator decision variable b witch
indicates if the ReLU is active or not:

bi “

#
1 ReLu is active
0 ReLu not active

Then, Evaluating Robustness problem is formu-
lating as a Mixed Integer Program:

P : min
a,h,ĥ,b

dpa´xq s.t.

$
’’’’’’’’’’&

’’’’’’’’’’%

b P t0, 1u

h “ Wa ` �w

ĥ • h ; ĥ • 0

ĥ § Mb

ĥ § h ` Mp1 ´ bq

s “ Vĥ ` �v

si § sy

2 Branch-and-bound exploration

The branch-and-bound principle [Wolsey,
1998] relies on alternating between a separation

step and an evaluation step. The first one con-
sists in dividing a difficult problem into disjoint
subproblems which are easier to solve, building a
binary search tree. In our case, each separation
corresponds to the decision: bkj “ 1 or bkj “ 0,
for some variable bkj to be defined (see Figure 1).
At node i, decisions have been made concerning

0

1 4

2 3 5 6

bk0 “ 1 bk0 “ 0

bk1 “ 1 bk1 “ 0 bk4 “ 1 bk4 “ 0

Figure 1: Separation step in a binary search tree:

each node corresponding to the optimization problem

Ppnq
, is divided into two children nodes obtaining by

constraining one variable to be zero or non-zero.

the nullity of some variables: variables indexed
by S1 are non-zero, those indexed by S0 are zero
(and therefore are removed from the optimization
problem) and decisions must still be made con-
cerning the remaining undetermined variables, in-
dexed by S̄.

The evaluation of node i of the search tree is
based on the computation of a lower bound on
Ppiq, let say zpiq

` witch is obtained by the contin-
uous Relaxation of the binary Variables:

PRpiq
: min
a,h,ĥ,b

dpa´xq s.t.

$
’’’’’’’’’’&

’’’’’’’’’’%

b P r0, 1s

h “ Wa ` �w

ĥ • h ; ĥ • 0

ĥ § Mub

ĥ § h ´ Mlp1 ´ bq

s “ Vĥ ` �v

si § sy

The continuous Relaxation PRpiq will indicates
if node i can contain an optimal solution. More
precisely, let zU denote the best known value of
the objective function in P at a current step of
the procedure—which is an upper bound on the
optimal value. If zpiq

` • zU , then the node can
be pruned. Otherwise, this node is separated into
two subproblems according to some new decision:
bkj “ 1 or bkj “ 0? The practical efficiency
mostly depends on the tightness of the computed
bounds (evaluation step) and on the branching
and exploration strategies that are implemented
(branching step).



2.1 Evaluation step

Lower bound and convex relaxation. At
any node i of the search tree, a lower bound on
Ppiq is obtained by solving PRpiq. Indeed, thanks
to the box constraint }h}8 § M and convexity
property, one has therefore the continuous relax-
ation PRpiq is equivalent to Rpiq.

PRpiq
ñ Rpiq

with

Rpiq : min
a,h,ĥ

dpa ´ xq s.t.

$
’’’’’’&

’’’’’’%

h “ Wa ` �w

ĥ • h ; ĥ • 0

ĥ §
h`M

2

s “ Vĥ ` �v

si § sy

Since both problems are defined on the same fea-
sible domain, tĥ • h ; ĥ • 0 ; ĥ §

h`M
2 u is a

convex relaxation of the constraint ĥ “ maxph, 0q

(see. figure 2). Let us remark that this well-
known result (the continuous, convex, relaxation
of the ReLu) is only valid under additional bound-
edness assumptions on the solution space, such as
the box constraints that were introduced in prob-
lem P.

´M M

ĥk

hk

Figure 2: The tightest linear convex relaxation.

2.2 Branching rules and
exploration strategy

The branching rule selects the index j of the vari-
able which is used in order to subdivide problem
Ppiq (see Figure 1). We propose to exploit the so-
lution of Rpiq, by selecting the variable with the
highest absolute value in the minimizer:

j “ argmax
nPS̄

ĥpiq
n .

This choice aims at selecting first the variables
which are more likely to be nonzero at the optimal
solution.

Pp0q

Pp1q

bj0 “ 1

Pp3q

bj1 “ 1

Pp4q

bj1 “ 0

Pp2q

bj0 “ 0

Pp5q

bj2 “ 1

Pp6q

bj2 “ 0

We use depth-first search, and our branching
rule is based on selecting the binary variable, say
bi, with the highest value in the solution of the
relaxed problem. We branch up first, that is, we
first explore the branch corresponding to the deci-
sion bi “ 1. This strategy, similar to the principle
of greedy forward selection algorithms [Mhenni
et al., 2020], aims at activating first the most
prominent nonzero variables in xni ‰ 0, therefore
focusing on quickly finding satisfactory feasible
solutions and subsequent upper bounds of good
quality. Our proposed implementation is summa-
rized in Algorithm 1, where L contains the queue
of subproblems and px denotes the best known
solution along the exploration. The Branch-and-

0. Initialization: L –{Pp0q}; zU “ `8 ; pa :“ 0.

1. Optimality: if L“H, then return the optimal
solution â.

2. Node selection: choose a subproblem i P L
by depth-first search and remove it from L.

3. Node evaluation: compute zpiq
` .

4. Pruning:

• If zpiq
` • zU , prune node i and return to step 1.

• If zpiq
` † zU :

– If bRpiq
P t0, 1u, then zU – zpiq

` and pa – aRpiq.
Prune node i and return to step 1.

5. Branching: subdivide node i by (2.2) and add
the two subproblems to L.

Algorithm 1: Branch-and-bound algorithm
for P.

Bound algorithm converge to the global minimum
in a finite number of steps. In the worst case,
an exhaustive search is done (no node could be
pruned).



B&BHOMEMIPGurobi MIPVerify
T Nds F T Nds F T Nds F
35 1800 4 27 - 4 7 1200 4

Table 1: Computational efficiency for robutness prob-

lems averaged over 100 instances. Computing time

(T) number of explored nodes (Nds) and number of

instances that did not terminate in 1 000 s (F).

3 Performance Evaluation

We now evaluate the computational perfor-
mance of our branch-and-bound strategy us-
ing Cplex MIP solver. We name this algo-
rithm B&BHOME. Computing times are com-
pared with the Gurobi Mixed quadratic program-
ming solver (named MIPGurobi) 1 and MIPVerify

2.
All methods are run on a UNIX machine equipped
with 32Go RAM and with four Intel Core i7 cen-
tral processing units clocked at 2.6 GHz. For each
instance, the running time is limited to 1 000 s.
Note that we only focus here on the computa-
tional efficiency of algorithms which are guaran-
teed to find the global optimum P; due to the
lack of space we do not compare the obtained so-
lutions to that of standard, suboptimal methods.

In order to evaluate the behavior of our
method regarding the complexity of the model,
we have varied the number of hidden layers from
1 to 4 (i.e. from 150 to 600 activation ReLU
functions). Results averaged over 100 instances
of each problem are given in Table 1 and Fig-
ure 3. B&BHOME is much faster then MIPGurobi
and MIPVerify revealing the efficiency of our strat-
egy. Most of all, we observe that the most impor-
tant improvement achieved by B&BHOME is due
to the efficiency of our continuous relaxation: the
computing time per node with the proposed for-
mulation is at least 4 times smaller than that of
MIPGurobi. Even with this improvement, the re-
sults in Figure 4 show the limit of our approach
especially when the number of ReLU in the model
increases. We can see that the complexity in-
creases exponentially and becomes unfeasible in
a reasonable time for complex models.

4 Conclusion

In this paper, we proposed a branch-and-
bound algorithm which is able to find exactly

1
https://www.gurobi.com/

2
https://vtjeng.com/MIPVerify.jl/latest/

Figure 3: Computational Time for robutness prob-

lems averaged over 100 instances according to the in-

tensity of the attack (maximum disturbance allowed

in infinite norm)

Figure 4: Computing time (Minutes) for robutness

problems as a function of the number of ReLU in the

model, average over 10 instances.

the optimal attack. We have shown that such
problems could benefit from dedicated resolution
methods. Our algorithm outperforms Gurobi,
which is considered as one of the best MIP solvers.
The proposed exploration strategy exploits the
sparsity of the searched solution, by preferring
the activation of nonzero variables in the de-
cision tree, conjugated with depth-first search.
Moreover, evaluation of each node by contin-
uous relaxation was recast as a specific con-
vex problem without binary variables. Follow-
ing the same principle, further works may in-
clude the building of more efficient relaxations,
involving Lagrangian relaxation and specific cut-
ting planes [Wolsey, 1998] for may also improve
the quality of lower bounds computed at each
node. But unfortunately even with this

improvement, the results show the limit of

our approach especially when the number

of ReLU in the model increases and we are

still far from using large indistrual models.



REFERENCES

[Bunel et al., 2018] Bunel, R., Turkaslan, I.,
Torr, P. H., Kohli, P., and Kumar, M. P.
(2018). A unified view of piecewise linear neu-
ral network verification. In Proceedings of the
32Nd International Conference on Neural In-
formation Processing Systems, NIPS’18, pages
4795–4804, USA. Curran Associates Inc.

[Carlini and Wagner, 2017] Carlini, N. and Wag-
ner, D. (2017). Towards Evaluating the
Robustness of Neural Networks. Number:
arXiv:1608.04644 arXiv:1608.04644 [cs].

[Ehlers, 2017] Ehlers, R. (2017). Formal verifi-
cation of piece-wise linear feed-forward neural
networks. CoRR, abs/1705.01320.

[Gehr et al., 2018] Gehr, T., Mirman, M.,
Drachsler-Cohen, D., Tsankov, P., Chaudhuri,
S., and Vechev, M. (2018). Ai 2: Safety and
robustness certification of neural networks
with abstract interpretation. In Security and
Privacy (SP), 2018 IEEE Symposium on.

[Katz et al., 2017] Katz, G., Barrett, C. W., Dill,
D. L., Julian, K., and Kochenderfer, M. J.
(2017). Reluplex: An efficient SMT solver for
verifying deep neural networks. In Computer
Aided Verification - 29th International Con-
ference, CAV 2017, Heidelberg, Germany, July
24-28, 2017, Proceedings, Part I, pages 97–117.

[Lomuscio and Maganti, 2017] Lomuscio, A. and
Maganti, L. (2017). An approach to reacha-
bility analysis for feed-forward relu neural net-
works. CoRR, abs/1706.07351.

[Mhenni et al., 2020] Mhenni, R. B., Bour-
guignon, S., and Idier, J. (2020). A greedy
sparse approximation algorithm based on l1-
norm selection rules. In ICASSP 2020 - 2020
IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pages
5390–5394.

[Szegedy et al., 2014] Szegedy, C., Zaremba, W.,
Sutskever, I., Bruna, J., Erhan, D., Good-
fellow, I., and Fergus, R. (2014). Intrigu-
ing properties of neural networks. Number:
arXiv:1312.6199 arXiv:1312.6199 [cs].

[Tjeng et al., 2019] Tjeng, V., Xiao, K. Y., and
Tedrake, R. (2019). Evaluating robustness
of neural networks with mixed integer pro-
gramming. In 7th International Conference
on Learning Representations, ICLR 2019, New
Orleans, LA, USA, May 6-9, 2019. OpenRe-
view.net.

[Wolsey, 1998] Wolsey, L. A. (1998). Integer Pro-
gramming. Wiley, New York, NY, USA.

[Xiang et al., 2018] Xiang, W., Tran, H., and
Johnson, T. T. (2018). Output reachable set
estimation and verification for multilayer neu-
ral networks. IEEE Transactions on Neural
Networks and Learning Systems, 29(11):5777–
5783.

[Xiang et al., 2018] Xiang, W., Tran, H.-D., and
Johnson, T. T. (2018). Reachable set computa-
tion and safety verification for neural networks
with relu activations. In Submission.



A method and metrics to evaluate confidence score performances 
Berthelot Loris, Troya-Galvis Andrés, Christophe Gouguenheim, Ahmad Berjaoui, Marc Spigai 

 

Abstract – Machine Learning models often suffer from poor calibration, meaning that the predicted probabilities do not match the real 
performance of the model. Confidence scores are one of the solutions to the calibration problem of Machine Learning models and yet, 
there seems to be no agreement towards a general method to test the performances and quality of confidence scores. Our work attempts to 
provide a such method along with some metrics suited to compare the confidence score with one another. 

1. Introduction 

Results given by machine learning algorithms are poorly 
calibrated when we try to move out of the training 
distribution, generally resulting in over-confident, yet wrong 
predictions which is a problem. Hence, it is hard to trust 
machine learning models especially in critical domains. Some 
works have been focusing on increasing the robustness of 
machine learning models while some others have been trying  
to support predictions with a confidence score which is 
supposed to quantify the probability of the model to fail or 
succeed in its prediction. However, it seems that there is no 
general and formal definition of what a confidence score is, 
and, to our knowledge, the literature seems to lack of a 
general method to assess the performances and the quality of 
confidence scores. Nevertheless, existing works aim their 
confidence scores to be robust to label noise, Out-Of-
Distribution data or Adversarial Attacks, among others, but 
the evaluation procedures remain very specific to each 
method and there is a lack of  metrics to quantify how robust 
a score is with regard with those factors. We provide a method 
as well as a set of metrics to evaluate the quality of a given 
confidence score and allow comparison between them. We 
show that the proposed metrics can reflect the desired 
properties of confidence scores and compare three variants of 
a confidence score based on conformal predictions with the 
raw softmax predictions of an image classification model. 

2. Related work 

(Berjaoui 2021) summarizes the state of the art for 
confidence metrics, including confidence scores. There are 
two main approaches for building a confidence score. The 
first one, is based on the k-Nearest Neighbors idea: one 
should be confident in a prediction if the neighbors of the 
predicted sample have the same label that the one being 
predicted (i.e. the sample is in the high density area of the 
given label). The second one, consists of training a meta-
model with the goal of predicting whether the underlying 
algorithm is right or wrong given a prediction. In that case, 
the confidence score performances are usually given by the 
AUC ROC (Area Under the Recall Receiver Operating 
Characteristic Curve) (Hendrycks 2016) such as in 
(Mandelbaum 2017), (Corbière 2020) and (Chen 2019). 
However, it would be interesting to have more information 
about the correct and incorrect distributions in order to define 
some empirical thresholds, allowing automatic decision when 
the confidence scores are in the area of low density overlap 
(between correct and incorrect distribution) and human 
handling for score within the high density area. 

Another desirable property of a confidence score is the 
ability to reflect the probability of a system to be right or 

wrong. To the best of our knowledge, this approach is referred 
as calibration in the literature, (Dormann 2019), (Vuk 2006) 
and is usually used directly on models and has not been used 
on confidence score. Thus, we suggest a metric to quantify 
the performances of confidence scores in that regard. 

3. On the evaluation of confidence scores 

Our main focus in this work is to set up a method as well 
as a set of metrics to be used for confidence score 
performance evaluation. Next, we present two different ways 
of thinking about the quality of a confidence score, and 
discuss some desirable properties of a perfect score. 

3.1 Confidence score as a probability 

Intuitively, a confidence score is an indicator which 
quantifies how much one can trust a prediction of a given 
machine learning model. That being said, a confidence score 
should be correlated to the probability that a machine learning 
model is right or wrong for each of its predictions. On a held-
out (validation) dataset (composed of unseen data), 20% of 
the predictions with a confidence score of 0.2 should be 
correct, 70% for a score of 0.7, etc. The distribution of scores 
should have the widest possible range (between 0 and 1) to 
give as much information as possible. This is to prevent 
corner cases where the confidence scores close to ideal 
theoretical values but useless in practice. For example, on a 
unbalanced dataset where a model always predicts the 
majority class, one could define a confidence score that 
always return the accuracy of the model. Such score would be 
compliant to the previous definition butt does not give any 
insight on the actual prediction. That being said, we can use 
calibration plots to derive a confidence score quality metric. 
Indeed, if we split correct and incorrect predictions on a 
validation dataset, a close to perfect score should have a low 
ratio of correct predictions for low scores and a large ratio for 
large scores. We illustrate this principle on Fig 1. The ideal 
confidence score should be as close as possible to this graph. 
Thus, such distance measurement can be used as a quality 
metric for confidence scores.  Note that the lowest probability 

Fig. 1 Illustration of a perfect confidence score with respect to 
probabilities. 



is not 0 because in the worst case, the model prediction is 
random, so the probability of the prediction being correct is 
1
𝑘
, with 𝑘 the number of classes.  

3.2 Confidence score as a binary classifier 

A confidence score can also be considered as a binary 
classifier trying to predict whether a given prediction is 
correct or not. Binary classifier performances are usually 
qualified by the Area Under the Curve (AUC) ROC 
(Hendrycks 2016) which gives insights about the tradeoff 
between true positives and false positives rates, and thus 
about the separation of the two classes. However, this doesn’t 
tells much about the relative position of the correct and 
incorrect prediction distributions. 

Ideally, a good score should allow us to separate as much 
as possible the correct and incorrect predictions. Then, it 
would be possible to empirically define automatic decision 
thresholds based on the confidence score. In order to measure 
this property, we suggest to use the Common Area Under the 
Distribution which is equal to the area within the range of 
scores with both correct and incorrect predictions (See Fig 
2.). In practice, this area can be approximated by computing 
the ratio of the number of samples within the range of scores 
with both correct and incorrect predictions over the total 
number of samples. Note that the range of scores considered 
can be adjusted in function of the criticity of the use-case by 
ignoring the p and (1-p) quantiles of the correct and incorrect 
distributions respectively.   

On the example presented in Fig 2, the range of scores 
where the correct and incorrect distributions overlap is 
between 0.2 and 0.8. In this case, it is possible to empirically 
define two thresholds, 0.2 and 0.8. For a sample with a 
confidence score lower than 0.2, one directly assume the 
prediction is incorrect (with high confidence). Respectively, 
for a sample with a confidence score greater than 0.8, one can 
assume prediction is correct. However for predictions with a 
confidence scores between 0.2 and 0.8, the decision should 
be handled to a human. A perfect confidence score should 
present two disjoint distributions and automatic decision 
would be possible on every sample. 

3.3 Desirable robustness 

In (Berjaoui 2021), we can find three scenarios where a 
confidence score should be robust.  

The first one is robustness against noisy labels in data 
which consist of observing the behavior of the confidence 
score when we train the underlying algorithm with a 
percentage 𝑥 of mislabeled data. A good confidence score 
should show the same distribution shape for incorrect and 
correct predictions with a shift towards lower score. Indeed 
we should be less confident in the model since it learnt on 
partial mislabeled data. But we should keep the 
correct/incorrect probabilities for every value of the 
confidence score.  

The second factor is the robustness to Out Of 
Distribution (OOD) data. This is the main factor to take into 
consideration when trying to industrialize a machine learning 
solution. In machine learning, the training is done on a dataset 
which should be representative of the reality as much as 
possible. However, in practice, training data is only a partial 
representation. Hence, it is  likely to encounter scenarios that 
the model has never seen, or to have outlier data being fed to 
a model in production, leading to incorrect predictions and 
unexpected behavior. A good confidence score should give 
less confident scores to OOD data.  

The last factor is robustness against Adversarial Attacks 
(Goodfellow 2014) (AA). AA consist of adding very little but 
carefully crafted noise in test validation inputs which may be 
insignificant for human eyes but which highly influences the 
prediction of a machine learning model towards a bad 
prediction. A confidence score robust to AA should give low 
confidence scores to adversarial samples, since if the model 
itself is sensitive to adversarial attacks, the label will be 
wrong most likely. Hence if we plot the correct and incorrect 
distributions, we should keep the same shape that previously 
with a shift towards lower scores.  

4. Experiments 
4.1 Compared scores 

Conformal Predictions (CP), introduced (Vovk 2005) and 
summarized by (Zeni 2020) and (Angelopoulos A. N. 2021) 
is a framework which aims to produce a prediction set 
(multiple probable labels) instead of a single label prediction, 
with the guarantee that the true label is in the prediction set, 
given an error rate, with only the iid assumption needed. CP 
seek to produce sets of the smallest size and to be adaptive, 
meaning a hard sample will have a large set and an easy one 
will have a small one. Based on this framework, we derive 
three confidence scores on which we will test our method: 

1. CPCS, which considers the size of the prediction 
sets as well as the softmax values. 

2. CP-OOD, which considers the size of the 
prediction sets as well as a term which measures how far the 
sample is from training distribution.  

3. CP-Mixt, which aggregates the two previous 
scores. 

The formal definition of such scores are out of the scope of 
this paper. We compare these three scores with the raw 
softmax outputs of the model as a baseline, in order to 
validate the proposed methodology.

Fig. 2 : Correct and incorrect distributions with overlapping area to 
compute metrics. 



 

4.2 Datasets 

We did our experiments a modified version of XVIEW 
adapted to classification. That dataset is composed of 11000 
images (3x32x32) split evenly into 10 classes. The training set is 
composed of 10000 images and the validation set of 1000 images. 
We split the validation set into calibration (30%) and validation 
(70%) sets for conformal prediction calibration. 

4.3 Models 

The machine learning model used, is the pre-trained 
ResNet18 available in Pytorch. We only modified the classifier 
layers to fit better a problem with only 10 classes (L(512, 128), 
L(128, 64), L(64, 10)). We then fine-tuned ResNet on XVIEW 
with a learning rate of 1e-5. 

4.4 Results 

On XVIEW, following the method and according to metrics 
previously presented, confidence scores based on conformal 
predictions produced better performances than softmax, see 
Table 1. Conformal prediction-based confidence score outclass 
softmax with no modification in the validation set, when the 
model is trained on a noisy dataset, when a rotation is applied on 
the validation set, when the validation set is composed of 
negative images of the original validation set and when we create 
a dataset with classes not learned by the model. For illustration 
purposes, and to understand how the metrics reflect the quality 
differences between scores, we compare the CP-OOD score with 
the raw softmax scores, a more rigourous comparison of several 
existing scores is out of the scope of this paper. 

Next, we demonstrate the possible analysis and information 
that can be obtained by the proposed methodology. The analysis 
focus on the histogram of correct and incorrect predictions, as 
well as the calibration plots.  

Fig 3 shows the plot of correct and incorrect distributions for the 
CP-OOD on the validation dataset. One can notice very few 

incorrect predictions with scores greater than 0.39 (only 5%) and 
very few correct predictions have a score lower than 0.08. 
Meaning the high density overlap area is between 0.08 and 0.39. 
We can then apply the idea described in section 3.2 to empirically 
define automatic decision thresholds. Indeed, according to the 
validation set, a prediction with a score higher than 0.39 is correct 
95% of the time, a prediction with a score lower than 0.08 is 
likely incorrect. On the other hand, applying the same logic to the 
softmax distributions does not give much information. The high 
density overlap area is very wide, see Fig 4 (from 0.3 to 0.92) 
which reflects the lower quality of the softmax scores.  
OOD experiments 

In order to evaluate the behaviour of a confidence score w.r.t 
OOD data, we propose 3 different approaches. The first one is to 
create a validation dataset composed of every image of the initial 
validation set but rotated for a given or random angle (only valid 
if the data was not augmented by rotations during training). The 
second one, is to take the negative value of each pixel. The third 
one is to employ a close but different dataset. So we will use a 
dataset composed of 10 classes from XVIEW (Lam 2018) which 
were not considered on the employed training dataset. In the first 
two cases, a good confidence score should shift the correct and 
incorrect distributions towards low confidence scores because 
even if an image is correctly predicted, the model should be less 
confident in its prediction since it never saw an image like that, 
but the ratio of correct/incorrect probabilities for every value of 
the confidence score should remain the same. On the third case, 
a good confidence score should give a low confidence score for 
every sample. Those data can’t be classified by our underlying 
model because it does not have the corresponding knowledge. No 
prediction should have a high confidence score because every 
prediction on that dataset will be misclassified.  

Fig5 and Fig 6 present the correct and incorrect distributions 
of the negative images of the original validation dataset for CP-

Table 1: Metric values on XVIEW to compare confidence scores. The model accuracy is equal to 57.29% on the clean validation set. The noisy 
training has been done with 30% of data randomly labeled, the rotation value is equal to 90°. 

Fig 3: Correct and incorrect prediction distribution on raw 
validation dataset for CP-OOD. 

