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Vanishing viscosity limit for
aggregation-diffusion equations

*

Frédéric Lagoutiére, Filippo Santambrogio, Sébastien Tran Tien

March 10, 2023

Abstract

This article is devoted to the convergence analysis of the diffusive approximation of the
measure-valued solutions to the so-called aggregation equation, which is now widely used to
model collective motion of a population directed by an interaction potential. We prove, over
the whole space in any dimension, a uniform-in-time convergence in Wasserstein distance, in the
general framework of Lipschitz potentials, and provide a O(4/¢) rate, where ¢ is the diffusion
parameter, when the potential is A—convex. We give an extension to some repulsive potentials
and prove sharp convergence rates of the steady states towards the Dirac mass, under some
uniform attractiveness assumptions.

1 Introduction

This paper addresses the vanishing viscosity limit ¢ — 0 for the following aggregation-diffusion
problem on the whole space R?, in any dimension d (probably all the analysis could be performed
on a bounded domain with homogeneous Neumann boundary condition):

0ep° + V- (alp®]p%) = eAp, (1.1a)
alpf] = =VW = p°, (1.1b)
p°(0,-) = pp, (1.1c)

where € > 0, W : R? - R is a given interaction potential and the sequence of initial data (P5)e>0
belongs to P2(R%) the set of probability measures with finite second order moment, and converges
as € goes to 0 towards a given p™ € Py(RY).

Equation f is often used in population dynamics to describe the collective motion of a
population subject to Brownian diffusion and interacting through the interaction potential W. The
term VIV % p(z) models the combined contribution of the interaction of a particle located at point
x with particles at all other points. These equations appear in several applications arising from
physics and biology to model, for instance, swarming, chemotaxis, crowd motion, bird flocks, or fish
schools, see, e.g., |27, 6, 39, [38] 115, [19]. The potential W depends on the model we consider. For
example, the celebrated parabolic-elliptic Patlak-Keller-Segel model |23, 24| for chemotaxis with an
adequate set of parameters corresponds to the aggregation-diffusion equation in dimension d = 2 for
the logarithmic potential W (z) = o= In(|z|).

In this work, we assume that the interaction potential W satisfies the following properties:
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(A0) For all z € RY, W(z) = W(—z) and W(0) = 0,

(A1) W e (R (0}),

(A2) W is ax-Lipschitz continuous, for some constant a., = 0.

In addition, some of our results only hold under one of the following supplementary assumptions:
(A3) W is A—convex for some A < 0, that is, x —> W(zx) — %|x|2 is convex,

(A4—p) There exists a constant C' > 0 such that, for all z € RY, VIV () - 2 > C|z?,

where p > 1. Potentials satisfying assumptions (A0)-(A1)-(A2)-(A3) but not differentiable at the

origin are often referred to as pointy |11} |13} 26].

Remark 1.1. Note that assumption (A2) is incompatible with assumption (A4—p) whenever p > 1.
This is the reason why we only consider A < 0 in (A2), since (A2) with A > 0 implies (A4-2).
Still, when studying well-posedness of inviscid aggregation equations, the case A > 0 can be tackled
considering compactly supported data for, in that case, the support decreases in time (see [13]
Theorem 2.1 and |10] Remark 2.14). When € > 0, it is not clear however that we can reproduce this
argument.

When the potential is pointy, finite time blowup of weak solutions occurs |2} 3| for the inviscid
problem:

op + V- (alplp) = 0, (1.2a)
alp] = =VW = p, (1.2b)
p(0,-) = p™, (1.2¢)