Fig 4: Softmax repartition for correct and incorrect predictions. 
According to this graph, if the softmax is between 0.92 and 1 it is 
more likely the prediction is true. Besides that, we can’t say 
anything about the prediction 



OOD and Softmax. On Fig 5, we can see that almost every score, 
correct and incorrect is concentrated in a low range between 0.17 
and 0.45. which is the desired behavior, since images are far from 
the training distribution.  

When it comes to softmax, the same behavior than 
previously is observed. The high density area almost goes from 
0 to 1 which is far from the ideal score.  

Fig 7 shows that CP-OOD behave as hoped on images the 
underlying model can’t correctly classify (because the true 
classes aren’t part of the training set). Every scores are very low, 
meaningful of the low confidence one should have in those 
predictions.  

We also analyze the confidence scores from the probability 
perspective. Surprisingly, on XVIEW (Lam 2018), the softmax 
yield close to theoretical probability distribution which mean 

softmax is representative to the probability of a prediction to be 
correct. This can be drawn from Fig 8 with the low distance 
between the regression of the empirical points and the theoretical 
curve. On the other hand, CP-OOD regression curve, see Fig 9, 
is further to the theoretical one meaningful of a poorer calibration 
in the regard of probability. This is explained by the separation 
power. Indeed, the two criteria to evaluate a confidence score 
cannot be achieved at the same time. When developing a 
confidence score, or deciding which confidence score is the more 
suited for a given application, a tradeoff between separation 
power and probability calibration has to be done.   

5. Conclusion 

In this work, we proposed a method and some metrics to 
qualify confidence scores performances and different robustness 
to compare confidence scores. Our work is independent of the 
model and the dataset allowing our framework to be applied to 
any image classification problem. To validate our work, we 
compared the softmax output and few confidence scores based 
on conformal prediction on XVIEW (Lam 2018). CP-based 
confidence scores yield better performances according to our 
metrics in every settings of our method (as expected). Even if 
presented metrics highlight conformal predictions-based 
confidence score performances, it does not show the existing gap 
between softmax and those confidence scores as good as graphs 
do, new metrics still need to be introduced to have a better 
understanding of confidence scores. More comparisons with 
other existing confidence scores, such as ABC score (Jha 2019) 
with the use of other datasets such as MNIST (LeCun 1998) or 
CIFAR (Krizhevsky 2009), would be interesting to proceed.
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Multi-Category Classification with Semantic Projection and Semantic
Regularization
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Abstract
Neuro-symbolic techniques are growing increas-
ingly popular to embed or infuse symbolic knowl-
edge into deep neural networks. In this paper,
we compare – in terms of accuracy, semantic ro-
bustness and complexity – two methods for bi-
nary multilabel classification under semantic con-
straints: Semantic Projection (SP) - a generaliza-
tion of the HEX-graph methodology introduced in
(Deng et al., 2014) – and Semantic Regularization
(SR) – with the semantic loss defined in (Deng
et al., 2014).

1. Introduction
The field of Artificial Intelligence (AI) has historically
been divided into two families of approaches : symbolic
techniques, which process logical variables through reason-
ing algorithms, and statistical learning techniques, which
derive parametric models from huge amounts of data. In the
past decade, artificial neural networks (ANNs), a sub-field
of statistical learning, have taken the AI scene by storm and
imposed themselves as state-of-the-art techniques in many
tasks. Recently though, many researchers have pointed out
the weaknesses of ANNs, especially in scarce data regimes,
and advocated for the development of hybrid systems, often
called neuro-symbolic techniques, involving both symbolic
and neural components, to embed or infuse symbolic knowl-
edge into ANNs and improve their accuracy, robustness or
impose certain constraints on their outputs. In the past few
years, many different neuro-symbolic techniques have been
proposed in the literature. They vary in the way symbolic
knowledge is represented and how it is embedded or infused
in the neural network.

In this paper, we compare two methods for binary multilabel
classification under semantic constraints : Semantic Projec-
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tion (SP) - a generalization of the HEX-graph methodology
introduced in (Deng et al., 2014) - and Semantic Regu-
larization (SR) - defined in (Xu et al., 2018). Our main
contribution is to develop a joint formalism to compare both
techniques in terms of accuracy, semantic robustness and
computational complexity in a principled way, and highlight
common key quantities that both techniques compute and
rely on. This re-framing leads to the conclusion that SP is
superior to SR at inference time by design, and suggests that
an intermediary loss functional between the two techniques
could be more efficient.

2. Formalism
2.1. Standard neural techniques

Our study tackles with the task of binary multilabel
classification : a deep neural network M✓(X) is trained on
a dataset (Xi

, y
i)1in with X

i
2 Rd and y

i
2 {0, 1}k to

predict an instantiation over a set of categories {Yj}1jk.
When no structure is assumed, the dimensionality of the
problem is exponential with the number of categories k and
the task becomes quickly intractable for large target spaces.

To circumvent this limit, usually one of two structural priors
is enforced :

1. Strictly mutually exclusive categories : this means
that no two categories can be activated at the same
time, and turns the problem into a single multi-valued
variable classification task (i.e. yi 2 J1, kK instead of
y
i
2 {0, 1}k).

This is usually implemented by applying a softmax
layer on the last activation scores produced by the
network.

2. Independent multilabel regression : this means that
all combinations of variables are possible and that the
probability of a category being activated depends only
on the activation score of that category.
This is implemented by applying a sigmoid layer on
the last activation scores produced by the network.

This paper explores a formalism that enables to enforce a
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more complex range of structural priors compared to the
two aforementioned techniques.

2.2. Neuro-symbolic techniques

Both techniques build on top of an existing neural network
M✓ of which the final pooling or activation layer (such as
softmax or sigmoid) has been removed. The model then
produces a vector of activation scores a✓ 2 Rk, upon which
each technique applies additional computations.

From this score vector, any technique must :

Training : compute a loss functional to be optimized
through gradient descent given labeled samples (and/or
unlabeled samples in a semi-supervised setting).

Inference : predict an instantiation which corresponds
to the mode (ie. the most probable instantiation) of
a certain probability distribution on the instantiation
space {0, 1}k.

Remark 2.2.1. It is important here to notice that the system
does not need to compute the full distribution it enforces,
but solely certain values relative to it (such as the mode for
inference, and the probability of a certain instantiation for
the negative log-likelyhood loss).
Example 2.2.2. We can for instance get back to the case of
independent multilabel regression.
Given label scores a := (ai, ..., ak) 2 Rk, one can define
the independent multilabel unnormalized distribution as :

EI(a) : {0, 1}
k
! [0, 1],y 7!

Y

1ik

e
ai.yi

The standard independent multilabel probability distribution
is then obtained after normalization :

PI(a)(y) :=
EI(a)

ZI(a)

with ZI(a) :=
P

y EI(a)(y) the partition function.

The loss functional computed given a labeled sample
(X,ytrue) is the standard negative log-likelihood :

LI(✓, X,ytrue) = � logPI(a✓)(ytrue)

with a✓ := M✓(X) the scores produced by the model.

Remark 2.2.3. Independence ensures that global normal-
ization (normalizing the whole distribution of dimension
2k) and local normalization (normalizing the marginal dis-
tributions for each variable of dimension 2, resulting in a
total dimension of k) are equivalent, which is the property
exploited through the sigmoid layer to make computations
tractable.

However both Semantic Projection (SP) and Semantic Reg-
ularization (SR) differ from traditional techniques (ie. inde-
pendent multilabel regression) by allowing us to take into
account semantic constraints over the output categories
Y to enforce a specific probability distribution and/or loss
functional.

In SR, defined in (Xu et al., 2018), semantic constraints are
specified as a propositional formula ↵ over the categories
(Y1, ..., Yk). We note y |= ↵ if instantiation y respects
constraints encoded by ↵.
Example 2.2.4. If ↵ = (Y1 _ ¬Y2), then instantiations of
the form y = (0, 1, ...) are invalid.

In (Deng et al., 2014), semantic constraints are encoded by
means of a HEX-graph that stipulates which categories are
subsumed to others and which categories are disjoint (or
mutually exclusive).

A HEX-graph H can easily be associated to a propositional
formula ↵H enforcing the same semantic constraints, but
most propositional formulas can’t be encoded into a HEX-
graph . This implies that the expressiveness of HEX-graphs
is strictly inferior to that of propositional logic. In this
paper we introduce Semantic Projection, which is a formal
generalization of the HEX-graph methodology to arbitrary
semantic constraints expressed in propositional logic.

To properly define the two techniques, we must define two
basic operations on distributions : normalization and se-
mantic projection.

Definition 2.2.5 (Normalization). Transforming an un-
bounded, positive, and non-null distribution into a prob-
ability distribution.

Given a E : {0, 1}k ! R+ such that Z(E) > 0, we will
note :

E :=
E

Z(E)

with Z is the partition function.

Definition 2.2.6 (Semantic projection). Projecting a distri-
bution E on the space of valid instantiations according to ↵.
We will note :

E↵ := E. [y |= ↵]

with [z] :=

⇢
1 if z true
0 otherwise the indicator function.

2.3. Semantic Regularization

Definition 2.3.1 (Semantic loss). Given a set of categories
Y = {Y1, ..., Yk}, ↵ a propositional formula over Y and a
vector of scores a, we define the semantic loss between ↵

and a as:
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L
s(↵,a) := � log

X

y|=↵

Y

i:y|=Yi

pi

Y

i:y|=¬Yi

(1� pi)

= � log(Z[(EI(a))
↵])

= � log(Z(E↵

I(a))) + log(Z(EI(a)))

with pi :=
1

1+e�ai
.

Remark 2.3.2. The first formulation is the one introduced
by the authors in (Xu et al., 2018), whereas the second and
third are seen through the lens of our formalism. Their
equivalence is shown in (Ledaguenel et al., 2022).
We can notice the expression of pi which results from the
sigmoid function applied to the scores ai, and correspond to
the local normalization step (see 2.2.3).
This loss term can be framed as performing a step of posi-
tive/negative sampling on valid/invalid instantiations : valid
ones are pushed up and invalid ones are pushed down in the
vocabulary of energy-based learning. Finally, an important
remark is that this loss functional does not depend in any
way on the true label. This property gives the ability to
perform semi-supervised learning by backpropagating this
loss on unlabeled samples.

Semantic Regularization simply consists of adding this term
(with a regularization coefficient) to the standard indepen-
dent multilabel loss functional defined in 2.2.2 :

L
↵

R(�)(✓, X,ytrue) := LI(✓, X,ytrue) + �.L
s(↵,a✓)

This does not alter the probability distribution over instan-
tiations enforced by the model, ie. the prediction during
inference is still the mode of PI(a).

2.4. Semantic Projection

Definition 2.4.1 (Projected Independent Multilabel Distri-
bution). Given activation scores a := (ai, ..., ak) 2 Rk and
a satisfiable propositional formula ↵, one can define the pro-
jected independent multilabel probability distribution
as :

P↵

I(a) = E↵

I(a)

Remark 2.4.2. Given a HEX-graph H and its equivalent ↵H ,
P↵H

I(a) is equivalent to the conditional probability Pr(y|x)

defined in (Deng et al., 2014) with a = f(x;w). The
original definition and its equivalence with ours are shown
in (Ledaguenel et al., 2022).

Semantic Projection computes the mode of the projected
independent multilabel probability distribution during infer-
ence.

The loss functional computed during training, given a la-
beled sample (X,ytrue), is then the standard negative log-
likelihood loss over the distribution P↵

I(a) :

L
↵

⇧(✓, X,ytrue) = � logP↵

I(a✓)
(ytrue)

= � logEI(a✓)(ytrue) + log(Z(E↵

I(a)))

with a✓ = M✓(X)

3. Observations
We present in this section several theoritical observations
concerning Semantic Projection and Semantic Regulariza-
tion.

First, it follows by design that predictions from SP are al-
ways consistent with the semantic constraints :

Proposition 3.0.1. Given a parametrization ✓, a satisfiable
propositional formula ↵ and a sample X 2 Rd :

argmax
y2{0,1}k

P↵

I(a✓)
(y) |= ↵

with a✓ = M✓(X)

Besides, SP assigns higher probability than the standard
independent multilabel probability distribution (enforced by
both the standard technique and SR) on valid samples :

Proposition 3.0.2. Given a parametrization ✓, a proposi-
tional formula ↵ and a valid sample (X,y) 2 Rd

⇥ {0, 1}k

with y |= ↵ :

P↵

I(a✓)
(y) � PI(a✓)(y)

with a✓ = M✓(X)

This implies that whatever loss functional is enforced by the
system, for a given parametrization of the base neural net-
work M✓, inference with SP will always be more accurate
than with SR.

Finally, we show in (Ledaguenel et al., 2022) that loss func-
tionals of SP and SR are tightly linked :

Proposition 3.0.3.

L
↵

⇧ = LI � L
s(↵,a) = L

↵

R(�1)

This points out that to reach the same goal on almost identi-
cal architectures, the two techniques add opposite additional
terms to the base loss functional. This counter-intuitive
divergence is justified by the additional computations per-
formed for inference after the neural network in the case of
SP, which can be seen as a parameter-free extension of the
architecture. However, this may indicate that a more opti-
mal path lies between these two extremes, which led us to
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Table 1. Properties of each technique

TECHNIQUE PROB. DIST. CONSISTENCY LOSS SEMI-SUPERVISED

STD PI(a) 7 LI 7
SR PI(a) 7 LI + �.Ls(↵,a) 3
SP E↵

I(a) 3 LI � Ls(↵,a✓) 7

RSP E↵
I(a) 3 LI � (1� �).Ls(↵,a✓) 3

propose an hybridization of both techniques, called Regular-
ized Semantic Projection (RSP), with the same probability
distribution as SP and the loss functional:

L
↵

⇧+R(�) := LI � (1� �).Ls(↵,a)

Remark 3.0.4. Table 1 summarizes key properties for each
technique. The PROB. DIST. column specifies the math-
ematical expression of the probability distribution from
which the mode will be predicted at inference time. CON-
SISTENCY indicates for which techniques the output will be
consistent with the semantic constraints ↵ by design. LOSS
shows the loss functional optimized by each technique. Fi-
nally, SEMI-SUPERVISED points out which techniques can
be used in a semi-supervised setting, where some of the
input samples are unlabeled.

4. Efficient exact computations
As mentioned at the beginning of the paper, manipulating
the projected independent multilabel unnormalized distri-
bution E↵

I(a) in a naive way by operating on its individual
values – hence performing computations on the space of
instantiations – becomes quickly intractable as k grows
(complexity in O(2k)).

Hence, to compute the aforementioned quantities (eg.
argmaxP↵

I(a)(y) or Z(E↵

I(a)) for instance), one needs to
design a specific computational scheme, exploiting simi-
lar factorization properties about E↵

I(a) that we mentioned
concerning EI(a) in 2.2.3.

(Deng et al., 2014) implements a custom computational
scheme, derived from the message passing algorithm on
junction trees, that takes advantage of both the factorization
of E↵

I(a) into potentials and the sparsity of those potentials
implied by the semantic constraints encoded in the HEX-
graph. The sum-product scheme is utilized to compute
the partition function of the distribution (and so the loss
functional of the model), and the max-product scheme is
utilized to compute the mode of the distribution (and so the
prediction of the model).

Observations made earlier highlight that the semantic loss
from (Xu et al., 2018) can be computed using the same key
quantities (specifically Z(E↵

I(a))), which implies that the

sum-product scheme can be utilized to perform Semantic
Regularization. This results in an implementation very close
to that of an arithmetic circuit used in (Xu et al., 2018).

(Deng et al., 2014) demonstrates that the complexity of the
online computations for both algorithms (sum-product and
max-product) is exponential in the max of two properties
of the HEX-graph called the tree-width and the maximum
overlap, but linear in the size of the graph (ie. the number
k of categories considered). Therefore, for certain families
of graphs, exact inference is tractable.

5. Future work
The algorithms developed in (Deng et al., 2014) can be
generalized to process all propositional formulas. However,
the complexity of the calculations can quickly explode. We
are currently working on developing such a system and
studying how complexity bounds (eg. tree-width and maxi-
mum overlap) evolve when applied to general propositional
formulas.
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ABSTRACT

How relevant are interpretability methods designed for deep learning models in the context of visual
defect detection? Beyond their actual output, to what extent can these methods be used in a production
environment? We study and evaluate interpretability methods for convolutional neural networks
(CNN) and vision transformers (ViT) on image classification datasets designed for defect detection.

1 Introduction

Computer vision models based on deep learning have been increasingly successful in numerous fields, including
industrial applications such as quality control and visual inspection. However, such models suffer from a lack of
trust from end users as they are often considered as "black boxes" with not enough insights regarding their decision
process. Hence, the need for model interpretability methods has concomitantly grown, not only to facilitate user trust
and adoption, but also because such techniques can help detect model biases, validate the relevance of the decision
processes underlying deep learning models and therefore make a first step towards AI certification.

1.1 Brief literature search on interpretability methods for computer vision deep learning models

To meet the need for model interpretability, several methods have been developed to provide users with visual insights
pertaining to model predictions. Perturbation-based methods such as LIME [1], SHAP [2] or occlusion sensitivity [3]
are model-agnostic and provide interesting insights, but they usually are computationally expensive, and perturbed
data can be outside of the training distribution. On the other end, methods based on gradient back-propagation such as
Integrated Gradients [4] or GradCAM (class activation maps) [5] are widely used and usually work well with CNNs.
However, such methods are not necessarily adapted to alternate architectures such as Vision Transformers. Some
methods, eg: attention-rollout [6], exploit the attention mechanism in ViT architectures in order to visualize which
features they can extract from input images. However this method is not class-dependent, making it difficult to use
for defect detection. Several methods have thus been developed specifically to better interpret ViT predictions [7], for
instance gradient-attention-rollout, which is a class-dependant improvement of attention-rollout, or layer-wise relevance
propagation (LRP), based on Deep Taylor Decomposition [8], which has proved to be a suitable choice for ViTs.

1.2 Problem Statement

Live defect detection applied to pictures of products taken at regular time intervals on a production line is a common
industrial use case. In this study, we approach it through an image classification task. More precisely, we will focus on
two formulations for this problem. Binary classification on the one hand, to detect whether or not there is a defect on an
image of a product. Multi-class classification on the other hand, to categorize among several defect types which one
appears on a product image. In this study, CNN and ViT classifiers will be compared in terms of classification metrics,
computation efficiency and effectiveness of some of the most suitable interpretability frameworks for them.

2 Approach and implementation

In this section, we describe the above-mentioned deep learning models and their respective interpretability methods
selected for this preliminary study. Then, we provide training and implementation details.
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2.1 Models and interpretability methods description

The selected deep image classification networks for this study are VGG16 [9] (pretrained on ImageNet) for CNN
classifiers, and ViT-small16 [10] (pretrained on ImageNet using DINO [11]) for ViT-based ones. The VGG16
architecture provides a good balance in terms of classification performance, computation efficiency and adaptability to
many interpretability methods. In this study, the interpretabilty frameworks compared for the CNN model are Occlusion
sensitivity and GradCAM. Occlusion sensitivity is a perturbation-based method that is model agnostic. It occludes
iteratively image regions to assess how the CNN’s confidence is affected. GradCAM is a gradient-based method. It uses
the feature maps produced by the last convolutional layer to understand which regions of an image were relevant to the
CNN.
Vision Transformers is the second type of classification model selected for this study as it has shown impressive results
in multiple computer vision applications with high robustness to various types of perturbations (eg: image occlusion,
domain shift) [12], which is valuable in an industrial context. The simplest interpretability method to exploit the ViTs’
multi-head self-attention mechanism is the attention-rollout method which combines the attention maps from all the
heads. As a result, this method is not class-specific, which can be an issue when one wants to inspect an interpretability
map for a specific class to understand a model’s decisions and errors. More formally, the attention-rollout boils down to
the following equation:

Â(b) = I + EhA
(b), rollout = Â(1) · Â(2) · ... · Â(B) (1)

where A(b) is the attention map, b = {1, ..., B} the transformer block index, Eh the mean across "heads" dimension
and (·) the matrix multiplication.
The layer-wise relevance propagation (LRP) [7] provides class-specific maps. It computes relevance scores based
on the Deep Taylor Decomposition principle for each attention head in each layer of a Transformer model. Then, it
back-propagates these relevancy scores through the layers. In short, the output of the method, noted C, is a combination
of weighted attention relevance and is computed as follows:

Ā(b) = I + Eh(rA(b) �R(nb))+, C = Ā(1) · Ā(2) · ... · Ā(B) (2)

where rA(b) is the gradient of the attention map, R(nb) is the layer’s relevance with respect to a target class (see [7]
for more details), � is the Hadamard product and (.)+ denotes the positive part function.

2.2 Training procedure and implementation details

In order to obtain classifiers that are specifically trained on our target tasks, we use transfer learning and fine-tuning as
it allows us to reach good results while using a reasonable amount of resources and time. More precisely, the transfer
learning phase consists in removing the classifier head that was specific to the source task, replacing it with a new
one that is specific to our target task and training it while leaving original backbone weights frozen. Then, during the
fine-tuning phase, backbone weights are partially or totally unfrozen before launching a second training phase. Models
are trained using gradient descent with Cross Entropy as a training criterion.

3 Experimental study

3.1 Datasets

The models and the interpretability methods implemented are evaluated on two image classification datasets. The first
one is the casting defect dataset available on Kaggle[13], which contains a total of 7348 images of size 300 ⇥ 300,
labeled as showing a defective (def-front) or non-defective (ok-front) product. It is divided into training and test sets.
The training set contains 3758 defective images and 2875 non-defective images, while the test set contains 453 defective
images and 262 non-defective images. The second one is the NEU-DET dataset [14], which contains 1800 images
showing six types of surface defects of a hot-rolled steel strip, which are Crazing (Cr), Inclusion (In), Patches (Pa),
Pitted Surface (PS), Rolled-in Scale (RS), and Scratches (Sc). Each type of sample has 300 grayscale images of size
200⇥ 200. Note that, for each dataset, images were resized to 224⇥ 224 before being used as model inputs, and we
also keep 20% of the training set for validation in order to avoid overfitting.

3.2 Results

First, classification metrics listed on table 1 show that combining transfer learning and fine-tuning to train a classifier
yields successful results, especially on such clean datasets where defects are easily identified. It should be noted that
ViTs perform slightly better than VGG16 for most metrics and both datasets. Note that, the training procedure being
very successful on NEU-DET, both models end-up misclassifying the same unique test image, hence the identical
metrics.
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CNN ViT

Accuracy Precision Recall Accuracy Precision Recall

Casting defect 98.74 99.01 99.55 99.58 99.66 99.33
NEU_DET 99.72 99.73 99.72 99.72 99.73 99.72

Table 1: Classification metrics obtained on test sets. For the casting defect dataset, metrics were computed by
considering defective products as positive cases. For NEU-DET, shown metrics were averaged over all classes.

Second, table 2 shows different relevant time measurements for each deep learning classifier and each interpretability
method, namely: inference time and time necessary to generate interpretability heatmaps for one image. The hardware
used is an NVIDIA GeForce RTX 2080 Ti GPU with 11 Go of RAM. It is clear that generating those heatmaps is
computationally more intensive than a simple inference, by a factor of about three to ten, indifferently on both datasets.
For the CNN classifier, GradCAM is twice as fast as occlusion sensitivity. For the ViT classifier, rollout and LRP have
roughly the same performance. And, inference with ViT is twice as fast as inference with CNN.

Figure 1: Example interpretability maps computed for defective products from the casting defect dataset (top line) and
from the NEU-DET dataset (bottom line). The first image is the raw picture, then the columns show heatmaps for CNN
Occlusion, CNN GradCAM, ViT attention-rollout and ViT LRP.

Finally, based on some visual examples, we evaluate the quality of interpretability maps output by the models. Figure
1 shows such examples on correctly classified samples. For class-specific methods, the interpretability map of the
predicted class is shown. One can observe that occlusion sensitivity provides less accurate results than other methods.
Indeed GradCAM, attention rollout and LRP heatmaps tend to highlight tighter areas in the image. However, we note
that, on the casting defect example, GradCAM seems more "exhaustive" in terms of highlighted class-related areas,
while LRP seems more selective than GradCAM. Attention rollout, on the other hand, by design, doesn’t highlight
class-related areas but salient elements in the image, which, in that case, can be defects themselves but in other cases
can be harmful to model interpretability.

We also see the benefit of using interpretability to better understand classification errors. For instance, figure 2 shows
an example on the casting dataset where the classifier seems to wrongly consider a product as defective because of
particular lighting conditions. An example is shown as well on the NEU-DET dataset where an inclusion defect is
confused with a scratch. It is understandable since some scratches are similar to inclusions.

4 Conclusion

To conclude this preliminary study, combining the measurements in tables 1 and 2 with the qualitative analysis of the
interpretability maps, we recommend practitioners the use of GradCAM over occlusion sensitivity for CNNs and LRP
over attention-rollout for ViTs. However, if the computational efficiency required once a defect detection solution is
deployed on a production line is strong, one might consider using ViTs and an interpretability method as an offline tool
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Figure 2: Example interpretability maps computed on misclassified images, first from the casting defect dataset (left
side: raw picture, then heatmaps for CNN Occlusion and CNN GradCAM), and from the NEU-DET dataset (right side:
raw picture, then heatmap from ViT LRP).

CNN ViT

Forward-pass Occlusion GradCAM Inference Rollout LRP

Casting defect 51.0 ± 1.6 160.0 ± 9.4 89.2 ± 4.7 24.7 ± 8.2 291.2 ± 27.3 266.4 ± 26.1
NEU_DET 58.2 ± 13.0 181.0 ± 44.0 92.3 ± 7.8 25.6 ± 5.0 249.2 ± 23.6 246.3 ± 17.2

Table 2: Computation times (in ms). Provided numbers correspond to mean and standard deviation of elapsed time
during single-image operations: forward-pass or computation of intepretability maps.

to monitor the model’s predictions behavior. Future works will include a deeper comparative study. For instance, other
sizes of ViTs could be used and other interpretability methods tested. Also, a quantitative analysis of the relevance of
interpretability maps using datasets with segmentation maps could be done.
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Abstract

In this work, we present a Neural Network (NN) abstraction approach to reduce the state-space (number of
nodes) of NN towards solving the non-scalability of NN formal verification approaches. The main idea consists
in merging neurons on the NN layers in order to build an abstract model that over-approximates the original
one. Concretely, the outgoing weights of the abstract network are computed as the sum of the absolute value of
the weights on the original one, while the incoming weights are intervals determined based on the signs of the
outgoing and the incoming weights of the original model.

1 Introduction

Due to the tremendous success of deep neural networks (DNNs), they are increasingly deployed in safety-critical
systems, such as autonomous cars and trains. However, these systems must meet some specific safety requirements
before their deployment. Therefore, many concerns about the safety of DNNs have been raised recently. In fact,
recent studies demonstrated the vulnerability of DNNs [1], thus the domain of neural networks verification are
becoming more popular and attractive. Several formal verification methods are adjusted and applied to check some
properties on DNNs, such as safety and robustness. Originally, the verification problem of DNNs was transformed to
an optimization problem and solved using Mixed-Integer Linear Programming and SAT/SMT solvers [2, 3]. Many
other methods were developed for instance abstract interpretation [4], reachability [5] and others.

Unfortunately, the developed techniques cannot scale to verify large models because of the high complexity of
DNNs. Model reduction methods that are considered as abstraction methods and consist of reducing the size of the
model while preserving some relevant behaviors [6, 7, 8], are seen as a promising remedy to the problem of scalability
of the existing NN verification methods. A model reduction approach ensures that whenever the property holds on
the reduced model, it must hold on the original. In this paper we present a method that is based on converting the
original NN to an interval NN (INN). The reduced model is constructed by taking the interval hull of the incoming
weights and the sum of the outgoing weights in such a way that the outputs of the original network are always
included in those of the abstract one. The presented method supports both Tanh-NN and Relu-NN. A succinct
presentation of the proposed approach and the preliminary obtained results are presented here below; further details
about the approach and the experiments are presented in [9].

A neural network is a sequence of connected layers. The first layer is the input layer, followed by one or more
hidden layers and an output layer. Each neuron sij in Si

1 of a hidden layer receives data from its predecessor
layer, calculate its activated value using Equation 1, and forward the result to its successor layer.

v(sij) = ↵(
X

s2Si�1

w(s, sij)⇥ v(s) + bsij ) (1)

In Equation 1, w(s, sij) is the weight of the edge connecting s 2 Si�1 to sij 2 Si, bsij is the bias of the node sij , and
↵ is a predefined activation function. Our method supports Relu-NN (↵(x) = Relu(x) = max(0, x)) and Tanh-NN

(↵(x) = Tanh(x) = ex�e�x

ex+e�x ).
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(a) The original network (b) The abstract network

Figure 1: An example explaining the main idea of the proposed approach.

2 Proposed model reduction method

Model reduction for NNs, as a sub-category of NN abstraction, is a concept of reducing the size of NNs by merging
some neurons while guaranteeing that the original model N satisfies the property P whenever this property is
satisfied by the abstract model N̄ , i.e., N̄ |= P =) N |= P .

The broad idea of our method is to merge neurons of hidden (intermediate) layers and compute the incoming
weights of the abstract node as the convex interval hull of its incoming weights before abstraction multiplied by the
sign of its outgoing weights. On the other hand, the outgoing weights of the abstract node are computed as the
sum of the absolute value of its corresponding outgoing weights on the original network. Figure 1 illustrates the
main idea approach. Notice that sign is a function defined as follow: sign : R ! {�1, 1}

sign(x) =

(
1, if x � 0

�1, otherwise
(2)

2.1 Model reduction for NN with Tanh activation function

(a) A sub neural network containing three hidden lay-
ers, we want to merge the two nodes of layer li.

(b) The sub neural network after abstraction. Here
ŵl

k, ŵ
u
k : 1  k  m are the weights calculated using

formula (3).

Figure 2: An illustration of our abstraction method applied on a hidden layer li. The model on the right is the abstraction
of the one on the left, where the node ŝ is obtained upon merging sip and siq.

For simplicity and without lose of generality, let consider the network in Figure 2a, and assume that we want to
merge the two nodes sip and sip. The obtained abstract network is presented in Figure 2b, where ŝ is abstract node
after merging sip and sip. The incoming weights of ŝ have the form of intervals and they are calculated as follows:

8
<

:

ŵl
k = min

1jn
{sign(cj) ak, sign(dj) bk}

ŵu
k = max

1jn
{sign(cj) ak, sign(dj) bk}

(3)

and its outgoing weights are the sum of the absolute value of the corresponding outgoing weights of sip and sip.
Algorithm 1 summarizes the essential steps of the model reduction for neural networks with Tanh (Tanh-NN).

1Si is the set of neurons of layer li, and sij 2 Si is the jth neuron of Si
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Algorithm 1 Proposed model reduction procedure for Tanh-NN

1: create a node ŝ
2: select sip and siq
3: calculate the incoming weights to ŝ using Equation 3
4: calculate the outgoing weights: ŵ(ŝ, si+1,j) = |cj |+ |dj |
5: replace sip and siq with ŝ

2.2 Model reduction for NN with Relu activation function

The Relu function is a piece-wise linear function, it eliminates the negative values (set them to zero) and returns only
positive values. This particularity prevents the application of the model reduction method present in Algorithm 1
on Relu-NNs. Algorithm 2 depicts the update of Algorithm 1 to support Relu-NNs, where c⇤j (resp. d⇤j ) presented
in line 4 in Algorithm 2 is the outgoing weight cj (resp. dj) such that sign(cj⇤) ak = min

1jn
{sign(cj) ak} (resp.

sign(dj⇤) bk = min
1jn

{sign(dj) bk}).

Algorithm 2 Proposed model reduction procedure for Relu-NN

1: create a node ŝ
2: select sip and siq
3: for outgoing weight of sip and siq do
4: calculate c⇤j and d⇤j
5: end for
6: calculate the incoming weights to ŝ using Algorithm 3
7: calculate the outgoing weights: ŵ(ŝ, si+1,j) = |cj |+ |dj |
8: replace sip and siq by ŝ

Algorithm 3 Computation of the incoming weights for Relu-NN

1: if sign(ak) 6= sign(c⇤j ) or sign(bk) 6= sign(d⇤j ) then
2: Use Equation 3
3: else if sign(ak) = sign(c⇤j ) and sign(bk) = sign(d⇤j ) then
4: Use Equation 4
5: end if

(
ŵl

k = min{ak, bk}
ŵu

k = max
1jn

{sign(cj) ak, sign(dj) bk} (4)

Figure 3 shows an example of merging two neurons s2 and s3 of the original network presented in Figure 3a. In
the case the network uses the Tanh activation function, its abstract network is the network in Figure 3b obtained
by applying Algorithm 1. If we suppose that the original network (Figure 3a) is a Relu-NN, Algorithm 2 is applied
and the corresponding abstract network is presented in Figure 3c.

(a) The original network (b) The abstract model for Tanh-
NN

(c) The abstract model for Relu-
NN

Figure 3: An example of the abstraction method applied on two neurons s2 and s3 of a hidden layer li.

We implemented Algorithm 1 and 2 as a Python framework and we conducted a series of experiments on the
ACAS Xu benchmark [2]. For the output range computation we considered the property �5 as defined in [2]. We
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examined the performance of our approach by varying the size of layers of the abstract network (5, 15, 25, 35, 45).
The selection of neurons to be merged is performed randomly, and for each abstract network we calculated the
abstraction time, the output range using Interval Bound Propagation (IBP) algorithm [5] and IBP computation
time. We compared the average output range and the IBP computation time over 50 random runs for each abstract
model with the results obtained on the original model as shown in Figure 4a and 4b.

(a) Output range (b) IBP computation time

Figure 4: Comparison of the output range and the IBP computation time on the original network and di↵erent
abstract networks.

The obtained results showed that there is a trade-o↵ between the total number of abstract nodes and the
precision of the obtained abstract model. Having more nodes in the abstract network increases its precision, and
also its IBP computation time. Notice that IBP is one of the fastest verification methods, and yet its computation
time is significantly higher compared to the abstraction time of our approach (its is not provided to shortage of
space and it will be presented on the poster).
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Abstract

Few-shot-learning is a machine learning research area where a model infers a task it has not been trained on.

In Computer Vision classification, this means classifying samples among classes the model has not seen during

training, and given only a few examples of each class, typically less than 5. The quality of these few labeled

samples (i.e. the support set) is highly impactful on the performance of the model. In particular, the presence of

outliers in the support set quickly degrades the model’s ability to learn the classification task [1] [2]. We propose a

method to detect these outliers using KNN and Isolation Forest and an already trained FSL backbone. We achieve

more than 91.3% AUROC on CUB [3] and 89.3% on MiniImageNet [4] for 5-shot tasks. We also show that this

method scales reliably to 10-shot and 500-shot setups and that these results are highly reliant on the quality of the

used backbone.

Introduction

In machine learning and deep learning, classification models are classically trained to predict one of a number
of predetermined classes. Few-shot-learning (FSL) [5] is a set of techniques aiming at training models capable of
classifying classes they have never encountered in the training set. The prediction is only based on a few examples
of each class (the support set). This is highly useful in a number of use-cases where there is not sufficient time
and/or sufficient training data to retrain a model whenever a new class appears, such as character recognition, voice
recognition, object classification, etc.

However, in real-world setups, the support set is frequently altered and updated by humans and can thus contain
errors. One of those errors is to assign a sample to the wrong class. This is called an outlier. The aim of this work
will be to explore the idea of detecting these outliers in the support set, in order to prevent them from causing a
drop in performance.

Robust Few-Shot-Learning

Few-shot models have to rely on a few labeled examples to generalize and classify unknown images. This
means that the quality of the few examples given to the model in an FSL task can have a high influence on its
performance. This has been documented in [1] and [2] where it is clear that the few-shot learner’s performance
falls linearly as outliers are added to its support set.

This deterioration in FSL models gave rise to Robust Few-Shot Learning (RFSL) which is a research problem
introduced by [2]. The goal is to build models that are resilient to the presence of outliers in their support sets.



Figure 1. Evolution of a few-shot-learning model classification test accuracy when adding outliers to the support set. CU-
Birds [3] dataset on the left, MiniImageNet [4] [6] on the right. Figure from [1].

The authors make a distinction between Representation Outliers (ROs) and Label Outliers (LOs). Images of the
first type are correctly labeled, but are noisy samples, whereas those of the second type are those that have been
wrongly labeled. In our work, we chose to only focus on Label Outliers.

The approach used by [2] is thus to build a model that is robust to the presence of outliers in the support set,
rather than find methods to remove these outliers. We take the complementary approach that looks for ways to
detect and remove these outliers from the support set.

Method

In this work, our proposed method is to apply outlier detection methods, such as isolation forest [7] or K-nearest
neighbors (KNN) [8], in the embedding space, in order to accurately predict which elements in a support set class
are outliers. An outline of this proposed method is described in figure 2.

Figure 2. The general outline of the proposed method from image sampling to outlier detection predictions.

In other words, we only apply outlier detection to one class at a time. Features of each image of a class are
computed using a trained backbone. Then an outlier detection method is applied to the feature vectors of the
images of the class and each image is given an outlier score. Finally, by thresholding this prediction, we can
output the prediction as to whether an image is an outlier or not.



Experiments

Datasets used We chose to rely on three different datasets, that are usually used in few-shot-learning experi-
ments, as they all have more than 100 classes.

1. CU-Bids [3] is a dataset of birds photographs containing 6,033 images split across 200 classes.

2. CIFAR-100 [9] is a dataset of 60,000 32 by 32 colour images split across 100 classes containing 600 images
each.

3. MiniImageNet [6] is a subset of ImageNet [6] containing 100 classes and 600 84x84 colour images in each
class.

Outlier generation procedure The way we generate artificial outliers in our datasets is to sample a class of
k � 1 samples of the same class and 1 image from another class, as shown in figure 2. Thus a sample contains a
batch of images from the same class, along with a mislabelled image that comes from another class of the dataset.

Both inlier and outlier classes are drawn randomly. The k� 1 inliers and the outlier are also sampled randomly
from their respective classes.

Results Our main results are presented in table 1 for CUB [3], and in table 2 for Mini-ImageNet [4].

Outlier Backbone 5-shot 10-shot

Detection Method AUROC Pr. at 80% R. AUROC Pr. at 80% R.
KNN ResNet18 89.8 66.0 94.0 60.9

Isolation Forest (Pre-trained) 91.3 58.7 95.1 53.3
KNN ResNet50 85.8 53.3 93.2 58.0

Isolation Forest (Pre-trained) 89.9 58.2 95.1 54.3
KNN ResNet18 81.7 46.8 88.2 33.4

Isolation Forest 89.0 55.4 92.5 42.7
KNN ResNet50 80.5 41.6 92.3 49.4

Isolation Forest 86.3 50.0 93.0 45.8

Table 1. Outlier Detection performance in terms of AUROC and Precision at 80% Recall of KNN and Isolation Forest, applied
to CU-Birds in 5-shot and 10-shot setups (with 1 outlier in each class for both), and using different ResNet backbones, some
of which were pre-trained on ImageNet, then fine-tuned for CUB. The others have been directly trained on CUB from scratch.

Results on Mini-ImageNet

Outlier Backbone 5-shot 10-shot

Detection Method AUROC Pr. at 80% R. AUROC Pr. at 80% R.
KNN ResNet18 80.5 41.0 86.5 27.0

Isolation Forest 89.3 54.3 89.7 35.4
KNN ResNet50 79.5 40.0 86.7 35.7

Isolation Forest 85.0 44.3 90.4 35.9

Table 2. Outlier Detection performance in terms of AUROC and Precision at 80% Recall of KNN and Isolation Forest,
applied to Mini-ImageNet in 5-shot and 10-shot setups (with 1 outlier in each class for both).



2. Conclusions

In this work, we show that classical outlier detection algorithms such as KNN and Isolation Forest can success-
fully be applied to FSL support sets to detect mislabeled samples, and this can be done accurately enough so that
it is useful in real-world setups.

Our method generally achieves > 90% AUROC and > 50% Precision at 80% recall on three datasets (CU-
Birds, CIFAR-100 and Mini-ImageNet) and on 5-shot and 10-shot settings. We also show that these methods can
also scale to 500-shot samples and that the backbone used to compute feature vectors has a great influence on the
final performance.

It could be used as an iterative way of mining potential outliers in the support sets and having them checked by
a human operator so that the quality of the task’s support sets gradually increases.
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Abstract—In this contribution, we present CASUAL (Case-
based Reasoning using Unsupervised Part Learning), a prelim-
inary work on an interpretable model for fine-grained visual
classification. It uses an unsupervised part learning algorithm
to perform a semantic realignment of the latent representation
of images in order to 1) simplify the process of learning class
prototypes during training 2) reduce the number of comparison
between latent vectors during inference.

With the growing need for trust in decision-making
processes using machine-learning, the field of explainable
artificial intelligence (XAI) has been rapidly increasing.
Recent years have notably seen the development of a plethora
of methods covering a wide spectrum of usages, from post-hoc
explanations of opaque systems to models that are inherently
transparent (leading to the concept of interpretability by
design). In the latter case, the model uses semantic features
in an intelligible manner to produce the decision, hence
ensuring that the user can build an accurate mental picture
reflecting the model behavior [1]. In the particular case of
computer vision tasks (e.g., image classification), models
using case-based reasoning [2]–[6] now show accuracy results
on par with their non-interpretable counterparts. The process
itself consists in solving new instances of a given problem
using comparisons with previously encountered examples,
and is comparable to the form of cognitive operation applied
by human beings in domains such as case law. In practice,
during learning, the objective of the model is to extract a
set of references points (a.k.a., prototypes) from the training
set. These prototypes are used as comparison points with
the test instance during inference to compute the decision.
In the particular case of image classification for instance,
prototypes are usually images (or parts of images) from the
training set - chosen as representative of their respective
class - and the process of classification is based on the
visual similarity between the image under test and the set
of all class representatives. However, defining a relevant
visual similarity metric between images directly remains a
challenge, due to the lack of semantic value of the individual
pixels: for example, two images differing only by a small
geometric transformation (e.g., rotation, shift) would not be
considered as ”similar” using an euclidean distance between
pixel values. Instead, modern approaches (see Fig. 1) perform
image comparison in the latent space of a deep Convolutional
Neural Network (CNN), using abstract representations that

are, hopefully, for robust to variations (with works like [6]
even quantifying the similarity in terms on hue, contrast,
shape, texture, etc). However, in practice, architectures such
as ProtoPNet [3], ProtoPShare [4] or ProtoTree [5] look
for discriminative clusters without knowing beforehand
which points are actually relevant for the downstream task
(classification). In particular, non discriminative points (e.g.,
corresponding to the background) can clutter the latent space
and may have a negative impact on the learning process.
This may explain why architectures such as [3], [4] use the
object bounding boxes, when available. Moreover, during
inference, every single point of the latent representation of
the test image is compared to all prototypes, leading to a
high inference time (e.g., 196k comparisons for a 14 ⇥ 14
latent representation and 1000 prototypes).

In this work, we propose a new model, called CASUAL
(Case-based reasoning using Unsupervised Part Learning),
which performs a preliminary semantic realignment of the
features vectors before prototype extraction, in the specific
context of fine-grained recognition. Instead of finding clusters
inside of a convolutional space shared among all points of the
latent representation of the image, we first identify relevant
points - corresponding to certain parts of the object - within
this representation, using the unsupervised algorithm presented
in [7] (for which a patent is currently pending). As illustrated
in Fig. 2, this semantic realignment of feature vectors:

1) removes feature vectors corresponding to the back-
ground of the image, and the need for bounding boxes.

2) maps each training image into multiple latent spaces,
reducing the complexity of the clustering process.

As a consequence, our CASUAL model learns one latent space
per part, and part prototypes inside of these latent spaces. In
practice, as shown in Fig. 2, this also simplifies the inference
process by reducing the number of comparisons between the
test image and the prototypes by an order of magnitude
(prototype comparisons take place within each separated part
latent space).

In order to validate our approach, in the coming months
we aim at applying this architecture to the Caltech-UCSD
Birds 200 dataset [8] and to provide accuracy results on the
corresponding fine-grained classification task.



Fig. 1: State-of-art case-based reasoning models. 1) Each training image is converted into a set of points (feature vectors) in
the latent space of a deep CNN, each point corresponding to a region of the image. 2) During training, the system learns to
project these points (using additional convolutional layers) such that there exist discriminative clusters corresponding to the
different categories of objects. 3) Prototypes are extracted as parts of training images closest to each cluster centroid. 4) During
inference, all points (white) of the latent representation of the test image are compared (5) to all prototypes and similarity
scores aggregated before the final decision (6).

Fig. 2: Our proposal for the CASUAL architecture. 1) Similar to related works, each training image is first converted into a
set of points in the latent space of a deep CNN. 2) Then, using the algorithm described in [7], we select points (layers Di)
corresponding to the same part of the object (e.g., ”head”,”legs”,”belly”), before applying clustering layers Ci per part (3),
leading to one latent space per part. 4) Part-prototypes are extracted. 5) During inference, we first project the test image into
a set of points (one per latent space corresponding to a given part). 6) Each part point (white) of the latent representation of
the test image is compared to all corresponding part-prototypes and similarity scores aggregated before the final decision (7).
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Village Bringing trust from ODD to Data (posters) 

Introduction to the themes of the village 
Flora Dellinger, Morayo Adedjouma 
 

 

For a safe integration of AI components into critical systems, an evolution of classical engineering processes 
is required. In particular, new concepts and new activities need to be integrated, such as the ODD 
(Operational Design Domain) and the data lifecycle. 

First, the ODD is a new concept, coming from the automotive sector, describing the “Operating conditions 
under which a given automated driving system (ADS) is designed to properly operate, including but not 
limited to environmental, geographical, and time-of-day restrictions, roadway types, speed range etc.” (SAE 
J3016, 2021). Its objective is to define the limits where the ADS is valid and thus confine the scope of the 
safety case, as well as the validation. 

On the other hand, AI components are trained and evaluated on datasets. Using relevant data of quality is 
necessary to develop and validate AI models that satisfy use case requirements and expected system 
performances. This is particularly true for critical systems that puts an emphasis on safety and avoidance of 
failures. However, obtaining a proper dataset for a use case is challenging in itself. Datasets need to be 
statistically representative of the operational domain, meaning the situations encountered by the system in 
operating conditions. The system performance is also related to its responsiveness to any complex and 
environmental situations the systems may face, at the frontier of the operational domain and beyond. Then, 
one should also validate the system robustness against such situations. 

We find then here a strong interest to use an ODD as an input to specify which data to acquire for training, 
testing and validating Machine Learning models. However, the ODD concept was primarily defined for safe-
by-design purpose. It is intended to be refined to reach its final maturity level through the overall system 
development cycle for defining a satisfactory operating system. While its usage within the safety, design and 
V&V activities was well elaborated in the literature (SAE J3016, 2021), this declination for a data and machine 
learning perspectives, while of an obvious interest, is not straightforward. 

Finally, datasets are often seen as fixed databases, and expected to be perfect. However, in reality, datasets 
are constantly evolving, containing several batches of data acquired at different moments and under various 
conditions. They also contain some imprecisions, annotation mistakes or anomalies, and need to be filtered 
and preprocessed before being used for training an AI model. 

This village provides a focus on the interaction between ODD and data lifecycle. First, an ODD Engineering 
process (Bohn et al.) is introduced, as well as some perspectives for ODD usage in a data and ML monitoring 
(Adedjouma et al.). Then the declination from ODD to Dataset specification is addressed with an outline of 
Trustworthiness aspects for Data Engineering in AI (Langlois et al.), associated with the first experiments of 
a PhD thesis (LeCoz et al.). We provide an overview of methodologies to build trustworthy datasets for AI. 
Some practical solutions are featured like a Data platform (Braud et al.) and the use of synthetic datasets 
(Leroy et al.). Finally, some research approaches tackle the challenges of leveraging unlabeled data for time 
series (Antoni et al., Ngole Mboula) and images (Poka Toukam et al.). 
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Bringing trust from ODD to Data

Towards Trustworthiness with ...

a language for dataset specification

Towards Trustworthiness by …
A Formalization of the Data Lifecyle for Complex and Critical Systems in AI

Complex system dataflow

Data Orientation

Objectives, Risks

Data value analysis

Data Implementation

Split in training, 
validation, test subsets

IVVQ Test Campaign

Data visualisation, 
dashboarding, 

reporting, versioning

Architecture & Design

Data Architecture

Specification: dataset, 
annotations

Annotations 
guidelines

IVVQ Strategy and 
Plan

IVVQ

Data Integration

Data Verification

Data Validation

Deployment

Data deployment

Data Monitoring

Data Assessment
Definition of quality

attributes, metrics, KPI Measurement, Analysis

ODD, Test scenarios, 
Requirements

Proposition of a Development Process for Data Engineering in AI
Identification of 

70+ Data Activities

Data Collection
Data Acquisition

Data preparation: 
Structuration of dataset, 

Feature Engineering, 
Labeling

augmentation, balancing

Towards Trustworthiness by …
Documenting Data(sets)

Towards Trustworthiness with ...