After blowup time, the solutions being possibly singular measures, the product a[p]p is no longer well-
defined. For A—convex potentials, the continuation of weak solutions valued in Po(R?) has therefore
been studied through three different approaches: gradient flow solutions in the Wasserstein space
[10], duality solutions a la Bouchut-James |20, 19] in one dimension of space and Filippov solutions
[11, 26]. These notions of solutions turn out to be equivalent to that of solutions in the sense of
distributions provided the velocity field a[p] is replaced by:

alol@) = — | YWz — y)p(dy). (13)
y#a

Our objective in this paper is to study the convergence of the viscous solutions (p°).~¢ towards
such a weak measure solution to (1.2). When W is A—convex, these asymptotics had previously
been mentioned in [8], where the authors explain how to use the techniques for the I'—convergence of
gradient flows developed by Serfaty in [33]. Our method basically relies on the same arguments which
actually do not require the A—convexity of the potential but only its Lipschitz continuity — along
with the standard assumptions (A0)-(A1l). Starting from the so-called Energy Dissipation Equality
(EDE) for the viscous problem we prove lower bounds of lower semicontinuity-type on each term
of the EDE. This amounts to verifying the assumptions of Theorem 2 in [33]; if, in addition, the initial
data is well-prepared, then we meet all the hypotheses of this theorem. However, we deliberately
pass to the limit by hand, so as not to invoke abstract gradient flow arguments. Therefore, our proof
is self-contained for the reader with minimal background regarding optimal transport. In particular,
in our Theorem we recover, at the limit ¢ — 0, the right definition of the velocity field for
as defined in ([1.3)).



We generalize this result in Corollary [3.4)to arbitrary Py (R?) initial data converging in Wasserstein
distance towards the initial datum p™ of the inviscid problem, when W is, in addition, A—convex.
This is done by smoothing out the initial data and estimating the distance to the modified solutions
at time ¢, which is possible since the interaction energy is A—geodesically convex. We then provide
a convergence rate based on the differentiation formula of the Wasserstein distance between two
absolutely continous curves on the Wasserstein space. Note that, for the Newtonian potential, the
vanishing viscosity limit had been established in [12] in dimension d > 2 and up to the time of
existence of weak solutions in L' n L® but, to the best of our knowledge, without convergence rates.

This article is structured as follows. We recall in Section [2 some useful results and definitions
regarding optimal transport and functionals defined over the Wasserstein spaces.

In Section [3] in the framework of Lipschitz potentials, we begin with the general convergence result
of the diffusive solutions (p%).~0 towards a solution p to the inviscid problem for well-prepared
initial data. We then relax some of our assumptions on the initial data and focus on A—convex
potentials, for which we prove that convergence still holds for arbitrary initial data (p§).>0 converging
towards p™. We then prove that convergence occurs at rate O(/¢) in Wasserstein distance. We
give, in addition, an alternate proof based on the convergence estimates of an upwind-type scheme
for the inviscid problem due to the first author with Delarue and Vauchelet [14, 13].

In Section 4} we show that convergence (without convergence rate) still holds, up to an extrac-
tion, for repulsive potentials that behave like W(x) = —|z|. The idea is to estimate, as in the
A—convex case, the distance between solutions associated with smoothed out initial data and so-
lutions associated with a fixed initial datum p™. This is done by differentiating the Wasserstein
distance between solutions and proving appropriate estimates on the aggregation velocity field using
an additional integrability assumption on V2W.

Section [f] is devoted to the study of the stationary problem and, in particular, we provide higher
convergence rates for the viscous steady states towards the unique steady state of the aggregation
equation, that is, up to translations, the Dirac mass, when the interaction potential satisfies the
key assumption (A4-1) but is not necessarily Lipschitz continuous. Under assumption (A4—p) for
an arbitrary p > 1, estimates are also obtained and proved to be sharp for p = 2. We eventually
illustrate our convergence results in Section [6] and observe all the proven convergence rates.

Acknowledgments: The authors are indebted to Benoit Fabréges for crucial help with the
numerical code. FS acknowledges the support of the Lagrange Mathematics and Computation
Research Center project on Optimal Transportation.