Metrics for data assessment

In the data engineering activities, the data metrics provide a

quantitative assessment of the adequacy of the datasets for the

ML/AI task to be learned. The following metrics will be

considered:

• Representativeness defines how the dataset represents

the original population

• Diversity defines how the variety is respected. It guarantees

the respect of probabilistic or deterministic distribution of the

data

• Completeness describes the proportion of the missing

information in a given dataset

• Coverage introduces the notion of wrapping a given class or

situation learned by the model. It guarantees the proper

execution of the model in the covered situation

• Corner Cases represent ambiguous data where the model

fails. An estimation of their proportion and influence is

needed.

“ … Despite the importance of data to machine learning, there is 
currently no standardized process for documenting machine learning 
datasets …” “Datasheets for datasets”, Timnit Gebru et al

« Information sheet » to Increase Transparency as a first step

Towards Trustworthiness by …
Documenting Data Engineering activities

« Information Sheets » illustrations from literature : « Data Nutrition Label » and « Data Cards »

Both requirements satisfied 

independently can lead to 

unbalanced dataset

Data characteristics can be:

- Categorical variables

- Quantitative variables 

mapped into categories.

1. Define one table per requirement/data characteristic

List all possible values of the 

data characteristics with

associated count target.

2. Combine requirements

How to define requirements to 

specify a dataset in order to 

enable verification ?

Textual requirements are often ambiguous.            Need for a language !

Challenge for dataset specification: balance between perfect

characteristics distribution (can lead to "waste" data) and unbalanced

dataset.... => Language must allow to express TOLERANCES
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Bringing trust from ODD to Data

Context
• Deep Learning models revolutionized computer vision (image 

classification, object detection, …) but their predictions can't 
always be trusted (out-of-distribution data, adversarial examples, 
ambiguous data, ...).

• Need to determine the operational domain of a model: the 
conditions upon which its predictions can be considered reliable.

Objectives
• Define an operational domain based on extreme examples,
• Study its application and usefulness to:

- evaluate Deep Learning models,
- explain models,
- monitor models during deployment,
- manipulate the compromise data coverage / performance, ...

Approach

Global approach:
• Use a controllable generative model to manipulate images and 

generate extreme examples (corner cases).
• Those corner cases define the limits of the operational domain 

of a classifier.
• Link the classifier performance to the data description.

Technical details:
• Focus on multiclass image classification.
• Use the generative model StyleGAN2 [3] known for:

- generation of high-quality images,
- a disentangled latent input space allowing image manipulation [5].

• Use MNIST dataset (handwritten digits):
- start with a simple dataset to validate the approach,
- add blur and noise as visual attributes that influence classifier 
performance [4].

Results
• Find the visual attributes that most influence the classifier 

performance: mainly noise, blur, contrast, and shape.
• Generate corner cases by manipulating images along those 

attributes until classifier prediction changes.

• The latent space of the generative model allows image 
manipulation by moving into the directions that degrade the 
classifier prediction [1, 2].

Future work

• Validate the complete pipeline on a first use case (corrupted MNIST).
• Scale to more complex data.
• Explore the various applications of an operational domain.

digit shape

noise level

Corner case in 
latent space
Corner case in 
image space

ideal latent space

image space
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Bringing trust from ODD to Data

Context
Apply an innovative deep learning self-supervised method for anomaly detection on an
unlabeled dataset.

Air Liquide use case: Efficiency Monitoring System (Data Quality)
The use case considered is a set of time series, without any annotation (unlabeled dataset
for anomaly detection). Various sensors are used to record time series of several physical
measurements (pressure, temperature), during a year. The sampling rate is not constant.

The method exposed in this study deals with univariate time series regularly sampled. This
study is based on the temperature sensor System_3-TI1223.PV which was selected for its
apparent stability in nominal regime.

The preprocessing step to build the working dataset includes:
- Linear interpolation to obtain a regularly sampled time series (1 sample per min),
- Normalization to have a centered and reduced working dataset,
- Windowing with a sliding window of 420 samples (7 hours) and a stride of 5 minutes.

Method
The proposed approach is a two-step method illustrated in the schematic:
- First a representation of the data is learned using a self-supervised approach. In this

configuration, we use a pretext task of prediction to train a 1D-CNN:
• The network architecture, composed of [3 x Conv1D(number of filters: 32, kernel

size: 3) + 1 x MaxPooling1D(pool size: 2)] repeated 3 times, is chosen for its ability
to extract a robust and general representation of the data.

• Each data composed of 420 samples is split: the first N1 = 280 samples are used as
input, the last N2 = 140 samples (ground truth) are used as output for the prediction
task. The network is trained on this prediction task using ground truth data.

- In a second step the neural network is used to detect anomalies: an anomaly is raised
each time the value of the prediction metric is above a fixed threshold.

Results
The training of the predictive neural network is done on the January data (8 845 data) and
the validation on the February data (8 269 data). Data from other months of the year (about
42 000 data each month) are used to test the method.
The anomaly score is equal to the value of the prediction metric (MAE) divided by the 99th

percentile of the metric values calculated on the training set (p99 = 0.1123).
The anomaly threshold is chosen such that the anomaly score is slightly higher than the
value for which the signal variations of the test set are considered normal by an expert.
The proposed method detects 142 anomaly segments over the full year. These anomalies
are mainly due to process anomalies or changes in the production regime. Examples of
network prediction results for nominal and anomalous data, along with the resulting
anomaly scores, are displayed on the plots.

Prospects and future work
Future work on this use case includes using an alternative pretext task and applying the
method to multivariate or multimodal time series for more robust predictions.

Prediction

Ground truth

Anomaly Detection

Proposed Approach

Normal Time Series

Anomaly threshold
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Bringing trust from ODD to Data

Ships (surface vessels or submarines) are equipped with thousands of sensors of different types.
Among these, vibration sensors are distinguished by the fact that they must meet 2 needs:

• to detect or prevent breakdowns,
• to ensure that the acoustic stealth of the ships has not deteriorated.

Set up all these sensors might be expensive and difficult to maintain. This study explore the
way to drastically reduce their number without compromising on these 2 types of requirements.

For this study, a pump similar to that installed on some ships was installed on this test bench
with 4 vibration sensors, just as on board.

Is it possible with some AI model to detect and classify anomalies just as it is when using the 3 health surveillance sensors, but using only the single
acoustic surveillance sensor that is mounted on the base?

Problem

Introduction Operating states

Experiment

Perceivers

Health surveillance sensors
Accoustic surveillance sensors

Attention Is All You Need -Vaswani et al., Google Brain, Dec 2017

Perceiver: General Perception with Iterative Attention –A. Jaegle et al., Mar 2021

Perceivers are specific types of Transformers. Just like Transformers, they are essentially a stack of main blocks using 3 types
of conceptual representations of their inputs that evolve over the blocks:
• Queries (Q) = current representations of learned useful concepts,
• Keys (K) = current representations of input information considering all its learned angles of interpretation,
• Values (V) = current representations of input information considering all the learned useful concepts it may contain.

They differ from Transformers principally by the fact that each of their main blocks, uses a cross-attention sub-block instead
of a (masked) self-attention one. This offers the possibility to represent the useful concepts (Queries) in a latent space
which can be much smaller than the space of representation of the inputs from which they are extracted.

Thanks to this, the computational complexity of Perceivers is no longer quadratic and therefore, they can handle inputs of
much larger sizes than Transformers.

This decoupling of Queries and input representations offers 2 other important advantages in the learning process. It offers
a lot of flexibility and versatility:
• not only in handling, possibly simultaneously, very heterogeneous inputs both in terms of their nature (images, time

series, texts, videos...), structure and shape,
• but also, in the pre-processing of these inputs since it allows to do a full Feature Learning.

In this case of full feature learning, the latent representation of Queries in the first Perceiver block is initialized at random. But
the Perceivers also allow to initialize this latent space with some other kind of encoders (CNN, LSTM, ...) and/or to do
more or less Feature Engineering.

Perceivers have been tested on a very
challenging Use Case:
• Very high sampling frequency (typically

> 20 kHz),
• Very unstable and fluctuating signal,
• Most of the data is noise and useful

information is really buried in that noise,
• Signal to noise ratio may be very low

for some of that useful information to be
extracted,

• No prior Feature Engineering (except
resampling), only Feature Learning,

• 4 kinds of generally hard-to-detect
defects: shaft edging, shaft unbalance,
cracked rotor bars, ball bearing defects

Flawless

Shaft Edging

Shaft Unbalance

Ball Bearing
Defects

Cracked Rotor 
Bars

CONFUSION MATRIX

Results
Perceivers proved:
• to be very effective in detecting anomalies with a fast and efficient learning,
• to have very well learned how to detect these anomalies,
• to be able to extract:

• very accurate and consistent patterns for each type of anomaly,
• very distinct patterns between each type of anomaly.

Perspectives

There are many other use cases for which this type 
of solution could also be valuable (e.g., use cases 
with multimodal anomaly detection needs, 
mixing of very heterogenous data, …).
Perceivers offer other perspectives, like:
• Explainability by Design (using cross-attention 

weights),
• Domain Adaptation (e.g., from test bench 

data/models to « true » data/models),
• Semi-supervised learning,
• Feature Learning for better domain 

understanding and system engineering.

Shaft edging

Flawless

Shaft unbalance

Cracked rotor bars

Ball bearing defects



Contacts :

Robustness using fairness: problem formulation
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(1) Université Paris-Saclay, CNRS, LMO; (2) Université Gustave Eiffel, LAMA;  (3) Université Toulouse III - Paul Sabatier, ANITI; (4) IRT SystemX
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Bringing trust from ODD to Data

Model

• 𝒳 = ℝ𝑑 - input space, 𝒴 = ℝ𝑑 - label, 
𝒮 = −1,1 - sensitive attribute

• 𝑋, 𝑆, 𝑌 are drawn from ℙ on (𝒳, 𝒮, 𝒴)
• ℎ: 𝒵 → 𝒴 - measurable function (predictor)

- 𝒵 = 𝒳 × 𝒮, 𝑍 = 𝑋, 𝑆 - aware case
- 𝒵 = 𝒳, 𝑍 = 𝑋 - unaware case

• 𝑙: 𝒴 × 𝒴 → ℝ+ - loss function

Definition (Risk Parity) A predictor ℎ: 𝒵 → 𝒴 satisfies
Risk Parity (RP) w.r.t distribution ℙ if
𝔼𝑃 𝑙 ℎ 𝑍 , 𝑌 𝑆 = 𝑠 = 𝔼𝑃[𝑙 ℎ 𝑍 , 𝑌 ∣ 𝑆 = 𝑠′] for all 𝑠, 𝑠′ ∈ 𝒮.

• ℎ∗ ∈ argmin
ℎ: 𝒵→𝒴

𝔼𝑃 𝑙 ℎ 𝑍 , 𝑌 - (unfair) optimal predictor

• ℎ𝑓∗ ∈ argmin
ℎ𝑓:𝒵→𝒴

{𝔼𝑃 𝑙 ℎ𝑓 𝑍 , 𝑌 : ℎ𝑓 satisfies RP} – fair optimal

predictor

Challenges

Which one of the above predictors is better depending on the 
test distribution ℙ′ ? 
It is shown (1) that
• ℙ and ℙ′ are close - ℎ∗ is still a good for ℙ′

• Majority (𝑆 = 1) becomes minority (𝑆 = −1) in ℙ′ - ℎ𝑓∗ is 
better

Open questions:
• What is the precise expression of ℎ𝑓∗ ?
• What distance measure must be used to control the 

changes in distribution?

Proposition
Solve the following optimization problem 

ℎ𝑓∗ ∈ argmin
ℎ𝑓:𝒵→𝒴

{ 𝔼𝑃 𝑙 ℎ𝑓 𝑍 , 𝑌 :

𝔼𝑃 𝑙 ℎ𝑓 𝑍 , 𝑌 𝑆 = −1 = 𝔼𝑃 𝑙 ℎ𝑓 𝑍 , 𝑌 𝑆 = 1 }

for binary classification, i.e. 𝑙 ℎ𝑓 𝑍 , 𝑌 = 𝕀(ℎ𝑓 𝑍 ≠ 𝑌), 
and when

1. 𝒵 = 𝒳 × 𝒮, 𝑍 = 𝑋, 𝑆
2. 𝒵 = 𝒳, 𝑍 = 𝑋

Future Work

• Extending the results from a binary sensitive attribute 
to a multi-valued one.  

• Extending the results to continuous sensitive attribute.
• Finding an optimal distance measure to control the 

changes in distribution.

Expected application

The derived fair predictor can be applied on Thales LAS 
Aerial Photograph Interpretation / EuroSAT use case 
dataset, to solve the Highway/River binary classification 
problem, where a small percentage of images (~3%) 
has a certain blue-veiled property.

References

[1] Maity, S., Mukherjee, D., Yurochkin, M., and Sun, Y. 
(2021). Does enforcing fairness mitigate biases caused by 
subpopulation shift?

Introduction

• Data-driven algorithms can inherit biases that are present 
in the data, degrading their performance.

• A prediction algorithm may exhibit different behaviors for 
different groups of individuals.

• Question: Can enforcing fairness make the prediction 
model more robust?
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• Modern industrial plants produce increasingly complex datasets by monitoring of thousands of assets, to the end of identifying past anomalies or future 
failures and/or optimizing underlying processes. 

• These data typically showcase a high degree of non stationarity related to the complexity of the underlying processes, and hence a wide variability of 
temporal structures, with limited statistical a priori on the time series. 

• In this setting, we propose a general model free anomaly detection framework, aimed at dealing with complex signal structures while making mild 
assumptions on their behaviors.

• We illustrate the proposed approach on a industrial dataset made of temperatures recorded on different assets of complex plant over a year.

Bringing trust from ODD to Data

Sparsity based anomaly detection framework

Fred NGOLE MBOULA

CEA Paris Saclay

Confiance.ai Days 
4-6 Oct. 2022
CentraleSupélec - Saclay, France 



Metric in the sparse codes space
• Euclidean distance does not take the

correlations between the atoms into
account. We consider a fully
connected weighted graph
representing the atoms and their
pairwise distances.

• Each sparse code can be taken as the
initial condition of the diffusion
equation on this graph.

• We choose the distance between two
sparse codes as the L2 distance
between the diffusion equation
solution they generate on the graph.

The univariate anomaly detection
simply consists in applying the
Isolation Forest method to the samples
sets made on the sparse codes of the
time series considered at each scale,
endowing the detection spaces with
the graph based metric defined in the
top right box.

S
ca

le
sTime series dissimilarity metric

We build a dissimilarity metric between
the original time series based on their
atoms correlations at different scales
and their contributions to signal energy,
using Wasserstein distances.

Atoms or patterns Temporal activations
of the patterns

Temperatures dataset presented
as a graph whose adjacency matrix
is derived from the pairwise
dissimilarities calculated on the
dataset.

Collaborative anomaly
detection consists in
searching anomalies jointly for
structurally similar
time series, by merging their
respective sets of sparse
codes at each scale, which
provides a statistically more
complete basis for identifying
normality and thus reducing
false positives

Globally anomalous signal identification based
on pairwise time series dissimilarity matrix

• The multiscale patterns based
representation enables the detection of
anomalous segments of variable
unknown lengths with mild assumptions
on the signals structures.

• Collaborative anomaly detection does
select among the anomalies detected in
the univariate setting, the most complex
ones.

• This work naturally extends to anomalies
categorization.
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Leveraging unlabeled data to improve active learning
for trustworthy data selection and annotation
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Active learning for object detection on industrial use cases
• To perform well, classical deep learning techniques rely on large collections

of samples, fully annotated by hand. It is a very expensive and fastidious
task.

• Active Learning (AL) iteratively selects batches of data for annotation
(acquisition function) and retrains the model to optimally assign the
annotation budget.

• From an industrial point of view, we propose to apply AL:
• On a realistic use-case: detection on images from driving scenes
• With Yolov5 detector : fast, data efficient, widely deployed in production

• Our previous work [1] in Confiance.AI in 2021 shows the performance of
traditional active learning strategies on this scenario

Consistency loss to leverage unlabeled data
• By definition, a lot of unlabeled data is available in AL

scenario, but traditional AL techniques ignore unlabeled
data during representation learning

• The consistency metric between two randomly augmented
views of an image has been introduced recently as a self-
supervised objective for AL model training [2], and as a
criterion in the acquisition function [2,3]

• For object detection, the consistency is based on the
matching of predicted boxes between two augmented
views (figure 1)

• Improvements to this consistency metric are proposed
and illustrated in figure 2:
• using Generalized IOU loss instead of L1 as the

regression objective
• using stronger augmentations from the Yolov5 [4]

pipeline

Figure 1 : Box-matching over two augmented views of the same image

Figure 3 : Results of active learning trainings with and without self-supervision on BDD100k 
(average of 3 runs with different seed images), using random (left) and max-uncertainty

acquisition function (right)

[1] Fritz Poka Toukam, Thomas Dalgaty, Hedi Ben-Younes, Nicolas Granger, Spyros Gidaris, Camille Dupont,
Oriane Simeoni. Is active learning better than random selection for real-word tasks ? In the Confiance.ai Days
2021 Poster Booklet. Confiance.ai Days 2021, Oct 2021, Toulouse, France. 2021. hal-03687605
[2] I. Elezi, Z. Yu, A. Anandkumar, L. Leal-Taixe, and J. M. Alvarez. Not all labels are equal:Rationalizing the
labeling costs for training object detection. InProceedings of the IEEE/CVFConference on Computer Vision and
Pattern Recognition (CVPR), 2021.
[3] W. Yu, S. Zhu, T. Yang, C. Chen, and M. Liu. Consistency-based active learning for objectdetection.CoRR,
abs/2103.10374, 2021
[4] G. Jocher. Ultralytics /yolov5.

References

Figure 2 : Overview of the proposed AL pipeline which incorporates the consistency metric and 
unlabeled samples during training.

Conclusion
• Promising results
• Well tuned for detection task
• Minimal disruption of detection models and AL pipelines

Results and future work
• Initial experiments of our approach (Figure 2) on BDD100k

show consistent gains of self-supervision in initial and later cycles
(Figure 3)

Future experiments :
• Complement box regression consistency [2] with

classification objective
• Use consistency loss as a score for the acquisition function [2,3].
• Refine box-matching heuristic to accomodate strong yolov5

augmentations
• Application to the Valeo Use Case

augm
ent

augm
ent

Consistency
Loss

Few labeled images

augm
ent

Supervised
Loss

Yolov5 
detector

Inference
on unlabeled 

data

annotateIntegrate newly labeled images

Box
matching

Many unlabeled images

AL 
selection
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Proposition of an ODD engineering process
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Identification of topics

Operational Design Domain (ODD) definition by the SAE J3016 :
“Operating conditions under which a given driving automation system or feature thereof 

is specifically designed to function, including, but not limited to, environmental, 
geographical, and time-of-day restrictions, and/or the requisite presence or absence of 

certain traffic or roadway characteristics”

Identification of 
characteristics

S
ystem

 C
onsolidation

Inputs:
• Influence factors with their measurable characteristics and optimized limits
• Preliminary design of the new system feature
• Regulation and sectorial checklist

Activities:
Step 3 aims to consolidate all the topics together
• From an initial set of characteristics and limits of all topics, ensure consistency with the operational states of the 

system
• Characteristics are gathered by nature for all topics to identify majorant and minorant limits
• Characteristics are gathered by operational states to grant understandability for system users
• Check the exhaustiveness of ODD characteristics thanks to sectorial checklists and verify the conformity with

regulation

Outputs: 
• Preliminary ODD describing influence factors with their characteristics and relevant limits

Inputs:
• Preliminary Design of the new system feature which the ODD has to address
• Impact analysis between new system feature and reference systems (reference for applications or technologies)
• Related industrial State of the Art allows to identify potential limitations and risks of the new system feature

Activities:
• Segregation of new subjects for analytical approaches and known subjects addressed by reference system 

knowledge
• An analytical approach on new subjects allows to identify specific topics to address in the ODD. It requires system 

expertise
• Functional limits and operational risks are identified in feedback of reference systems. Only topics relevant for the 

new system feature are kept by system experts

Outputs: 
• The previous identified topics are collected to be addressed in the next step of the ODD process

STEP 1

STEP 2

STEP 3

Inputs:
• Topics to address in the ODD identified in Step 1
• Preliminary design of the new system feature is required in this

analysis

Activities:
Step 2 is applied on each topic one by one
• For each topic, influence factors are identified in relation with the new 

system feature
• For each factor, measurable characteristics have to be considered with

their thresholds for engineering activities
• For each characteristic, a safety margin is taken into account and 

allows to define the acceptable limits
• A local optimization is done between development costs and usage 

benefits to confirm or extend limits

Outputs: 
• Influence factors with their measurable characteristics and optimized

limits

Influence factors

Topics to address 
in the ODD

Functional limits or 
previously identified risks

Identify influence factors 
which lead a nominal case to 

become an 
edge case or a risk

Identify measurable 
characteristics and associated 
thresholds (corresponding to 

preliminary design)

Margins and 
limits

For each characteristic:

Define safety margins 
and their associated 

limits

For each factor:

Facteur 
d’influence

Measurable 
characteristics

Optimize 
costs/benefits 
for each limit

For each topic :

Includes technical 
knowledge and experts 
advice in the technical 
solutions proposed to 

cover needs
Technical threshold + margin 
=  chosen limit for the design

Preliminary design
of the new system 

feature
(preliminary architecture 
+ preliminary technical 
solution to cover needs 
and known constraints)

Influence factorsInfluence factors

Measurable 
characteristicsMeasurable 

characteristics

Margins and 
limits

Margins and 
limits

Based on analytical approach + expertise

Industrial State 
of the Art

Identification of one (or several) 
reference system(s) application(s) / 
technology(ies) (ex: sensors type)

Based on Feedback

Identify functioning 
limits

Identify operational 
risks

Identify specific topics 
(due to the expansion of Usage Domain and/or 

the increase of the autonomy level)

Reference systems 
(AI-based or not)

Topics 
to address 
in the ODD

Based on expertise*

Keep the relevant topics 
for the new system

Preliminary design
of the new system 

feature
(preliminary architecture 
+ preliminary technical 
solution to cover needs 
and known constraints)

* By application sector / sensor type

Impact analysis 
between the target 
system feature and 

the reference 
system(s) 

Feedback 
(«RETEX »)

Split known 
and new 
subjects

ODD shall be understandable
for the end users and 

the certification authorities

ODD was initially created
by the autonomous automotive

industry

ODD  is defined for 
a specific design of 

a system-level feature and 
its technical limitations

ODD is dedicated to a 
system-level feature

with automation capabilities

ODD is a chosen restriction of the 
Operational Domain by system 
designers in order to ensure

feature usage

ODD is a part of the 
system specification dedicated to 

external conditions on which
development efforts will be focused

Example 1:
• Topics to address: Cruising in its lane
• Associated influence factors: Capability to perceive the lane

markings
• Associated measurable characteristics:  Distance that can be

covered without lane detection + lane markings readability on the 
ground

• Associated margins & limits: Guarantees lane marking, except for 
roadworks areas.

• Optimized costs/benefits: Multiple lane markings, colored in 
roadworks areas

Example 2:
• Topics to address: Entering/exiting a tunnel
• Associated influence factors: Quick variation of luminosity
• Associated measurable characteristics:  Variation of 

luminosity/temporality
• Associated margins & limits: No anticipation possible leading to an 

exclusion of tunnels from the ODD
• Optimized costs/benefits: Setting up luminosity sensors with V2X 

communication for each tunnel is too expensive

STEP 1

For each limit:

Ensure the 
consistency between 

the limits and the 
‘operational states’ 

of the system

Regulation

Verify the 
conformity to 

regulation

- Gather characteristics 
by nature 

and define majorant 
and minorant limits

- Gather characteristics 
by operational state 

and ensure
the understandability

for each user 
of the system*

Verify that no 
element of the 
checklist has 

been forgotten

Sectorial 
checklist

* Assumption : the system is composed of only one autonomous feature/service for this ODD.

Preliminary design
of the new system 

feature
(preliminary architecture 

+ preliminary technical 
solution to cover needs 
and known constraints)

Initial

Influence factors

Characteristics

and limits

Influence factors

Characteristics

and limits

Influence factors

Characteristics

Margins and limits

Influence factors

Characteristics

and limits

Influence factors

Characteristics

and limits

Influence factors

Characteristics

Margins and limits

Intermediate 1

Influence factors

Characteristics

and limits

Influence factors

Characteristics

Margins and limits

Intermediate 2

Influence factors

Characteristics

and limits

Influence factors

Characteristics

Margins and limits

Final
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Bringing trust from ODD to Data

Project: Methods and Tools for Operational Design Domain

Georges Jamous (Airbus Protect), Morayo Adedjouma (CEA)

The Operational Design Domain (ODD) was originally defined for Driving Automation Systems for On-Road Motor Vehicles, by
SAE J3016 (*). The ODD term definition is evolving to consider ML modeling for multiple operational domains (road vehicles,
aeronautic, etc.) {SAE AIR6988, EASA, SAE AS6983, etc.} but there is no consensus on a unique ODD definition. ODD aims to
describe foreseeable operational conditions an AI-based system will operate within.

(*) SAE J3016 (Taxonomy and Definitions for Terms Related to Driving Automation Systems for On-Road Motor Vehicles):
“Operating conditions under which a given driving automation system or feature thereof is specifically designed to function,
including, but not limited to, environmental, geographical, and time-of-day restrictions, and/or the requisite presence or absence of
certain traffic or roadway characteristics”

ODD from Data and ML engineering perspectives
Specific information is needed to exploit the ODD depending on
the engineering phase:
• for data engineering, additional contextual information is

needed on the data nature and the process of collecting them
to elaborate the different Training, Validation and Testing
datasets. .

• For ML engineering, data for ensuring the AI-system
performance at ODD's boundary must be specified.

ODD from Verification, Validation, and Monitoring perspectives
• At design time, the ODD must be verified and validated against the 

expected properties specified within the system requirements for the AI-
system.

• At operation time, the ODD should be monitored to detect any deviation 
from the AI-system nominal behavior and apply the mitigations measures 
accordingly. So, the AI-system must also be validated with respect to its 
robustness against the ODD boundary and OOD (Out Of Domain) data.

ODD from a Functional and Design perspectives
• The Operational Domain (OD) represents the real world in which the

subsystem will operate at a given moment of time.
• The Application Domain (AD) describes foreseeable operational

conditions a subsystem will operate within. Foreseeable elements in this
context must be measurable.

• The ODD is a voluntary restriction of the operational domain (OD) in
which the subsystem concerned by AI is intended to operate.

AD

ODD

Application Domain (AD) is 
applicable to both 
- None AI Subsystems 
- and AI Subsystems.

OD

OD

AD Data 
(No AI) AD Data 

(AI)

Contextual
data

Contextual
data

Contextual data related to 
ODD

ODD boundary

Boundary testing to verify 
robustness at subset, 
superset, or ODD {99, 

101, 100}

ODD data
(AI)

Contextual data 
NOT related to ODD

ODD 
data

(No AI)

OD

AD

OOD

Boundary testing to 
verify robustness at 
subset, superset, or 
ODD {99, 101, 100})

ODD

ODD boundary

ODD Usage perspectives

ODD Description



Village End-to-end approach for trusted AI systems and V&V (posters) 

Introduction to the themes of the village 
Guillermo Chaley Gongora, Boris Robert, Cyprien de la Chapelle 
 
 
 
To fully support the needs of its industrial members, Confiance.ai shall deliver a consistent end-to-end ap-
proach for the development of trusted AI-based systems.  

This approach shall be methodological, addressing the full cycle of engineering activities: at system level and 
at AI component level, from need analysis, specification architecture, design and implementation, to IVVQ 
and maintenance.  

It shall be tooled by a Trustworthy Environment, implementing this end-to-end approach and assisting engi-
neers of various domains (systems engineering, data engineering, AI algorithm engineering, embedded soft-
ware engineering, etc.)  

Such an approach shall allow Confiance.ai members to implement and secure iterations, feedback, con-
sistency during engineering activities, and to build justifications, demonstrate the trustworthiness of their AI-
based systems.  

As illustrated by the following posters, Confiance.ai aims at demonstrating:  

• How modeling can help getting cohesive engineering workflows and an adequate architecture of the 
Trustworthy Environment that supports them.  

• How a consistent set of engineering methods for trusted AI-based systems can be built, from standards 
and from methodological contributions developed by Confiance.ai teams in their respective fields.  

• How the “classical” Systems Engineering lifecycle shall be accordingly modified/augmented in order to 
take into account the specificities of AI-based systems.  

• How Assurance Cases can help the Verification & Validation of AI-based systems, with trustworthiness 
being characterized as a set of fundamental properties that shall be proved to be satisfied.  

• How trustworthiness properties, or attributes, based on objective criteria and taking into account the 
multi-dimensional nature of trustworthiness, can be identified, structured, measured and mapped 
onto engineering processes.  

• How the “Trustworthy Environment” delivered by Confiance.ai to its members will assist their AI engi-
neering, by proposing and tuning trustable engineering workflows, accompanying the implementation 
of engineering processes and monitoring the trustworthiness properties.  
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End-to-end approach for trusted AI systems

Modeling 
method:

Allocation
links

Allocation
links

Allocation
links

OPERATIONAL ANALYSIS (OA)
What is the context of use of Confiance.ai’sTrustworthy Environment ?
What are the engineering processes that the Trustworthy Environment has to support ?

Modeling of development activities (EC2) and IVVQ activities (EC6) for a trustable 
AI-based system, using "Faithe" metamodel and taking into account the M&P 
developed by other Confiance.ai projects EC3/4/5/6/7.

Analysis and architecture modeling, taking  
Confiance.ai’sTrustworthy Environment 
as the System of Interest

SYSTEM ANALYSIS (SA)
What functions/services shall be performed by the Trustworthy Environment ?
How shall the Trustworthy Environment support the processes described in OA ?

Collaboration between EC2/EC6 (specifier) and EC1 (implementer).

LOGICAL ARCHITECTURE
What are the abstract resources to be used by the Trustworthy 
Environment ?

Generic, abstract architecture defined by EC1 to implement 
the services described in LA.

PHYSICAL ARCHITECTURE
What are the concrete resources to be used by the 
Trustworthy Environment ?

Instantiated architecture defined by EC1, 
integrating the software components produced 
by EC3/4/5/7.

Objectives:
- Get cohesive workflows (result of OA) that will be recommended to the users through the

companion of the Trustworthy Environment.
- Get a cohesive functional scope of the Trustworthy Environment (result of SA)
- Get a consistent architecture (result of LA/PA) of the Trustworthy Environment that will be

delivered by EC1 to industrial partners.

Modeling
tool:

Confiance.ai’s
Trustworthy Environment

Trustable
AI-based system

The focus of this poster is the Trustworthy Environment that will help engineering trustable AI-based systems. 

Confiance.ai member’s
own industrial environment

Boris ROBERT (IRT Saint Exupéry)

Modeling for the description of use and architecture 
of Confiance.ai’sTrustworthy Environment
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End-to-end approach for trusted AI systems

Model

Meta-model

Top-down approach:
capture of a high-level, holistic vision of an 
engineering process for trustable AI-based systems

Bottom-up approach:
capture of Methods & Processes elaborated by 

Confiance.ai Projects for specific topics

EC3
EC4
EC5
EC6
EC7

can guide the construction of… 

can extend, update, detail…
Generic vision 

based on 
Standards and

working groups

Framework for AI Trustable & Holistic Engineering

Several crossing Viewpoints to capture the concerns 

Implemented in 

Meta-model describing all 
viewpoints of FaithE

+
mapping between concepts of 
the meta-model and Capella 

concepts to be used in the Model

How building a consistent set of engineering methods that allows to develop trustable AI-based systems ?

Modeling pyramid described in Poster n°1

Focus on the 
“modeling of 
engineering 
methods” part

…

1. Capture:
provides technical matter

Vision based on 
Confiance.ai’s
Action Sheets 

and Uses Cases

2. Modeling:
ensures consistency

Example of 
a Viewpoint

Model fragment for AI monitoring

Model fragment for robustness test

Model fragment for ODD building

Model fragment for …

Implemented in 

This vision is represented in 
the Model by using 

concepts of the Meta-model 

Model fragment for high-level 
engineering tasks

High-level breakdown of specific AI 
activities, Connections between 
these activities

…

Example of 
modeled 
process for 
ODD
(in work)

This vision is represented in 
the Model by using 
concepts of the Meta-model 

‐ EC3: Characterization & 
qualification of trustworthy AI

‐ EC4: Design for trustworthy AI
‐ EC5: Data engineering for trustworthy AI
‐ EC6: IVVQ for trustworthy AI
‐ EC7: Target embedded trustworthy AI

Boris ROBERT (IRT Sant Exupéry)   I  (IRT Syst )

Capturing and modeling the engineering processes 
for trustable AI-based systems
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End-to-end approach for trusted AI systems

…

…
…

…
…

…
…

Trust scores

…
AI-human interactions req.Human factors req.

AI Cyber-security req.Cyber-security req.
Safety req.RAMT req. AI Safety req.AI RAMT req.

… …
ConOps/ConUse AI-OCD

How shall the “classical” Systems 
Engineering lifecycle be 
modified/augmented in order to take 
into account the specificities of AI-
based components of a system ?

Detailed view (work in progress as 
described in poster n°2)

Systems Engineering lifecycle

Classical
Operational Analysis

AI-specific
Operational Analysis

Business / Stakeholders 
needs

Business / 
Stakeholders needs

Classical System Analysis AI-specific System Analysis

……
AI-human interactionsHuman factors
AI Cyber-securityCyber-security

SafetyRAMT AI SafetyAI RAMT

Classical Architecting / HL Design
Trade-off, architecture regarding…

AI-specific Architecting / HL Design
Data, Algo, etc. trade-off regarding…

Classical Development / Implementation

AI Development / Implementation

software hardware

dataset algo training test

Components integrationAI integration in system

AI integration testing Integration testing

Prepare Validation, 
Verification, Qualification

Iterations

Iterations

Iterations

System verificationAI verification

Trust scores

Testing against req. Testing against req.

Validation / 
Qualification

Continuous 
validation

Testing against need

DeploymentOperation monitoring

Confiance.ai’s
Trustworthy Environment

Trustable
AI-based system

Confiance.ai member’s
own industrial environment

The focus of this poster is a trustable AI-based 
system developed by a member of Confiance.ai. 

Re-evaluation

Trustworthiness attributes
Score definition
Assurance cases
Early validation

(Stakeholders needs, Quality assurance, Design,
Trustworthiness attributes / score… )

OCD: Operational Concept Description
ODD: Operational Design Domain
RAMT: Reliability, Availability, Maintainability, Testability
HL: High Level

End-to-end method for the engineering
of trustable AI-based systems

Boris ROBERT (IRT Saint Exupéry)  a i r E RO  (T a s)  
ristop  I  (T a s)
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Engineering Trustworthy AI Systems End to End Vision
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End-to-end approach for trusted AI systems

Risk
Management 

Approach

AI systems characteristics make them suitable 
for risk management. A common approach to 

safety, cyber-security & also ethics!
(cf. IEEE 7000-2021)

These key principles are the conditions for the 
success of the trust engineering workbench within 

the Grand Défi. They represent high-level guidelines 
and requirements to be applied and verified 

throughout the design and implementation of 
trustworthy components. 

Dimensions of 
Trustworthiness

ODD

Assurance 
Case
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Can we assess AI-based system trustworthiness ?

Juliette Mattioli  ;  Agnès Delaborde *, ;  Henri Sohier
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Confiance.ai Days 
4-6 Oct. 2022
CentraleSupélec
Paris-Saclay, France 

End-to-end approach for trusted AI systems

Due to the multi-dimensional nature of trustworthiness, the main issue is to establish objective criteria trustworthiness attributes clearly identified 
and mapped onto the AI processes and its lifecycle

Rationale

Unified approach on trustworthiness attributes based on Multi-Criteria Decision Aiding

Confiance.ai approach is based on the following steps:
1. Step 1: Definition of the different attributes that constitute trustworthiness
2. Step 2: Structuring of the attributes in a semantic tree allowing a first hierarchy ….
3. Step 3: Identification of metrics, assessment methods or control points for each atomic attribute;
4. Step 4: Definition of an aggregation methodology to capture operational trade-offs and evaluate higher-level attributes. 

A first Trustworthiness Attribute Hierarchy 

Project: Process and Methods
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End-to-end approach for trusted AI systems

What are we trying to achieve?

How can this be achieved?

Systems
Engineering

AI
Engineering 

(algo, data, ML...)

SW / HW
Engineering

Manufacturing Operation & 
Support

Implementing 
and securing 
concurrent 

and 
collaborative 
engineering

Ensuring an 
efficient 

feedback 
with the 

system in 
operation

Define, assess, 
capitalise, analyse 

and improve 
measures

Enable and support 
effectively the 

End2End Vision

Build justifications 
and demonstrate 
trustworthiness  

Implement and 
secure iterations, 

feedback and 
consistency

Trust-related properties Mitigation methods Risk-orieted process Justifications, proofs

End2End 
Method

Modelling 
environment

Trustworthiness 
Criteria

Assurance cases 
V&V strategy

7 key principles 
& Global 
approach

End2End use 
trustworthy 
environment

AI Robustness 
& Monitoring 

Village

Morayo Adejouma, Christophe Alix, Loic Cantat, Eric Jenn, Juliette Mattioli, Boris Robert, Fabien Tschirhart, Jean-Luc Voirin
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End-to-end approach for trusted AI systems

Claim : affirmation of a property owned by an 
item of the workflow (the purpose of the AC is 
to verify the claim).
Sub-claim : refinement of a part of a claim 
(claim = conjunction of several sub-claims).

Strategy : Alternative (disjunction) 
between several methods for claim 
assessment (several paths in the graph).

Evidence : the physical element(s) 
to be provided to prove that the 
associated (sub-)claim is verified.

Definition

Justification Assumption

Assumption
Something assumed on a claim or a 

sub-claim

ARTEFACTS Tool
ARTEFACTS is a web application which allows the interaction
between the workflow of an AI-based system and the textual
ACs defined by the user. It also includes strategies selection,
metrics estimation (cost, confidence, risk), and addresses
other activities from Confiance.AI.

Abstract
The verification and validation of AI-based systems is an
emerging area, where no widely adopted standard has yet
been written. Therefore, a possible approach to ensure the
safety of such systems is to characterize trustworthiness as a
set of fundamental properties which shall then be proved to be
satisfied.

Assurance Cases
In Confiance.AI, we rely on the use of assurance cases to
ensure and verify such properties.

Conclusion and work in progress
Maturation of assurance cases are iterated over the Data
Engineering activities. Once sufficiently evolved, with the
expertise of different industry partners, it is expected to
generate a first guideline to reliably produce assurance cases
for AI-based systems. Furthermore, ARTEFACTS could evolve
into a fully functional tool that could ease the completion and
review of assurance cases and assist the V&V engineer.

Assurance Case 
Examples

- Data Engineering

For a system 𝑆, a ML 
development 

workflow involves a 
set of activities.

An activity produces 
some artifact 𝑋 The artifact 𝑋 shall 

comply with some 
properties 𝑃𝟎(𝑋)

To produce an evidence, a new 
activity is to be integrated in 
the initial workflow

Properties Justification

Evidences

dataset

Engineering 
items

<Dataset> is <Acceptably 
annotated> and 

<completely annotated> 

Activities

Annotation 
rules review 
report

Annotators 
consensus 

reports

Strategy #1

Strategy #2

Strategy #n

Argumentation 
Guidelines for 
dependable IA

Common Argumentation 
RulesAC Argumentation 

Patterns

Assurance Case and V&V cycle
These ACs can provide a complete list of validation and
verification activities required to satisfy a specific property
throughout the lifecycle of an AI-based system.

Workflow model Argumentation model

AI Technological
bricks

Confiance.AI 
Trust environment

concerns

V&V activity

Eng. item

Method
Tool

determines

Claim

Evidence

ML property

co
nc
er
ns

Su
pp

or
te
d
by

Environment

EC2 EC6

EC1EC7EC5EC4EC3

Methodology
In an effort to produce consistent
and reliable assurance cases
within a multi-expertise group, an
iterative approach based on
refinements and reviews has
been defined in the process.
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End-to-end approach for trusted AI systems 

This initial step is fully assisted through the use of the « companion », a user-friendly 
web application

Features :
• multi-projects and multi-users management system
• collaborative design
• automatic generation of design documentation (business oriented)

User journey
1. business case analysis
2. trust attributes recommendation and configuration
3. artefacts creation and mapping to trust attributes 
4. engineering workflows recommendation and configuration
5. checking of coverage mapping and trust attributes traceability

Design your confiance.ai engineering workflows

Run your confiance.ai engineering processes

Monitor your confiance.ai properties

This main step is carried out by technical teams to operate trust 
components within a single environment, share data, experiment and 
gather results

Features :
• data management and data processing platform
• interoperability services and SDK provided
• integrated IDE and process scheduler
• interactive guides for preparing and running processes
• allow parametrization of post-processing modules for KPI

Trust components generate results which are ingested in the 
« supervision panel » database. On top of this database, the 
« supervision panel » let the user customize its own Dashboards

• Features :
• library of technical graph for performances assessment
• library of KPI for trust attributes monitoring
• assist to dashboards customization
• availability of audit logs



Posters Village: Explainability tools and processes for understanding 

Introduction to the themes of the village 
Philippe Dejean 
 
 
The domain of the explicability of models is one of the foundations of trust. Beyond the study of the usability 
of existing methods and algorithms for the use cases proposed by the partners of Confiance.AI, explainability 
is studied in all its forms and everywhere in the processes of data and model definition. We propose an 
overview of these studies around explainability by means of 9 posters that prepare the next interpretability 
works: 
 
• Transversal studies around explainability 
The explainability represent a small part in these work about efficient iterative dataset construction and 
continuous learning. The objective is to assess the usability and the pertinence of explainability in the 
different pipelines. Exploitation of synthetic data to improve domain coverage is also studied to evaluate 
models trained on real data. Four start-ups (Oktal-SE, Golaem, Jolibrain and Cervval) work together to build 
a dataset, this dataset should be the closest possible to the Scene understanding use case from Valeo. The 
synthetic dataset should represent a small part of the original dataset, a road circuit in a city with the shape 
of an 8. The Confiance.ai program will then assess if it is possible to use those synthetic data to evaluate a 
model trained on real data. A huge advantage is that synthetic data allow us to generate corner cases, or 
evaluate for example, how far can a pedestrian be detected by the model. The evaluation process has yet to 
be defined, thus the place of explainability is still unclear. Nevertheless, explainability is a tool to evaluate 
models, it will thus be used in the aforementioned process. For example, to compare explainability on real 
and synthetic data, to verify that the model detect the right things on synthetic data and so on. 

• Explainability: Methods and libraries 
The goal of these works is to evaluate existing toolboxes of explainability on the industrial use cases of 
Confiance IA. During last year, several technics and libraries (Xplique - Deel, Gems.AI - ANITI, XAI360 - IBM, 
Shap - Microsoft) have been evaluated. Each toolbox will be evaluated in terms of performance with different 
metrics of explainability, maintnability, adaptability and usability to understand which ones are the more 
suitable for industrial use case. In the continuity of these works, to determine the usage and the limits of 
each kind of explainability technics well known in the literature, the toolboxes of Captum (Facebook), 
Saliency & TCAV (Google), Partial dependence (Global explanation) will be evaluated on various kind of 
industrial data set: image classification, image detection, time series, tabular prediction, images feature 
extraction. 

• Regional Explaination for ML Models 
Some work aims to evaluate the technology of the startup AI-Vidence through several actions: participate to 
the state of the art about knowledge-based AI, test the technology on the use cases, and integrate the tools 
in Confiance.AI environment. The objectives are to test the startup tools on industrial cases of the program 
and enrich the explainability library of the program with knowledge-based tools. 

• Counterfactuals-based metrics for the evaluation of image classifiers 
This work was done in collaboration with the 3AI ANITI on new explainability and interpretability methods 
based on statistical (optimal transport theory) and logical (naturally explainable) approaches. Last work 
introduces new evaluation metrics for image classification models assessing the bias of a predictor. These 
metrics leverage causal counterfactuals approximated using Optimal Transport to bring information about 
where should the classifier focus for its predictions. The effected works consist in: 
- Generating relevant counterfactual examples in high dimensional space (image) and in a multiclass con-

text using Optimal Transport and conditional Wasserstein GAN 
- Trying alternatives to optimal transport for the computation of counterfactuals (LDDMM, Wasserstein 

gradient flow) 
- Finding two metrics relying on generated counterfactuals and existing feature attribution methods for 

the detection of spurious correlations in the learning of a classifier 



- Leveraging the information provided by these metrics for the training of classifiers 

• Prototype-based models for explainability / Explaining objet detection: the case of Transformers 
architecture  
It aims to assess neural networks explainable by-design, while focusing its research on the vision field. This 
work will evaluate the performance of such models compared to classic ones and the explainability of those 
models compared to post-hoc explainability. Afterward, the pertinent tools will be integrated in the 
Confiance.AI environment and guidelines will be provided. After a review of the state of the art, two types of 
models were selected for implementation and/or evaluation: Transformers and Prototypes. 

• Explainable Unsupervised Anomaly Detection for Time Series 
This work is closely related to work on anomaly detection for time series. There are several objectives. First, 
is to summarize the existent and provide a reading grid for explainability in the anomaly detection field. Then 
we evaluate existing methods (from literature) and implemented methods through this reading grid and 
select and implement (or evaluate existing code of) promising anomaly detection methods explainable by-
design (in the context of time series). Finally, we evaluate those methods on the compatible use cases, 
compare results with other implemented methods and present the result in a report and integrate pertinent 
methods to the Confiance.AI environment and provide associated guidelines. 

• Explainability: State of the Art on explainability for NLP 
This year, as several works in Confiance.AI focuse on NLP use case -a new one in Confiance environment-, 
the explainability on NLP is studied. After an exhaustive state of the art, previous identified libraries and 
specific methods or toolbox are tested on a NLP model for specific domain while there is few annotated data 
in this domain. 