2 Preliminaries

2.1 Notations

We denote by C(R?) the space of continuous functions from R to R, and by Co(R%) (resp. Cy(R?),
C.(R%)) the subspace of continuous functions vanishing at oo (resp. of bounded continuous functions,
of continuous and compactly supported functions). We also denote by Mj(R?) the space of Borel
signed measures with finite total variation, equipped with the weak topology o(M;(R%),Co(R%)).
For a sequence (pp)neny € My(RHN and p € My(R?), we denote the weak convergence of (py,)nen
towards p by pj, n_i)oo P

For p € My(R%) and r € [0,+), we also denote by M,(p) the r—th moment of p, given by
M,(p) = §ga |z|"p(dz), where | -| is the Euclidean norm. For p € M;(R?) and Z a measurable map,
we denote by Z4p the pushforward measure of p by Z, which satisfies, for any ¢ € Cy(R?),

j o(z) Zyp(dr) = fw(Z(:r)) plde).



Note that, in the above equality as in the whole article, whenever the integration domain is not
specified, the integrals are considered over the whole space (which is R? here). If u € My(R?) is a
positive measure, we also note p < . whenever p is absolutely continuous with respect to pu.

We call P(R?) the subset of My (R?) of probability measures and we denote, for p € [1, +0),
Pp(RY) := {pe PR?), M,(p) < +w0}. For pu,v € Pp(R?), we define the Wasserstein distance of
order p between p and v by (see |1} 32} 40]):

W) = dnt { [l y|pv<dx,dy>}l/p (2.1)

el (u,

where I'(p1, v) is the set of measures on R? x R? with marginals p and v, i.e.

F(M,I/):{Vepp(R x RY); V¢ € Co(RY), fg (de, dy) = fg

f{ y(dx, dy) = Jg }

Any measure that realizes the minimum in the definition of W), is called an optimal plan, and
the set of optimal plans is denoted by T'g(u, v). The space P,(R?) equipped with the distance W), is
called Wasserstein space of order p and denoted W,(R).

We recall that the Wasserstein distance W, metrizes the weak convergence of measures in the

sense that, for (pn)nen € Pp(RON and p € P,(R?), Wy(pn, p) s 0 if and only if p, nim p and

My (pn) s M,(p) (see [40|, Theorem 7.12).

1 1
We shall also denote the conjugate exponent of p by p’ € [1, +o0] defined by — + — =1, with the
p P

usual convention 1’ = 400 and oo’ = 1. For a € R, the positive and negative part of a are denoted
by at := max(0,a) and o~ := max(0, —«). With that convention, both at and a~ are always
nonnegative.

Throughout this paper, we will use the same notation C' to denote any positive constant.

2.2 Curves and functionals over the Wasserstein space

Let p € [1,+00) and T > 0. We call curve on the metric space W,(R%) any continuous function
peC([0,T],W (]Rd)) We say that p is an absolutely continuous curve if there exists b e L!([0,T])
such that W), (ps, pt) S b(7)dr for every 0 < s < t < T, and we denote AC([0,T], W,(R?)) the set
of absolutely continuous curves on W,(R?). We also define for ¢ € [0, T], the metric derivative of p

at time t as:
Wp(pt+h7 Pt)
-,

If p is a Lipschitz curve on W,(R%), then the above limit exists for a.e. ¢ € [0,7]. Now, up to a
reparametrization in time, any absolutely continuous curve can become Lipschitz continuous and
therefore admits a metric derivative for almost every time.

The fundamental property of absolutely continuous curves in W, (R) is the link with a continuity
equation:

M= i 2.2
|0} lim (2.2)

Theorem 2.1 (|1], Theorem 8.3.1). Letp e (1,+0) and T > 0. Let p e AC([0,T], W,(R?)). Then,
for a.e. t € [0,T] there exists a vector field vy € LP(ps, R?) such that:

e the continuity equation Oip + V - pv = 0 is satisfied in the sense of distributions

o forae. te [O’T]7 HUtHLP(pt) < |pi‘|



Conversely, if we take a curve p € C([0,T], W,(R%)) such that, for each t € [0,T], there exists a
vector field vi € LP(ps, R?) with Sg [0t o () At < +00 solving the continuity equation Oyp+V -pv =0,
then p e AC([0,T], W,(R%)) and for a.e. t € [0,T7], we have |pj| < [ve1o(py)-

As a consequence, the velocity field v introduced in the first part of the statement actually satisfies
lerloiy = |ei] for ace. t (0.7

We now recall the definition of the first variation of a functional defined over probability measures.