• Methodology for Trustworthy Natural Language Process Models with Limited Training Data  
The complete aim of these works around this use case is to improve the trust in NLP system decision. The 
purpose is to deal with the case of adaptation of a general language model to a specific application domain 

 

Perspectives: From explainability to interpretability 
The promising libraries identified during the benchmark have demonstrated their great flexibility to be used 
on different use cases. However, to choose the right parameters (hyper-parameters of explainability 
technics), the users shall have knowledge on the explainability technics itself. To help those who have no 
knowledge on explainability technics to deploy the methods or metrics on their particular use cases, 
recommendations and analytics tools are studied. The aim is to establish links between the explainability 
results and the operational context in terms of elements well known by the user to be easily understood by 
him. The profile of the latter must also be taken into account. This will form the basis of the interpretability 
work to be carried out next year. 
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Project 5 - Data, information 
and knowledge engineering for 
trusted AI

Project 3

Project 4

Project 5

AS 5.11
Data quality and 

anomaly detection for 
time series

AS 5.12
Exploitation of synthetic data 
to improve domain coverage

Use Case: Va-Im-De

Explainability component

AS 5.10 
Efficient iterative dataset 

construction & continuous learning

Use Cases: At-Im-FE, TL-Im-De, Va-Im-De

Explainability component

AS 3.7
Logical and statistical

methods for explainability

Use Cases: -special-

AS 3.16
NLP limited

data

Use Case: 
Re-Nl-LD

AS 4.17
Explainable

unsupervised learning
for time series

Use Cases: AL-TS-AD, NG-
TS-AD

AS 4.13
Design of explainable

models

Use Cases: Sa-Im-Cl, Re-
Im-Cl, TL-Im-De, Va-Im-De

AS 4.18
AI-Vidence

Evaluation of their tools
in Confiance environment

Use Cases: -NI-

Explainability works

AS 3.15
Tools evaluation for 

explainability

Use Cases: -all-

Transversal studies around explainability

Ph. Dejean (1) –Th. Allouche (2) –A. Coppin (3) –C. Gardet (4) –A. Petit (4) – D. Petiteau (1) –A. Poche (1) 
(1) IRT-StExupery – (2) ATOS – (3) Naval Group – (4) Sopra Steria

Confiance.ai Days 
4-6 Oct. 2022
CentraleSupélec - Saclay, France

Use cases treated

AIR LIQUIDE
Tabular Data –
Regression

(AL-TD-R)

AIR LIQUIDE
Time Series –
Anomaly Detection

(AL-TS-AD)

ATOS
Image –
Feature Extraction

(At-Im-FE)

AIRBUS
Tabular Data –
Regression

(Ai-TD-Re)

NAVAL GROUP
Times Series –
Anomaly Detection

(NG-TS-AD)

RENAULT
NLP –
Limited Data

(Re-Nl-LD)

RENAULT
Image –
Classification

(Re-Im-Cl)

SAFRAN
Image –
Classification

(Sa-Im-Cl)

THALES LAS
Image –
Detection

(TL-Im-De)

VALEO
Image –
Detection

(Va-Im-De)

Works through Action Sheets

Project 3 - Characterization & 
qualification of trustworthy AI

Project 4 - Design for 
Trustworthy AI @ algo, model 
and systems levels

Explainability
component

Explainability works focus on explaining 
already trained models via post-hoc methods 
as well as metrics. Furthermore, this work is a 
first step toward tools to construct 
interpretation characteristics in the next batch.
Thus, future works will focus on human profiles 
to adapt the usability of these tools to facilitate 
interpretation. 

Explainability works are included in the model 
design to generate inherently explainable 
models. It is based directly on real use cases, 
these works enabled the industrial partners to 
test all the results obtained in pseudo-
operational environments and conditions.

Explainability works focus on the data and 
dataset. Combining works on active learning, 
adaptive learning and transfer learning, these 
works allow a special attention to be paid to 
explicability tools through the behavior of data 
in model adjusting chain.

Explainability: Tools and processes for understanding
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• Attributions

• Example-based

• Model surrogate or rule-based

• Literal or oral explanation

• And many other types

Explainability: Methods and libraries

Antonin Poché

IRT Saint Exupéry

Confiance.ai Days 
4-6 Oct. 2022
CentraleSupélec - Saclay, France

• When can the method be applied ?
• Post-hoc
• By-design or intrinsic

• Which kind of models ?
• Model-agnostic
• Model-specific

• How much information is needed ?
• Black-box
• White-box

• They have a wide range of methods and cover most of the implemented types of methods.

• A library's implementation of a method may not be compatible with the model format (tensorflow,
pytorch...), while the method is theoretically applicable.

Taxonomy The three main libraries

Post-hoc methods types

In the literature In the libraries

AIX360
By IRT Saint Exupéry

For tensorflow and 
others as black-boxes

By Meta
For pytorch models

By IBM
For tensorflow, pytorch

and sklean models

• What is explained ?
• Decision (local)
• Model (global)
• Data

• What is the format of the explanation ?
• Many different types
• Cannot be listed, see examples below

Why are 
you moving 

object A ?

Looking for object C,
Object C is on shelf 3,

Object A is in front of shelf 3.

Represent a neural network by a decision tree with the same behavior

'Cole' example on MNIST, from Kenny et Keane (2019)

'GradCAM' attributions of dog vs cat, from Ramprasaath et al (2019)

Xplique - Attribution
15 implemented methods

Xplique - Example-based
Methods in development

Xplique - Feature visualization
1 implemented method

Features visualization 
from Xplique

Concepts
from Xplique

Xplique - Concepts
2 implemented methods

Captum
- Features attribution
16 implemented methods

- Layers attribution
11 implemented methods

- Neurons attribution
9 implemented methods

Captum – Influential examples
6 implemented methods

Captum - Concepts
4 implemented methods

AIX360 -Attribution
2 implemented methods

AIX360 -Prototypes
1 implemented methods

AIX360 –Rule based
3 implemented methods

AIX360 – Literal explanation
1 implemented methods

• Expected properties of an explanation:
• Fidelity
• Stability
• Comprehensibility
• Generalizability
• Consistency

Metrics
Xplique - Metrics
- 3 Fidelity metrics
- 1 Stability metric
- 1 Representability metric
- 1 Consistencymetric

Captum – Metrics
- 1 Fidelity metric
- 1 Stability metric

AIX360 – Metrics
- 2 Fidelity metric

0

1

2

3

4

5

6

7

Xplique Captum AIX360 SHAP Sklearn Pair Saliency

Overview of tested libraries on the different use cases

Number of compatible UC Number of UC the library has been applied to

Total number of usecases with models

Explainability: Tools and processes for understanding
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Regional Explaination for ML Models

Weituo Dai,  David Cortés

Aividence, SoyHuCe
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Context
Most business needs and most used algorithms themselves rely on ‘segmentation’. Classical 
ML model explaination tools like SHAP, LIME, do address the local (decision level) or global 
scales (model level), but none of them approach the ‘regional’ scale (segment). 
Understanding by both the Data Scientist (DS) and Business Owner (BO) often relies on that 
specific scale (be it Operation Regime, Customer segment) still not dealt with. 

Keywords
Regional Explaination, segmentation, clustering, SHAP, LIME, Decision Trees, Data 
Visualisation, Banzhaf, Shapley-Shubick, TreeRank, Ranking Forest.

Method
AntakIA methodology by Aividence aims at gaining a common understanding between the DS 
and the BO by building explainations of the models at a regional level. The main steps leading 
to Regional Explaination rely on ‘dyadic’ steps, implying simultaneously the Values Space (VS) 
and Explainations Space (ES) computed e.g. through Shapley values or other indexes :
 DYADIC VISUALISATION : Visualize the VS and ES datasets at the same time through

dimensions reduction approaches (t-SNE, UMAP, PCA)
 DYADIC EXPLORATION : Explore the simultaneously consistent zones of both spaces with

DS and BO
 DYADIC SEGMENTATION : Define precisely a region, describe as simply as possible each

region in both spaces
 DYADIC UNDERSTANDING : Make sure it makes sense ! Through mutual explaination and

understanding between the DS and BO, with complementary feature-wise analyses.
These steps are to be iterated until all the VS is addressed.

Result
On a simple simulated datasets with an explicitly 5-segment biased model (e.g. age below 25, 
or over 40 and man vs woman, etc.) , we have been able through this dyadic approach to 
reconstruct the relevant segments learnt by a standard black box Model (XGBoost), 
considering simultaneously the original values and model explainations.

Air Liquide Use Case
We have been using this dyadic approach for anomaly detection on time series :
- defining a more understandable VS (with signal procesing and ad hoc aggregated features)
- using unsupervised detection anomaly algorithms and SHAP to construct an ES.
AntakIA is then used to find clusters of time series similar in values and explainations, and to
challenge those classifications during reviews with Air Liquide experts, and Data Scientists.

Prospects and future Work
AntakIA methodology also encompasses the building of surrogate models so as to construct
Explainable, then hopefully Certifiable AI by design. 

We will be analysing the gain of using :
- other decision decision power indexes from games theory (Banzhaf, Shapley-Shubick, …)
- other specific tree-based explainations methods [P. Marquis]
- top performance surrogate models such as TreeRank algorithms [S. Clemençon]

Dyadic Visualisation

Dyadic Exploration

Dyadic Segmentation

Theoretical Segmentation

SotA local and global explainations

Feature-wise analysis

Age, education and gender biased theoretical model of wages prediction

Explainability Tools and processes for understanding
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Counterfactual-Based Metrics for the 
Evaluation of Image Classifiers

(Project: Logical and statistical methods for explanability)
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Explainability Tools and processes for understanding

Quantitative Evaluation of the Semantic of a Classifier

(1) Computation of Counterfactuals using Optimal Transport

Optimal Transport CFGAN

𝐌𝐨𝐧𝐠𝐞 𝐎𝐩𝐭𝐢𝐦𝐚𝐥 𝐓𝐫𝐚𝐧𝐬𝐩𝐨𝐫𝐭′𝐬 𝐩𝐫𝐨𝐛𝐥𝐞𝐦: 

𝑇 ∈ argmin
𝑇, 𝑇#𝜇𝑦=𝜇𝑦′

න
𝑧∈supp(𝜇𝑦)

𝑧 − 𝑇 𝑧 2
2 𝑑𝜇𝑦

Counterfactual examples

𝝁𝒚 (𝐞𝐱: 𝐜𝐮𝐛𝐞)

𝝁𝒚′ (𝐞𝐱: 𝐜𝐲𝐥𝐢𝐧𝐝𝐞𝐫)

𝑻: supp(𝝁𝒚) → supp(𝝁𝒚′)

𝐂𝐅𝐆𝐀𝐍 𝐎𝐛𝐣𝐞𝐜𝐭𝐢𝐯𝐞 (𝐢𝐧 𝐥𝐚𝐭𝐞𝐧𝐭 𝐬𝐩𝐚𝐜𝐞 𝒵):
min𝑇max𝐷∑𝑦′=1

|𝒴| 𝔼 𝐷𝑦′(𝑍) ∣ 𝑌 = 𝑦′ − 𝔼 𝐷𝑦′ 𝑇 𝑍, 𝑠 𝑦′

−𝜆𝑔𝑝 ⋅ 𝔼 ∥ ൯𝛻𝑧𝐷𝑦′(𝑍 ∥
2
− 1

2

+𝜆𝑡𝑟 ⋅ 𝔼 ∥ 𝑇 𝑍, 𝑠 𝑦′ − 𝑍 ∥2
2

Input

Target label

𝒛

𝒚′

Counterfactual

𝑻(𝒛, 𝒚′)

Real label

𝐷
(Discriminator)

𝐅𝐚𝐤𝐞 ?

cube
𝒚

𝑇
(Generator)

𝒛 𝒚

cylinder

𝒚′

𝑻(𝒛, 𝒚′)
Input Smiling CF Input Blond hair CF Dark hair CF

FFHQ dataset (resp. smile and hair color classes)

Idea: We define two metrics quantifying the ability of a classifier to focus on the correct semantic features when doing its predictions. We assume that the correct features should
correspond to the pixels of the input image that change the most when changing its label thanks to a counterfactual generation process.

Feature Attribution to detect model biases

Model 1 and Model 2 both predicted the left blink, but clearly the Model 1 
used irrelevant information for its prediction (spurious correlations).

How to make sure — by a quantitative evaluation — that the classifier is
taking its decisions for the good reasons ? 

(1) We generate using a GAN a counterfactual counterpart of the input image by
answering the question: ”What would the input image have looked like if it had been
from another class ?”
(2) We evaluate the impact on the classifier’s prediction of some perturbations
over the most important pixels of the input image (according to the heatmap)
going towards the counterfactual image.

⇒ This perturbation should have a high impact if the model is focusing on the right
features!

[Def]: Feature Attribution methods generate heatmaps highlighting the regions involved in the decision of a classifier.

Model 1 Model 2

𝑦 = "left blink"



Feature Attribution maps to 
detect spurious correlations

Issue:

Q:

A:

Counterfactual-based metrics

𝑓(. )

% of important pixels
𝐫𝐞𝐩𝐥𝐚𝐜𝐞𝐝 with baseline values

0

𝑓(𝑏0)

𝑓(𝑥)
1

100

𝐂𝐅 − 𝐁𝐀𝐒𝐄𝐃
𝐃𝐄𝐋𝐄𝐓𝐈𝐎𝐍𝐌𝐄𝐓𝐑𝐈𝐂
= 𝐑𝐄𝐃 𝐀𝐑𝐄𝐀 ↗

𝑓(. )

% of important pixels added
0

𝑓(𝑏0)
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Principle: Usually, feature attribution 
maps are evaluated doing some
perturbations of the input image
according to the heatmap and going
towards a baseline image 
expressing "missingness". Our 
metrics follow the same principle but 
use a counterfactual image instead
of the usual uninformative baseline.

𝑡

100%75%10%5%0%

𝑡
100%75%10%5%0%

Uninformative
Baseline

Counterfactual
Baseline

vs

𝑏0

(2) Evaluation of Classifier using Counterfactual Metrics

Global Pipeline Future Work

𝑇(𝑧, 𝑦0)

⋯

𝑇(𝑧, 𝑦𝑛)

argmin y′≠𝑦
𝑇 𝑧, 𝑦′ − 𝑧 2

(𝒙, 𝒚) 𝒙𝒄𝒇

𝚽

Del𝐵𝑐𝑓
∗ 𝑓, 𝜙, 𝑥, 𝑦 = 0,776

Ins𝐵𝑐𝑓
∗ 𝑓, 𝜙, 𝑥, 𝑦 = 0,695

𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛

𝒛 𝑻(𝒛, 𝒚′)

𝒇, 𝒙

𝒇, 𝒙, 𝒚
𝚽 𝒙𝒄𝒇

Evaluation process overview. Example on the smiling classification task of the FFHQ 
dataset. FA method can be Kernel SHAP, RISE etc.

Uses of the CF metrics

1. Global or per sample evaluation score
for model selection:

Input

Φ1 Φ2

Bad score Good score

Model 𝑓2
ොy = "dark hair"

Model 𝑓1
ොy = "dark hair"

Del𝐵𝑐𝑓
∗ /Ins𝐵𝑐𝑓

∗ :

2. Given a model 𝒇, find the samples for which the
model takes the right decision but for the
wrong reasons:

Samples correctly predicted
𝑃 = 𝑥𝑖, 𝑦𝑖 ∈ 𝒟 | 𝑓 𝑥𝑖 = 𝑦𝑖

Top-k worst samples according to CF Deletion metric

𝑃𝑤𝑜𝑟𝑠𝑡𝑘 = argmin𝑃′⊂𝑃, 𝑃′ =𝑘 
𝑥,𝑦 ∈𝑃′

Del𝐵𝑐𝑓
∗ (𝑓, 𝜙 𝑥, 𝑦 , 𝑥, 𝑦)

𝑃𝑤𝑜𝑟𝑠𝑡𝑘

𝑥

𝜙
…

• Integrate a differentiable version of
counterfactual metrics in the training loss of
a classifier

⇒We learn a classification task while ensuring
that the classifier is focusing on the right features
for its predictions.
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Prototype-based models: explainability through case-based 
reasoning

Prototype-based models are part of the so-called “explainable by design” models. Methods using
the notion of prototypes provide an explanation of the model’s reasoning process by
approximating the images to be explained with typical examples, the prototypes, learned from the
training dataset. The definition of what a prototype is varies from paper to paper.

These models are used for classification tasks and have been tested on image classification for
this study. They have the advantage of providing local and/or global explanations accessible to a
wide audience and easily interpretable.

ProtoPNet

ProtoPNet, an architecture based on a convolutional neural network and a prototypical layer, is
introduced by Chan and al in [1]. They define a prototype as a latent representation of a training
image patch.

Their model computes a similarity score between learned prototypes and patches from the image
being processed, thanks to the prototypical layer. Inference is obtained by processing the smallest
distance to patch prototypes with a classifier.

This method provides a local explanation for the image being processed by the model.

[1] Chaofan Chen et al. “This Looks Like That: Deep Learning for Interpretable Image Recognition”. In: arXiv:1806.10574 [cs, stat] (Dec. 28, 2019).
arXiv: 1806.10574. URL: http://arxiv.org/abs/1806.10574.

ProtoTree

Nauta and al. defined an architecture called ProtoTree in [2], composed of a convolutional neural
network followed by a binary decision tree structure. The notion of a prototype is the same as for
ProtoPNet but each learned prototype corresponds to a node of the decision tree.

Inference is obtained by comparing latent features of the test image with learned prototypes at
each node, which determine the routing through the tree.

This approach provides both local and global explanation for the model reasoning.

[2] Meike Nauta, Ron van Bree, and Christin Seifert. “Neural Prototype Trees for Interpretable Fine-grained Image Recognition”. In: Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021, pp. 14933–14943

Evaluation of prototype-based models

Prototype-based models are mostly qualitatively evaluated regarding explainability.

• Explainability / performance trade-off : Both ProtoPNet and ProtoTree present good trade-
offs between accuracy and explainability

• Exploitation of the explanation : Learned prototype can be used to detect good and bad
behaviors of the model by looking at the areas activated on test images and their similarity
with learned prototypes

• Explanation of learned prototypes : As shown in [3], prototypes can be further explained
through experiments on hue, contrast, shape, saturation and texture. This allows to better
understand similarity between image patches and learned prototypes, and to avoid incorrect
interpretations.

[3] Meike Nauta, Annemarie Jutte, Jesper Provoost, and Christin Seifert. This looks like that, because ... explaining prototypes for
interpretable image recognition, 2020

Base Baseline ProtoPNet ProtoTree

ResNet34 82.3 79.2 82.2

Mean accuracy on bird images of CUB dataset (224x224) from [1] and [2]

Explainability: Tools and processes for understanding
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Explanation with transformers [2]

• The nature of the explanation is a heatmap indicating a relevancy
score R at each image location

• R is initialized and updated by a forward pass using a specific
attention-based rule for each layer

• At each layer, attention maps are weight-averaged over the heads h :

ҧ𝐴 = 𝐸ℎ
𝜕𝑦
𝜕𝐴

⊙ 𝐴

where 𝑦 is an output variable and 𝐴 is an attentional map
• The average ҧ𝐴 is then used to update R.

Object detection with DETR [1]

Object detection sub-tasks: 
1. Existence
2. Location
3. Category

DETR:
• One stage approach
• Encoder/decoder
• Attentional model

Attentional maps computed as

𝐴 = softmax 𝑄.𝐾𝑇

𝑑

Perspective and future work:

• Can we anticipate good or bad behavior ?
• Application on other dataset/use cases

Can we explain the prediction for 
object location  ?

Introduction

Context: Explanation by design for object detection task
Objective:

1.Explain model prediction for object localization
2. Evaluate the explanation method

Model: Attentional models (DETR)

[1] N. Carion et al. “End-to-End Object Detection with Transformers”. In: arXiv:2005.12872 [cs, stat] (May. 2020).
arXiv:2005.12872. URL: https://arxiv.org/abs/2005.12872

[2] H. Chefer et al. “Generic Attention-model Explainability for Interpreting Bi-Modal and Encoder-Decoder Transformers”. In:
arXiv:2103.15679 [cs, stat] (March. 2021). arXiv:2103.15679. URL: https://arxiv.org/abs/2103.15679

• Application on the COCO dataset
• Using a public pre-trained DETR

model

• Bounding box prediction : prediction
of x center, y center, width, height

• The bounding box activation maps
are summed to form a single
localization activation map

• Assumption : the ends of the object
are more activated when predicting
the bounding box coordinates

• Signal selected using Otsu method

• Evaluation: IoU between the minimal
bounding box encompassing the
signal and the prediction (Fidelity)

Detection 
threshold 0,6 0,8 0,9

IoU
(Fidelity) 0,46 0,49 0,52

→ Better confidence in detection implies better confidence in explanation
→ Better explanation score for large detected objects

Class activation maps

Bounding box activation maps

Evaluation of the Fidelity

Fidelity decreases for small objects

Evaluation on the COCO test set

Explainability: Tools and processes for understanding
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Explanation are provided to everyone but not interpretable by all.
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Explainability Tools and processes for understanding

Explanation type and anomaly detection

Ruff and al. [1] have proposed a taxonomy for anomaly detection

methods along two dimensions : the model depth and the model type.

Anomaly detection methods

• Anomaly detection and explainability performances hard to evaluate :
most industrial use cases are unlabeled.

• Comparison is problematic : methods and explanation types are too
different.

• Time series anomalies and explanations visualisations are not trivial.
• A domain expert must be highly involved and available in the

explainabilitty framework.

For time series, there are few papers in the literature on anomaly

detection explainable by design. Although some methods seem promising

such as robust autoencoders [2] or attention based models, adapting

graph attention network [3] or transformers [4].

Challenges and perspectives

[1] Lukas Ruff et al. “A Unifying Review of Deep and Shallow Anomaly Detection”. In: CoRR abs/2009.11732 (2020). arXiv:
2009.11732. URL: https://arxiv.org/abs/ 2009.11732.

[2] Tung Kieu et al. Robust and Explainable Autoencoders for Unsupervised Time Series Outlier Detection—Extended Version.
Number: arXiv:2204.03341 arXiv:2204.03341 [cs]. Apr. 2022. URL: http://arxiv.org/abs/2204.03341 (visited on 06/24/2022).

[3] Hang Zhao et al. “Multivariate Time-Series Anomaly Detection via Graph Attention Network”. In: 2020 IEEE International
Conference on Data Mining (ICDM). ISSN: 2374- 8486. Nov. 2020, pp. 841–850. DOI: 10.1109/ICDM50108.2020.00093.

[4] Shreshth Tuli, Giuliano Casale, and Nicholas R. Jennings. TranAD: Deep Transformer Networks for Anomaly Detection in
Multivariate Time Series Data. Tech. rep. arXiv:2201.07284. arXiv:2201.07284 [cs] type: article. arXiv, May 2022. URL:
http://arxiv.org/abs/ 2201.07284 (visited on 06/01/2022).

Bibliography

Explainability does not have a precise and universally accepted definition.
The characterization of explainability is not addressed here but some
important questions are raised :
• What do we want to explain? The model itself or the outputs?
• How do we want to display the explanation?
• Who is the target audience?

⇒ There is no generic solution to these questions, answers must
be designed according to the use case

Working with time series brings other challenges to overcome in
comparison with other data format such as images :
o Explanations are harder to understand,
o Experts are always needed,
o Time series representation is still an active research area.

Explainability and times series

Image from [2]

A summary of elements to comprehend explainable anomaly detection by

design for time series.

Motivation

Example of explanation type
Local attribution Signal decomposition Model surrogate
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Explainability: Tools and processes for understanding

(1) (2)

Self-ExplainingPost-Hoc

Local
• Pertubation based methods: locally perturb an input and simulate the results of

the model on these perturbed inputs using a simple and explainable model.

Ex : Leave-one-out,
Occlusion, LIME, SHAP,
SocRAT, Anchors

• Back Propagation methods & Gradient based methods: propagate a type of
information from the last layer to the first layer of a neural network according to a
calculation that depends on the method.

Ex : Layerwise Relevance Prop., DeepLIFT.
Integrated Gradient, REAT, GradCAM,
Gradient-Based Feature Attribution,
Gradient X Hidden States, Gradient X Activation

• Rationales based methods: based on rationales, or significant pieces of
sentences, and on the explanations associated with them
Ex : Protodash

Global
• Probing : Based on the simulation with a simpler model of a relation between

inputs and outut of a model

Ex : does the model learnt
the length of sentences?

• Profweight : transfer information from a pre-trained deep neural network that has a
high test accuracy to a simpler interpretable model or a very shallow network of low
complexity and a priori low test accuracy

• Taxonomy Induction

Local
• Attention based methods: exclusive to Transformers like models, they are using

attention weights to find important words

Ex : Attention weights, Cross Attention weights,
Attention X Norm, Gradient X Attention,
NICT Kyoto, Dual-stage attention mechanism

• Rationales based methods: based on rationales, or significant pieces of
sentences, and on the explanations associated with them
Human Rationales as Attribution Priors, Interpretable Neural Predictions with Differentiable Binary
Variable, TED, CAR, CREX, MARTA

• Other: Epar, EANDC, Multi-hop Inference Explanation Regeneration, Self-
explaining structure, J3R, TX-Ray, Transformer Interpretability Beyond Attention
Visualization, Cross-Domain Transfer of Generative Explanations, CPM

Global
• Proto-Trex : Transformers based on prototypes and closest neighbors for

explanation

• Reinforcement Learning

• HEIDL

Metrics
• How well an explanation method really represents how the model works? : Faithfulness, Fidelity, Infidelity, Credibility Score
• How well an explanation is understandable? : Comprehensibility, Informativeness
• How robust/sensitive is an explanation? : Local Lipschitz, Sensitivity, Stability, Trust Score, Transferability
• How to go further? : Trustworthiness, Confidence, Causality

Example of results given by SHAP library for sentiment analysis https://shap.readthedocs.io 

Grad-CAM

Attention 
weights for 
translation 
task

CAR on sentiment analysis and 
classification task

TX-RAY

J3R

Explainability methods in general seek to explain results or behaviors of a model. In NLP typically methods aim to find the most important words from which a model made
a prediction, or they seek to explain the behavior of a model, i.e. what it has learned or how it processes information.

Depending on how these methods extract elements of explainability and in what goals, they are classified in 4 categories.
“Local” if they try to explain a single results
“Global” if they try to explain the task independently of any inputs.
“Post-Hoc” if they are based on already trained models and require additional operations,
“Self-Explaining” if elements for explainability come directly from the model.
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CONTEXT: Huge NLP Models

 Always Bigger Transformers Models: Nowadays, NLP models are based on multitasks
transformer models learned from all possible textual information with hundred of billions of
parameters.

 For specific domain with limited training data sets the models are difficult to qualify even if
some techniques are developed for an adaptation (ex: fine-tuning).

OBJECTIVE: Learn a trustworthy NLP Model

 How can I develop trustworthy NLP models learned with low data that will generalize on a large amount
of new verbatims for getting meaningful insights?

Domain Adaptation

 This is the adaptation of a Pretrained Language Model (PLM)
to a specific domain and/or a specific task without exploiting
annotated data.

 Different approaches are possible (see Ramponi and Plank,
2020)

• Domain Adaptative Pretraining (see Gururangan et al.,
2020)
‐ Corpus Based Methods:

‐ continue pretraining with the task dataset: Task 
Adaptative PreTraining, TAPT, or

‐ continue pretraining with similar dataset: Domain 
Adaptative PreTraining DAPT

‐ Vocabulary Based Methods 
Add in-domain vocabulary with initial embeddings and 
update new embeddings by new pretraining and/or 
finetuning (regularized) and/or  new layers in the network 
(see Hong et al., 2021 ; Tai et al., 2020, Yao et al., 2021)

• Most of these methods rely on Mask Language Models that
require important computational resources. Adapters, i.e.
new layers in the PLM network can be used to reduce the
computational cost (see Chronopoulou et al., 2021)

 Other approach: Domain Knowledge Injection
An alternative is to explicitly inject into PLM knowledge coming
from a structured Knowledge Base (KB). From a general
perspective, the following stages need to be considered:
• Kind of knowledge (source, granularity) and its initial form

(ex: Resource Description Framework or Knowledge Graph),
• its exploitation into the PLM,
• When and how the injection are performed (ex: during/after

pretraining or finetuning or inference; ex: by adding to the
MLM loss an entity related loss).

A focus will be done on Domain Adaptation for ABSA tasks and on 
PLM through vocabulary extension.

Fine Tuning Transformers LM

 This consists in updating a PLM network by 
considering the task data set

 Different strategies for parameter efficient fine tuning
‐ Fine-Tuning with Compression:

identify the parts in the network which removal is less 
damaging to performance and remove them (ex 
parameters and/or structure blocks). 

‐ Adapters Based Tuning :
add a small set of parameters at every layer of the PLM 
and learn it with the task dataset.

‐ Bias-Term Fine Tuning :
limit fine-tuning to the bias terms of the PLM plus the 
parameters of the task-classification layer.

Adapter-based and BitFit finetuning generally achieve 
better results when the training set is small (full fine-
tuning  catches up its performance with more data).

For small dataset there are more optimization instabilities
to be considered. Methods for overcoming these issues 
mainly consist in applying strategies with multiple starting 
trials (see Dodge et al., 2020) or by considering a 
regularization term (see Zhu et al 2020).

 Aspect Based Sentiment Analysis (ABSA) with BERT :
ABSA requires various tasks: identification of the aspect
category, opinion term, and sentiment polarity.

Task Finetuning and Domain Adaptation can be used. Main 
BERT approaches (adapted to small dataset) are: BERT-
SPC, BERT-ADA, BERT-Lsee, BERT-AEN, BERT-RRC

A focus will be done on parameters efficient fine-tuning with 
Adapters for classification tasks  (including ABSA).

Qualification of NLP Models

 The qualification of a NLP model can be assessed trough its
performance (usual classification scores),  its robustness
(the sensitivity to text change) and its explainability
(highlighting important words which contributes to a task).

 The performance of a NLP model for a Task (ex: Classification
and/or ABSA Tasks) mainly relies in developing suitable
strategies based on Domain Adaptation and/or FineTuning.

 The concept of robustness includes :
• Adversarial attacks (used for image) are being adapted

to the context of NLP. It the attacks can be at different
levels: embedding, character, word, sentence.

• Model enhancement methods for the defense :
‐ Adversarial Training: collect adversarial examples by

attacking a target model and fine-tune the model on 
the augmented dataset.

‐ Certified Robustness Defense: train the model to 
provide an upper bound on the worst-case loss of 
perturbations (Interval Bound Propagation).

‐ Enhance Input Representation :  ex : correction loss 
mapping embeddings of a misspelled word closed to 
the embeddings of their correctly variants.

 Methods for explainability can be divided in two categories,
• Post-Hoc: additional operation after the prediction
• Explainable-by-design: explanation at the prediction
These methods can be local or global.
We refer to the Action Sheet 3.15.

A focus will be done on identifying the strategies of attacks 
allowing the robustness assessment of NLP models.

Taxonomy of DA methods (from Ramponi and Plank, 
2020)

Illustration of data distribution (from [Logeswaran et al., 2019]) 
Task data is comprised of an observable task distribution sampled from a wider 
distribution (light grey ellipsis) within an even larger target domain, which is not 
necessarily one of the domains included in the original LM pretraining domain)

Adapters Based Tuning by Houlsby et al. (2019)

Example (Renault Google Reviews Use case)

~ 700 google reviews with annotated 
aspect based and sentimental information

Verbatims

labels

Can I learn a trustworthy model that 
generalizes on all verbatims (~ 150K)  ?

2022 2023
01 02 03 04 05 06 07 08 09 10 11 12 01 02 03 04 05 06 07 08 09 10 11 12

State Of The Art Report

Python  Functions i) Python Functions ii) Python Functions iii)

Typologies de Pblm Illustrations ii) Illustrations iii)

(2) (4)(3)(1)

 Trustworthy strategies according to various typologies of problems will be
proposed. These will combine Domain Adaptation and/or FineTuning and/or
robust training.

 For trustworthiness comparison, the notion of performance (with usual
statistical metrics), of robustness (with adversarial attacks), and explainability
will have to be adapted to NLP models.

ROADMAP

Example of Textflint (https://github.com/textflint/textflint)
A multilingual robustness evaluation platform for natural language processing

Explainability: Tools and processes for understanding
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Hatem Hajri, Fateh Kaakai 
 

Robustness to outliers is an essential property of AI trustworthiness to ensure that an invalid input data will 
not lead to an unsafe state of the system. Robustness can be reached “by-design” and it can also be moni-
tored by a specific component, the monitor, running in parallel to the AI model. Therefore, robustness and 
monitoring are two very related topics in the lifecycle of an AI product. In the Robustness & Monitoring Vil-
lage, we present methods and tools that are already or will be integrated Confiance.ai environment.  

Robustness  

The adversarial examples are spectacular illustrations of the lack of robustness of some AI systems. If an 
invisibly modified picture of a panda can be recognized as a picture of gibbon or if a tagged stop sign is rec-
ognized as a 30mph sign (these are two well-known example of adversaria attacks), it is impossible to trust 
AI. Of course, this kind of attacks is a scientific demonstration of this weakness of data-based AI. They are the 
result of malicious computations that cannot be generated by pure randomness in the real life. At any rate, 
it instils the doubt about the general robustness of AI. If the issue of the macroscopic coverage of the opera-
tional domain can be solved by gathering a big enough training data base, is it possible to envisage all the 
microscopic variations around the training examples. In engineering of automatized systems, robustness is a 
very concrete feature: how does the system behave when itis pulled out of its nominal state? For an AI-based 
perception system, is it possible to guarantee that the classification will stay the same if the lightning 
changes? If a panda becomes a gibbon with only a small percentage of changed pixels, will a red traffic light 
become green if the sky is grey? The panda adversarial example also questioned the meaning of the confi-
dence score that are given with the classification decision. The confidence score in the gibbon classification 
was much higher than the score of the original panda classification. A wrong classification with a very low 
score would have been acceptable. It is another highlight of the lack of robustness. It stresses the importance 
of the estimation of the imprecision on decisions taken. Classical engineered systems are able to evaluate 
the accuracy margin of their computation. The decision process takes this margin into consideration to adapt 
its conclusion. To become part of a trustworthy system, AI should be able to evaluate the accuracy of its 
conclusions.  

Online Monitoring   

The main objective of the online monitoring of AI models is to detect any deviation of the AI component 
deployed in operation from the specified expected behavior or from a predefined set of safety operational 
properties. A product has been developed using AI technologies, and it should demonstrate that the AI model 
can perform its prediction over its entire Operation Design Domain (ODD) with an accuracy of 99.9 % and 
that this accuracy is maintained over time in operation. Let’s assume that after a full training phase, the 
model’s performance does not exceed 99 % of correct predictions, it implies that 10 failures may statistically 
occur over the reference period (1000 hours) when only one failure would have been tolerated. This situation 
is unacceptable from a product safety point of view. The deployment of a monitoring component operating 
in parallel with the AI model (online monitoring as depicted in Figure 1) is a concrete way of managing this 
type of residual risk induced by a model for which it is not possible or feasible to formally demonstrate the 
achievement of the performance/safety objectives resulting from the system analyses. Online monitoring is 
a safety architectural pattern that is well known to operational safety engineers, but it had to be adapted to 
AI technologies. The work performed in confiance.ai defines an innovative engineering method to develop 
and verify online monitoring components that combine several monitoring timescales: a monitoring of the 
AI-based product at present time, a monitoring on a configurable time window of the near past, a monitoring 
on a configurable time window of the near future. These three (3) monitoring scales complement each other 
to ensure a high rate of detection of failures that could occur in operational conditions when the AI model is 
in production.   



Monitoring relies on monitoring functions that will detect inconsistence in the inputs and/or product output 
such as (but not limited to), in the case of images:   

• Standard Defocus (Out of focus) Blur Detection: In optics, defocus is the aberration in which an image 
is simply out of focus.   

• Standard Motion Blur Detection: Motion blur is the apparent streaking of moving objects in a photo-
graph.   

• Standard Brightness Detection: This function aims at extracting the degree of brightness from an im-
age and raising an alarm if this degree of brightness can impact the prediction of the model on this 
image.   

For the evaluation of the monitor function, we need to assess the ability of the monitoring function to detect 
anomalies on input images. These anomalies correspond to camera problems encountered by the use case 
provider.  
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Robustness by design with 1-Lipschitz networks
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Motivation: standard networks are not robust to adversarial perturbations, i.e. a small
perturbation on an input can yield a large change in the output, causing misclassification
(Fig. 1).

What are 1-Lipschitz networks?
• Lipschitz constant to bound perturbations (Fig. 2):

𝑓 𝑥 + 𝜀 − 𝑓(𝑥) ≤ 𝐿 𝜀
• All layers are constrained with Lipschitz constant of 𝐿 = 1

Why 1-Lipschitz networks?
• Handle accuracy/robustness trade-off

(loss is the master key, see Fig. 3)

• Provide robustness guarantees (in L2 norm)

• No loss of expressivity (Fig. 2) compared
to standard classification networks

1-Lipschitz neural networks

Training
• Classification of welding images in two categories: OK or Retouche.
• Small 1-Lipschitz VGG-like network
• Trainings with different losses and hyper-parameters for

accuracy/robustness trade-off:
• hinge loss with different margins
• HKR loss [4] with different margins and regularization factors

Metrics
• Clean F1 score: F1 score of a network on original test images
• Robust F1 score: F1 score of a network using adversarial test images instead

of original test images

Results
• 1-Lipschitz networks are more robust than standard networks
• Parameters of losses enable a simple accuracy/robustness trade-off
• The adversarial perturbation with 1-Lipschitz network is highly structured compared to

more random perturbation with standard network

Renault Welding use case

• Open-source library, developed by DEEL program, available on PyPI and Github
• Full documentation + examples online                  https://github.com/deel-ai/deel-lip

• Easy-to-use library based on TensorFlow/Keras
(no prerequisite to train a Lipschitz network)

• Provides custom Lipschitz layers and losses
• Post-training export to vanilla TensorFlow networks (no overhead at inference)

Open-source ready-to-use library

import tensorflow as tf
from deel.lip.model import Sequential
from deel.lip.layers import (SpectralConv2D,

SpectralDense, ScaledL2NormPooling2D)
from deel.lip.activations import GroupSort2
from deel.lip.losses import MulticlassHKR

model = Sequential(
[

tf.keras.Input((28, 28, 3)),
SpectralConv2D(filters=16, kernel_size=3),
GroupSort2(),
ScaledL2NormPooling2D(),
tf.keras.layers.Flatten(),
SpectralDense(units=10),

]
)

model.compile(
loss=MulticlassHKR(alpha=50, min_margin=0.1),
optimizer="adam",
metrics=["accuracy"],

)
model.fit(x_train, y_train)

[1] Figure from Explaining and Harnessing Adversarial Examples, I. Goodfellow, et. al., https://arxiv.org/abs/1412.6572
[2][3] Figures from Pay attention to your loss: understanding misconceptions about 1-Lipschitz neural networks, L.Béthune, T. Boissin et. al., https://arxiv.org/abs/2104.05097v5
[4] Achieving robustness in classification using optimal transport with hinge regularization, M. Serrurier et. al., https://arxiv.org/abs/2006.06520

Adversarial attack [1]

Standard network
high clean F1 score but not 
robust to perturbations

Mildly robust Lipschitz network
high clean F1 score and mildly robust
to perturbations

Highly robust Lipschitz network
low clean F1 score but highly robust to 
perturbations
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Perspectives
• New losses to handle accuracy/robustness for multiclass problems
• Upgrades of deel-lip library with recent works + deel-torchlip library transfer

• Image segmentation on Valeo Woodscape use case
• Robust object detection by design

[3]

[2]
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Robustification of NN by Diffusion Purification

Martin GONZALEZ1, Nelson FERNANDEZ-PINTO2

Neural Differential Equations (NDEs) [1] as Implicit Layers

Neural DEs meet Dynamical Systems : Taxonomy & Methods [2]

Analytic Formulation

DS-Inspired Neural DEs:
DS idea implemented to a pre-specified NDE

The Denoising Diffusion Purification Method [3,4]

DS-Based Neural DEs:
DS idea implemented as specifying a NDE

DS-Destined Neural DEs:
NDE induced from a pre-specified DS model

Trajectory Regularization via 
Optimal transport

For Normalizing Flows

Continuous state paths 
as Controlled Neural DEs

For Time-Series

Law's conservation with well-posed Lagrangian NDEs 
& well-conditioned solvers

Adversarial Training:
Train on adversaries

Input Purification:
Purify perturbations with denoising

diffusion generative models

• Against seen threats

• Against unseen threats

• Training complexity

Defenses

Reverse SDE / Neural SDEForward Non-Neural SDE

Denoising Diffusion Probabilistic Models

Promising Directions
• Powerful SDE Solvers = Faster & Accurate Image Restoration
• Guided Diffusions through multi-output classification
• Combination with probably certifiable defenses
• Monitoring strategies based on the solver parameters, diffusion 

time-stamp, well-posedness of the model's inductive bias …
• Ongoing applications on Confiance.ai Use Cases

Bibliography:
1. Chen et al, Neural Ordinary Differential Equations, NeurIPS, 2018,
2. Gonzalez et al, Noisy learning for Neural ODEs acts as a robustness locus widening, ICML, 2022,
3. Nie et al, Adversarial purification with diffusion models, ICML 2022,
4. Ozdenizci, Legenstein, Restoring vision in adverse weather conditions with patch-based denoising 

diffusion models, preprint, 2022.

Robust AI & Monitoring
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Benchmarking and deeper analysis of adversarial patch attack on object detectors

Pol LABARBARIE 1,2, Stéphane HERBIN 2, Adrien CHAN-HON-TONG 2, Milad LEYLI-ABADI 1

1 IRT SystemX, Palaiseau, France; 2 ONERA/DTIS, University Paris-Saclay, Palaiseau, France

1. Context
A realistic attack for physical applications named adversarial patch-based attack (APA) has been

introduced recently. It relies on adding a heavily textured patch to the scene causing false alarms and 

non-detections as depicted by the figure below.

From a trustworthy AI point of view, the last scenario (red box), i.e deletion of objects of interest detections

is not acceptable. Placing a patch on a stop sign or on the roadway may result in misclassification of a stop

sign (Song et al., 2018) or in the missed detection of a pedestrian crossing the road (Saha et al., 2020).

Possible scenarios of a real-world patch attack on object detector.
From left to right. First, the patch is not detected but the object is.

Secondly, both of the two are detected conducting a false positive.

Finally, the patch is detected but the object is not.  

2. Objectives
• Identification of the research community requirements which are

o Understanding the impact of putting a patch in the scene

o Design defense strategies

• Through measuring the patch resilience wrt. different variations as

o Geometric transformations

o Radiometric transformations

• Main contributions:

o Define various categories of evaluation criteria 

o Proposing a pipeline to rank adversarial patch attacks

Table of evaluation settings by category and their brief description. 

• Focusing on realistic physical attacks instead of digital attacks (the attacker has access to components).

Category Setting Description

Radiometric Varying weather conditions
Filters

Brightness, snow, rain, …
JPEG transformations

Geometric

Rescaling
Crop

Affine transformations
Distance w.r.t learning

position

***
***

Rotations
Shift from learning position

Transferability Detector sensitivity
Detector generalization

Sensitivity of a detector parameters to APAs
Generalisation of an APA through multiple detectors 

• The resulting average precision (AP) is used to rank attacks for each setting. The overall rating measures

the real impact in physical conditions of each APA.

Structure of the proposed pipeline to evaluate APAs.

3. Proposition

4. Application and results
Experimental setup : 

• Using the PASCAL VOC test dataset

• Evaluating patch contextual effects i.e the patch does not overlap with the object of interest (creation

of subdataset without overlapping) and detections on the patch are removed

• Attacking the person class

• Patch learned at top-left location and applied at the learned position by default

Evaluating three state-of-the-art attacks; Dpatch (Liu et al., 2018), Lee et al. (Lee et al., 2019) and 

Saha et al. (Saha et al., 2020) on YOLOv2. 

Objectness
ℙ(object) 

Class probability
ℙ(classi|object) 

Average over test set

YOLOv2 detection pipeline. Divides the image into 

a S x S grid. For each cell predicts B modifications of

anchors, objectness score for those boxes and class

probabilities.

Class person probability map obtained by averaging 
anchors in cells over test set. At each column, a different 

APA is tested. The fourth column is the baseline. Training 

settings correspond when evaluation is performed with

training settings. 

ℙ(
#$
%&
'(
|'
*+
$,
-)

Setting Attack 
Attacked AP (%)
w/  f.p w/o f.p

Cleaned
AP (%)

Same as 

training

Dpatch 71.42 75.01

76.13

Lee et al. 10.56 74.36

Saha et al. 59.36 59.47

Other

initialization

Dpatch 73.34 75.25

Lee et al. 60.35 75.42

Saha et al. 75.55 75.55

Shift from

learning

position 

Dpatch 70.61 77.87

80.01Lee et al. 53.02 78.73

Saha et al. 74.28 75.87

Table of the evolution of the AP score for different setting

evaluation and for different APA. 

6. References
[Song et al., 2018] Dawn Song et al., Physical adversarial examples for object detectors. In 12th USENIX workshop on offensive
Technologies (WOOT 18), 2018.
[Saha et al., 2020] Aniruddha Saha et al., Role of spatial context in adversarial robustness for object detection. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pages 784–785, 2020.
[Lee and Kolter, 2019] Mark Lee and Zico Kolter. On physical adversarial patches for object detection. Preprint arXiv:1906.11897, 2019.
[Liu et al., 2018] Xin Liu et al., Dpatch: An adversarial patch attack on object detectors. SafeAI 2019 (AAAI Workshop on Artificial
Intelligence Safety), 2018.

5. Future work
• Plan to improve this framework in future works to add more transferability experiments (in particular 

with transformer model)

• Improve current attacks to make them resilient to setting change. 

Conclusions:
• Our framework allows to 

evaluate real impact of APAs

• Dpatch and Lee et al. have low
contextual effects limiting their
criticality

• Current attacks are sensitive to 
setting change lowering the 
practical risk of current APA's

Robust AI & Monitoring
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Robust AI & Monitoring

Welding Use Case (Renault)

Aerial Photograph Interpretation (Thales)

When the system does not behave or does not continue to behave as specified or in the specified context … we observe the advent of anomalies such as
weak generalization capability, lack of stability, lack of robustness, concept/distribution drift, intrinsic limitation of the AI technology, lack of explainability, unsafe
unintended behavior, etc. These anomalies increase the safety risk related to the failure conditions of the product and this situation could be unacceptable.

Functional Architecture of the Multi-Timescale Monitoring Key Engineering Principles to Design Online Monitor for AI Models 

The deployment of a monitoring device operating in parallel with the IA model (online monitoring) is a concrete way of managing this type of residual risk
induced by a model for which it is not possible or feasible to formally demonstrate the achievement of the performance/safety objectives resulting from the
system analyses. Online monitoring is a safety architectural pattern that is well known to safety engineers, but it had to be adapted to AI technologies. We
propose to combine several monitoring time scales: a monitoring of the product at the present time, a monitoring on a configurable time window of the near
past, a monitoring on a configurable time window of the near future.

The monitoring libraries developed within the frame of Confiance.AI program are independently verified by LNE engineers

Some useful definitions from Confiance.AI taxonomy (v2):
- Robustness: The capacity of a model to preserve its expected / intended performance under well-

characterized abnormalities or deviations to its inputs and operating conditions outside its operational
design domain (ODD)

- Stability: The capacity of an ML model to preserve its expected / intended performance under well-
characterized and bounded perturbations to its inputs and operating conditions within its operational
design domain (ODD)

1

2

3

Monitor Verification Methodology and Results
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Robust AI & Monitoring

1. Uncertainty decomposition formalism for times series monitoring

5. Proto-pipeline of UQ components

3. Application on synthetic series

2. Theorical abstraction :
Estimation of 3 time-dependant indicators :

∎ |𝒚𝒕 - ŷ𝒕| : Deviation - model error           ∎ σ𝒕𝑨 : Aleatoric variance - data variability
∎ σ𝒕𝑬 : Epistemic variance - model uncertainty

Interaction within Confiance.AI :

Works of the 1st year : 
• Anomaly detection formalism - EC5N3

• Regression with confidence - EC3N5

Works of the 2nd year : 
• Anomaly on complex system - EC5N11

• System Monitoring on Time series - EC3N18

3 orthogonal indicators 
to design confidence indicators : 

Scores of Anomaly, Confidence, variability

3D indicator space representation of data for a control & degraded model

Benchmark 3 approach of UQ decomposition :
• RF-UQ : Random forest with UQ - Ensemble of model
• MLP-BNN : Bayesian NN - Specific loss + non-deterministic NN
• MLP-EDL : Evidential Deep Learning - Specific loss + deterministic NN

4. Application on real data (Gas demand) :
MLP-BNN indicators for train & test set on 2 different “data context”
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4-Results 5-Conclusions

1-Introduction

MIP 
Formulation 

MIP solver
Gurobi
/ Cplex

Improved 
version of the 

MIP solver

Evaluation
on images

EC3.9

1. Check if an adversarial 
example exists! 

2. Find the optimal adversarial 
example

Outputs

• Neural network 

• Data (Images )

Inputs

➢ Develop a dedicated Mixed-Integer Programming (MIP) solver 

2-MIP Formulation [1,2,3]

MIP

Minimizing the 
Adversarial Distortion

Reformulation

Formalizing the search for adversarial exemples :

1. Fischetti, M. and Jo, J. Deep neural networks and mixed integer linear optimization. Constraints (2018)
2. Bunel, R. et al. “Branch and Bound for Piecewise Linear Neural Network Verification.” J. Mach. Learn. Res. (2020)
3. V. Tjeng, K. Xiao and R. Tedrake: Evaluating Robustness of Neural Networks with Mixed Integer Programming (2017)

Evaluation of the solution quality

Evaluation of the computing time

➢ improvement of the solution quality (attack) 

➢ our method is more efficient than the generic MIP solver 
Gurobi and the state-of-the-art methods for MIPs

➢ complexity is linear as function of the image size

➢ complexity is exponential according to the number of ReLUs.
➢ not adapted to the model with a high number of ReLUs

Solution quality (CIfar10)  

Quality improvement of the solution (norme L2) 

Attacks PGD 
[Madry et al., 
ICLR 2018]

Evasion
[Biggio, et 
al., ECML 
2013]

FSGM
[I. Goodfellow 
et al, ICLR 
2015]

CW
[Carlini & 
Wagner (CW), 
2017]

Improvement 56.7 % 51.4 % 64.8 % 21.2 %

Improvement = | 𝐼𝑚𝑎𝑔𝑒−𝐴𝑡𝑡𝑞𝑢𝑒𝑀𝐼𝑃 |2
| 𝐼𝑚𝑎𝑔𝑒−𝐴𝑡𝑡𝑞𝑢𝑒 |2

x 100

Improvement
= 62,5 %

Computing time
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3-MIP Optimization

dedicated
Branch-and-Bound

Branch-and-Bound
principle

Lower Bound and 
convex relaxation

Continuous relaxation

Idea : build a convex problem without 
binary variables

equivalent
problem

Convex relaxation

Branching rules and 
exploration strategy

Idea : exploit the sparsity of the solution vector 
associated to the ReLUs activation functions

• Which node will be explored first?
➢ Depth-Up First Search (DUFS)

• Which variable  used in order to 
subdivide problem?
➢ Maximum amplitude (AM)

❖most ReLU functions will not be activated

Robust AI & Monitoring

The associated classification (or decision function)
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Robust AI & Monitoring

Semantic Segmentation Uncertainty Estimation

Probabilistic U-Net for Semantic Segmentation

Contribution
Use the DNN uncertainty from intermediate latent features 

for Out-of-Distribution Detection

First results

Conclusions

• We use the uncertainty from intermediate latent features for
Out-of-distribution detection in a semantic segmentation task.

• Early results show that the entropy from latent features can be 
useful to build classifiers that act as data-driven monitoring 
functions.

Semantic segmentation uncertainty estimation comparison for
in-distribution and out-of-distribution data

Probabilistic U-Net with Bayesian Prior Net for Semantic Segmentation

Latent Feature Evaluation for OOD Detection
(Metrics, as suggested by Ferreira et al. and Blum et al., both 2021)

The Probabilistic U-Net finds useful embedding of segmentation variants in the latent
space – a central component of this architecture – by introducing a Posterior Net

The difference between the distributions at the output of the Prior Net and the
Posterior Net is penalized using the KL divergence.

During inference, the Prior Net encodes each input image x and estimates the
probability of segmentation variants.

1

training inference

2

2

Average surprise (entropy) of observing latent feature z
at output of Prior Net, for an input image x. 

Regression

Densities for Normal and Anomaly Datasets False Positive Rate

ROC Curve Analysis
Tr

ue
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Bayesian Generative Classifier for OoD Detection

For an unknown latent feature z, we can compute the poster probability 
of each class (normal, anomaly) using Bayes‘ Rule:  

Classification

We apply Monte-Carlo DropBlock2D to capture epistemic uncertainty 
from the Prior Net        in the Probabilistic U-Net Architecture

1

Monte-Carlo DropBlock2D

Prior Net Posterior Predictive 
Distribution

1

1

2

1

1

Capturing Uncertainty from Latent Features
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C2 - Restricted

Robust AI & Monitoring

Design method for improving the detection of out of distribution data of type anomaly by multi-epoch 
ensemble method

Héléna Vorobieva*°

*Safran Tech, Digital Sciences & Technologies Department °IRT SystemX
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CentraleSupélec - Saclay, France 

Context
▪ Inspection of industrial parts with images divided into patches
➢ Classification or semantic segmentation

▪ To gain robustness: use several networks via ensemble methods
➢ One neural network at different convergence points (epochs)

Problem statement
▪ Industrial problem: detect anomalies with few false alarms in

whole image, even if use of patches
▪ SotA for best epochs: cost function/scores inside patches
➢ Problem: find a score for the whole image (not local to patches)

Step 4: Final score
▪ Nadmitted = max nbfa accepted in whole val set in a sub-

optimal operating regime, ex: Nadmitted=nbimg in val set
➢ Final score: AUC in [0, Nadmitted] (higher=better)

Calibration process during training
Step 1: Construction of a global result matrix for each image of the validation set
▪ Merge results of patches Mpatch using their position →matrix MGnorm (size of initial img)

Step 1

Step 2: Thresholding and classification of detected anomalies polygons for each epoch
▪ Fix dense thresholds Si in [0,1]
▪ For each epoch, for each Si:

Threshold each MGnorm to produce Mbin and list all result polygons PRi
For each ground truth polygon PGT, if ∃ 𝑃𝑅𝑖 ∶ 𝑃𝐺𝑇 ∩ 𝑃𝑅𝑖 ≠ ∅ then anomaly PGT found
For each result polygon PRi, if ∄ 𝑃𝐺𝑇 ∶ 𝑃𝐺𝑇 ∩ 𝑃𝑅𝑖 ≠ ∅ then polygon PRi false alarm

➢ Points Si_epoch(nbanom, nbfa)→ curveepoch(nbanom, nbfa)

Step 2 Step 3: Make all curveepoch comparables
▪ Add points S∞(0,0)
▪ Given S1<S2:

H1: nbanom(S1)≥ nbanom(S2), H2: nbfa(S1)≥ nbfa(S2)
▪ On each curve, for each Sh not respecting H2 :
➢ new Sh=(F, nbanomN)

where SN(nbfaN, nbanomN) 1st threshold from which H2 OK
F=maxall_epoch(nbfa) among Si respecting H2

Step 3

Step 4

Experiment
Safran UC
• Img 2432x2050x5 divided into 256x256x5 patches
• Classification with resnet-18
• Training during 182 epochs
• Nadmitted=273=nb img in val set
• Test on 1148 img

Test on 5 best epochs (curve with 5 thresholds) Test on 10 best epochs (curve with 7 thresholds)
Mean nb of false alarms per image

De
te

ct
io

n
ra

te

Mean nb of false alarms per image

De
te

ct
io

n
ra

te

Solution 1) Reconstruct global results of whole 
images by merging results of patches

2) Threshold densely the global results 
and compare with ground truth

3) Score: AUC of nb anomalies found 
function of nb false alarms

(collapse of fa areas)



Posters Village: Trustworthy Embedded AI 

Introduction to the themes of the village 
Jacques Yelloz, Thomas Wouters 

How to guide and handle the deployment of trustworthy AI components on target hardware in the frame of 
industrial applications? 

The objective of the "Trustworthy Embedded AI" village is to show you the challenges and issues related to 
the deployment of trustworthy AI components on target hardware in the framework of industrial 
applications. 

The corresponding activity can be seen  as an extension of the design algorithms phase: it is a question of 
providing the tools necessary to carry out the implementation of an IA component on an embedded 
hardware target that has limited resources. Generally, the implementation takes as input data or 
specification a model of the AI component (usually a neural network) that is to be implemented on a 
specific target. The code corresponding to this implementation is most often specific to the target. 
During this implementation phase, it is also a question of preserving the properties linked to trust such as, 
for example, explainability or robustness. This implementation step is most often optional for AI 
components deployed at the Cloud level. Indeed, frameworks such as pytorch, which allow designing 
and generating models of AI  components, provide all the components necessary for the deployment of 
these models (see the Model Serving functions at the level of pytorch or MLFLOW). Thus from a practical 
point of view, the challenge aims to move from a model operating in a Cloud environment to a model 
operating in an embedded environment with therefore additional constraints related to embedded 
systems. 

This transition from the world of the Cloud to that of the embedded results in developments or adaptations 
that revolve around the following topics: 

- Methodological: to define the workflows and methodologies taking into account the dimension of 
embedded systems

- Real time :  The challenge  is to adapt the compilers in order to give better guarantees related to the 
predictability of the algorithm execution time. Methods such as WCET on GPU target and Reactive 
programming are illustrated.

- Benchmarking environment  : an environment composed of  a set of toolchains,  AI models and 
target in order to support benchmarking, algorithm resource estimation and implementation

- MLMD (Machine Learning Model Description) : A review of a suitable description format to ensure 
uniformity of the semantic description of the model, regardless of its toolchain provenance, in order 
to improve the transition from design to implementation in the frame of critical systems.
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Trustworthy Embedded AI

• Resources estimation

 refine the 
embedded constraints

 support hardware sizing

• Interface/ Interoperability

 MLMD : 
machine learning model 
description specification to per
form implementation indepe
ndence from the model 
design framework

• Compilation toolchain and 
benchmarking environment :

 Ensure conservation of 
trust properties after the 
implementation phase : 
for instance Timing predictabili
ty and repetability of ML 
inference Model

 Guidelines and consistency 
between Algorithm 
, Framework and Target

• Model optimization

 Compression 
and quantization to fit the 
constraints of 
embedded hardware 
(limited resources) and with 
trust guarantees ( ie : 
error control of accuracy)

• Certification

 methodology for 
the implementation phase

 model survivability in spite of 
Hardware faults

• Articulation 
between Confiance.AI and 
other initiatives on embedded 
AI

Trustworthy
properties

Embedded 
constraints

SCOPE

Sources & 
Binary

111000111100

Deep Learning
trained model 

Confiance.AI Embedded 
AI Components

CHALLENGES

Link with others Confiance.AI projects

Goal is to support others Confiance.AI projects : How to manage the transition from Trustworthy 
Models running (serving) in the Cloud to models running in embedded constrained systems ?
Confiance.AI methodology and workflows update to address the challenges of embedded systems
Trustworthy IA components adaptation to Edge environment (design and implementation phase)
New IA / ML Pipeline to deal with Models implementation and serving (Trustworthy Environment)

v

Contributions to Confiance.AI Environment
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Benchmarking of AI on Embedded Platforms
Nassim ABDERRAHMANE 1 –Theo ALLOUCHE 2 – Lionel DANIEL 3 – Frédéric FERESIN 3 –Omar HLIMI 1 – Eric JENN 1–Christophe MARABOTTO 1 –

Floris THIANT4

1 IRT Saint Exupéry - 2 ATOS – 3 AzurIA – 4 IRT SystemX

Trustworthy Embedded AI

Our objectives
• Select a first batch of HW platforms, models and toolchains
• Define evaluation criteria and cost functions
• Characterize ML implementation toolchains
• Characterize HW platforms 
• Elaborate a set of reference benchmarks
• Elaborate deterministic / statistical  performance models
• Provide guidance to choose the toolchain / platform couple
• Simplify access to the ML implementation and deployment tools
• Address an ever changing technical landscape (framework, HW)

DEPLOY

EVALUATE

OPTIMIZECOMPARE

SELECT

GUIDE

REUSE

Platform 
analysis 

Framework 
analysis

Extrapolate from 
previous experiments

Measure performances 
on actual platforms

MEASURE

Reuse results from 
benchmark models

Provide access to 
pre-installed toolchains

PREDICT

Filter platforms/frameworks 
according to user defined 

criteria

❶

❷

❸

❹❺
The Optimization Problem

The operational needs
Determine the optimal implementation of a ML model on an 
embedded platform considering confidence and industrial 
performance criteria such as precision, performance, 
determinism, maturity, etc.
This optimization process involves:

• Multiple and complex deployment chains
• Multiple and complex hardware platforms

Confiance.ai Days 
4-6 Oct. 2022
CentraleSupélec
Paris-Saclay, France 
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Trustworthy Embedded AI

Embedded ML system design: Reactive and Transformational, HPC and RTE

The paradox:  Reactive/RTE intuition and implementation, Transformational/HPC formalization and compilers
Difficulties to design and to implement: significant manual code interfacing

Reactive
• Cyclic execution
• Interaction with environment
• Stateful (for various reasons)
• Real-Time Embedded (RTE)

main focus

Transformational
• One input, one output 
• Functions (stateless

computations)
• HPC main focus

• ML specification (Keras, PyTorch…)
- Reactive intuition (dataflow)
- Transformational semantics

• e.g. LSTM assumes all input data arrives at once
• ML/HPC compilers, ML runtimes

• Transformational
- Performance-focused

• Embedded implementation, execution platform
- Reactive
- Predictability- and safety-focused

Contribution: Reactive ML Programming

Full-fledged compilation
• Multi-threaded code or IREE-based (GPU/CPU)
• No performance loss due to reactive execution

Future: predictable ML runtimes (TF/IREE-focused)
• Memory allocation, scheduling
• Compatibility between frameworks, hardware, and runtimes

LLVM/MLIR (SSA form) 
• Intermediate Representation (IR)

and compilation toolbox
- ML/HPC-native (TF ecosystem)

• Optimization
- Average-case
- Incremental « lowering »

• Mainly data parallelism
• Globally sequential, 

locally concurrent
• Static Single Assignment
• Transformational systems
- Focus on efficiency

• Core SSA = no absence 
- LLVM adds undef, poison
- Focus on semantics preservation

Lustre/SCADE (dataflow synchronous)
• High-level specification formalism

.
- RTE-native

• Correction guarantees
- Functional and non-functional
- Worst-case analysis

• Mainly task parallelism
• Globally sequential, 

locally concurrent
• Static Single Assignment
• Reactive systems
- Embedded real-time applications

• Absence is key part of semantics
- Checking correction

+ = MLIR-lus
lus.node @lstm(%data: tensor<3x1xf32>) -> 
(tensor<3x1xf32>) { 

// Build a clock that is true every 5 cycles 
%lstm_clk = lus.inst @modulocounter %five
%tmp0 = lus.fby %zero %state0out
%tmp1 = lus.fby %zero %lstm_out
%24a = lus.when %lstm_clk %zero
%24b = lus.when not %lstm_clk %tmp0 
%24 = lus.merge %lstm_clk %24a %24b 
%25a = lus.when %lstm_clk %zero
%25b = lus.when not %lstm_clk %tmp1 
%25 = lus.merge %lstm_clk %25a %25b 
// LSTM core
%v26 = tf.MatMul(%v24, %o76)
%v28 = tf.MatMul(%data, %o22)
%v29 = tf.AddV2(%v28, %v26)
%v30 = tf.BiasAdd(%v29, %o78) 
%v31_0, %v31_1, %v31_2, %v31_3 = 

tf.Split(%split_dim, %v30)
%v32 = tf.Relu(%v31_2)
%v33 = tf.Sigmoid(%v31_0)
%v34 = tf.Mul(%v33, %v32)
%v35 = tf.Sigmoid(%v31_1)
%v36 = tf.Mul(%v35, %v25) 
%lstm_out = tf.AddV2(%v36, %v34) 
%v40 = tf.Relu(%lstm_out) 
%v41 = tf.Sigmoid(%v31_3)
%state0out = tf.Mul(%v41, %v40)
// Output subsampling
%subsampled = lus.when %lstm_clk %lstm_out
lus.yield (%subsampled: tensor<3x1xf32>) 

} 

ACM TACO 2022/HiPEAC 2022
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*

The definition of a format is a NEED for embeddability purposes

ML Model 
Description

Description of 
the ML model

Additional 
information

Architec-
ture

Parameters 
/Hyperpara-

meters

Analytical 
syntax and 
semantic

ML Model Design 
Process

Develop
ML Model 

Architecture

Develop
ML Model 

Requirements

Build the ML 
Model

Optimize the 
ML Model

Train & Evaluate 
the ML Model

ML Model 
Implementation 

Process

● Characterization of the problem
● Inputs
● Outputs
● The logical structure
● Sequence constraints to meet

● Replication criteria

● Dependances

● Information not given in the 

inference model

PyTorch TENSORFLOW NNEF ONNX

Interoperability

Auditable (/Human 
Readable)

Explicit Description

Data Processing 
Operations

Optimization / Quantization

Non Adherence to 
Learning Environment

Execution order

Platform agnostic Parser for C++ / Python 

Description is platform independent

ONNX Runtime has a list of compatible 

execution providers for CPU,GPU, 

IoT/Edge/Mobile etc. implementation 

Structure ● one single file

● A Graph file

● A folder with variables

● A Graph file

● A folder with parameters 

● A quantization 

● one single file

● possibility to have parameters 

stored apart

Additional Informations
proposes a folder structure to be able 

to collect ML related file, additional file 

can be added manually 

proposes a “doc_string” for 

documentation of the model

Gap Analysis : Industry & Standards requirements VS existing formats?

The MLMD is decomposed into two parts: description and additional information. It helps validating
and verifying the model specification/behaviour and ensuring the preservation of its semantics.

CRITERIA
FORMAT

The particular case of 
N2D2

N2D2 is a platform for ML 
Design/Training/Deployment, 

developed by CEA.
It is based on known format such as 
ONNX, but also on a native format 

INI.
—----------------

INI files advantages: 
CEA is connected to Confiance.AI, 

INI files are human readable

INI files Disadvantages:
No interoperability of INI Native 

Format
No explicit description of operations

Optimiza-
tion (e.g. 

quantization, 
pruning)

There is no “ideal” existing format.
NNEF & ONNX are the two most complete existing format. 

Main issues are on the description of data processing operations, optimization operations and explicit description.

*Indirectly with a converter

Describe
Data Processing 

*theoretically but converters are not robust to quantization

The concept of ML Model Description (MLMD) for safety-related ML component has been introduced by the standardization joint WGs EUROCAE WG-114 and SAE G-
34 in the draft of the future ML standard (ED-xx/AS6983) for the development/certification of aeronautical safety-related systems (manned/unmanned aircraft).

*Converter from ONNX / TensorFlow / Caffe(2) *Converter from ~ 25 frameworks

Up to int8 quantization
Up to int8 quantization, can be custom 

*Indirectly with a converter

ML Model Data Management 
process

…

ML Validation 
Process

ML Verification 
Process

Describe 
ML Model 

Why specify a format for the ML Model implementation?
The description of the ML Model is defined as the interface between the design and the implementation
processes. For safety-related component, one challenge of the embeddability is to demonstrate that the 
implementation process does not alter the safety/functional/operational properties of the ML model obtained by 
the design process. 

To this purpose, the ML model has to be:
● Explicitly and fully described, with no possible interpretation,
● Exactly replicable on a software/hardware target, with no possible approximation,

In order to:
● Ensure the preservation of the semantics
● Be fully verifiable (for conformity to regulation requirements)

Standards Objectives and Industries requirements generate criteria for the description format for ML Component. Here are presented an analysis of the 
gaps between existing formats regarding these criteria.
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1. Context & Objectives

Autonomous Vehicles are critical and have to meet specific 
requirements to be considered as safe, in particular temporal 
requirements.

https://www.researchgate.net/figure/E-E-Architecture-with-Central-Platform-Computer_fig3_307804303

Out objective is to estimate the worst-case execution time of a 
program running on GPU architectures through static analysis. 
We have to adapt techniques that already exist for CPUs to 
GPU and to model the architecture. 

2. GPU & SIMT execution model
GPUs have hundreds of execution units to run the same 
program on thousands of threads at the same time.

Threads on a GPU are grouped into 
warps that contains 32 threads. They 
execute instructions in lockstep. This 
mechanism leads to a program when 
the GPU has to execute a divergent 
program.

3. Research method & example
To understand the GPU components, we follow this method: 
- Make an hypothesis on a component 
- Perform experiments with micro-benchmarks 
- Analyse the results to validate or not the hypothesis 
- Implement into a simulator
The shared memory is a multi-banked on-chip memory. On 
accesses threads of the same warp are grouped into 
transactions. When multiple threads need different words 
located in the same bank, there is a conflict. So, multiple 
transactions must be issued. 

However, some cases are problematic:

After multiple experimentations, we conclude that threads are 
grouped into pools according to the access size:

4. Results on matrix multiplication

5. Publication
[1] Michaël Adalbert, Thomas Carle, Christine Rochange. PasTiS: 
building an NVIDIA Pascal GPU simulator for embedded AI applications 

GPU Simulator
Matrix size 4*4 128*128 4*4 128*128

Reads 8 262144 8 262144
Writes 2 65536 2 65536
Cycles 1875 21797462 1878 22451385

Access size 32-bit 64-bit 128-bit
Number of pools 1 2 3

Threads per pools 32 16 8
Base (cycles) 1 8 16

SM 0 SM 1

L2 Cache

GPU

SMP 0 SMP 1

SMP 2 SMP 3

L1 Instruction Cache

L1 Data Cache 0

L1 Data Cache 1

Shared Memory

SM

Instruction Bu↵er

Warp Scheduler

Dispatcher 0 Dispatcher 1

Registers

CC CC CC CC

CC CC CC CC

CC CC CC CC

CC CC CC CC

CC CC CC CC

CC CC CC CC

CC CC CC CC

CC CC CC CC

FP64

SFU

SFU

SFU

SFU

SFU

SFU

SFU

SFU

LSU

LSU

LSU

LSU

LSU

LSU

LSU

LSU

SMP

bank 0 bank 1 bank 2

...

bank 29 bank 30 bank 31

t0 t1 t2 t29 t30 t31

1 transaction
bank 0 bank 1 bank 2

...

bank 29 bank 30 bank 31

t0

t16

t1

t17

t14

t30

t15

t31

2 transactions (1 conflict)

bank 0 bank 1 bank 2

...

bank 29 bank 30 bank 31

t0 t1 t14 t15

2 transactions (64-bit data)
bank 0 bank 1 bank 2

...

bank 29 bank 30 bank 31

t0 t0

t1 t1

t2 t2

t3 t3

t16

t17

6 transactions

nTrans =
nPools

∑
i=1

(1 + max
j∈[|0,31|]

(conflict(pooli, bankj))

time = 22 + base + 2 ×
nPools

∑
i=1

( max
j∈[|0,31|]

(conflict(pooli, bankj)))

Trustworthy Embedded AI
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Bayesian optimisation with deep ensembles

Pre-training procedure
1. Using behavioural distance to enforce close representations for networks 
which behave similarly

2. Pre-training the ensemble networks on pseudo-objectives to construct 
good representations of the networks

Calculation of the behavioural distance between two networks A and B

Pre-training one of the ensemble networks using behavioural distance loss

Results on NATSBench

Search space
Unified search space, encompassing efficient CNNs and efficient hybrid CNN-

ViTs
CNNs ViTs

Static weights
Local receptive field

Inductive biases for images
Can train on moderate sized datasets

Data-driven weights
Global receptive field

Flexibility
Data-hungry

Expand

Synthesize 
representations

Reduce

Fuse

Channel expansion step
- Channel exp. factor
- Operation (Depthwise convolution / Pointwise convolution)

Learning global or local representations

- Multiheaded self-attention (ViT)
- Pointwise convolution (efficient CNNs)

Channel reduction step 1x1 convolution

Fusing input and output
- Concatenation + convolution
- Sum (i.e. residual connection)

Hybrid CNN-ViTs: Can we achieve the best of both worlds ?
-

Structure of a block in the proposed search space:

Among the literature vision architectures included in this search space: 
MobileNet, MobileViT.

Context and research questions
Automatic design of neural network architectures (AutoDL)

Potential optimization objectives:
• Precision: accuracy (classification), IoU (semantic segmentation)
• Embedded AI: e.g. latency, memory, power consumption
• Trustworthiness: e.g. NetTrustScore, Expected Calibration Error (ECE)

[1] El-Ghazali Talbi, “Automated Design of Deep Neural Networks: A Survey and Unified Taxonomy,” ACM Computing Surveys 54, no. 2 (March 5, 2021): 34:1–34:37.
[2] Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter, “Neural Architecture Search: A Survey”
[3] Hadjer Benmeziane et al., “Hardware-Aware Neural Architecture Search: Survey and Taxonomy,” vol. 5, 2021, 4322–4329, accessed March 28, 2022.
[4] Kai Han et al., “A Survey on Vision Transformer,” IEEE Transactions on Pattern Analysis and Machine Intelligence (2022): 1–1, accessed March 28, 2022.
[5] Sachin Mehta and Mohammad Rastegari, “MobileViT: Light-Weight, General-Purpose, and Mobile-Friendly Vision Transformer,” arXiv:2110.02178 [cs] (March 4, 2022)
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