Definition 2.2. Let F : P(R?) — R U {+00}. Assume that p € P(R?) is such that:
V6 € [0,1], Vu e P(RY) n LY (R?Y), F((1—8)p+du) <+,

then we call first variation of F at p, denoted %(p), any measurable function g such that:

dF(p + dx) J
ST | gd
ds ‘5:0 gax

whenever x = p — p for some p € P(RY) n LP(RY), where L¥(RY) denotes the set of compactly
supported functions in L™ (RY). If it exists, the first variation is defined up to an additive constant.

We now introduce two functionals that are essential to our study, the interaction energy W and
the entropy U, defined on P(R?) by:

W(p) = ;ﬁ Wz — y)p(dz)p(dy), (2.3)

pln(p), if p « Leb
u(p) = 1370) . (2.4
+00 otherwise,

where Leb is the Lebesgue measure on R%. Note that, under assumption (A2), the interaction
energy W(p) is finite whenever p € P;(R?). For ¢ > 0, we shall also define the energy functional as
F* =W + eld. One can easily show that %(p) =W # p and %—Z;){(p) =Inp+1.

A key point in our proofs will be the lower semicontinuity (l.s.c) of the above functionals so that
minimization arguments apply.

Lemma 2.3.

(1) If W is l.s.c on R and bounded from below, then the interaction energy W is l.s.c for the weak
convergence.

(2) If W is Lipschitz continuous, then the interaction energy W is Lipschitz continuous for the
Wy distance.

Proof. Let us recall from [32], Proposition 7.2. that if V : R x R? — R is L.s.c and bounded from
below, then the functional p € P(R?) —s fj V(x,y)p(dz)p(dy) is Ls.c for the weak convergence of

measures. This proves the first claim.
For the second claim, we will prove

(W(p) = Wp)| < Lip(W)Wi(p, p).

Indeed, we can write W(p) = 1 {(W = p)dp, so that we have

Wip) =~ Win) = 5 [(W s o)l = )+ 5 [(W s (0= p))d



We then use
‘ J(W *p)d(p — M)’ < Lip(W = p)Wi(p, p)

together with Lip(W = p) < Lip(W), and

W (1= o)) = | | W =)o~ )] < Lin(W (= Wil

together with Lip(W(x — -)) = Lip(W).

The following lemma is proven in |31, Proposition 2.1.

Lemma 2.4. There exists a constant C' only depending on d such that the entropy functional U
satisfies U(p) = —C(My(p)Y/? +1). Moreover, if (pn)n € P(R?) is a sequence weakly converging
towards some p € P(RY) such that Mi(py) is bounded, then we have U(p) < limJiran/l(pn).

n——+00

In particular, this means that the entropy is l.s.c for the W, distance for all ¢ > 1.

In order to obtain convergence of the moments of a weakly converging sequence of probability
measures, we will often make use of the following lemma:

Lemma 2.5. Let 1 < p < +0 and (pn)nen be a sequence of probability measures in Pp(R?) weakly

converging towards p € Pp(Rd) as n — +00. Assume that, for some constant C > 0, we have for

alln e N, My(p,) < C. Then, for all g € (0,p), My(pn) = M,(p). In particular, if p > 1 then
n——+0o

(Pn)nen converges towards p in Wy distance for all g € [1, p).

Proof. For R > 0, we introduce a nonnegative cut-off function np € C.(R% R) equal to 1 on B(0, R).
We write:

f 2] pu(d) = f (2] ()pn (der) + j 1291 — () palda), (2.5)
Rd Rd Rd\B(D,R)
< J]Rd |x]an(m)pn(dm) + JRd\B(O,R) |x’qpn(dx). (2.6)

Firstly,  — |2|%ng(z) € Co(RY), therefore the weak convergence p, i;r p ensures that the first
n—+0o0

term in the above inequality converges to (o, |z|"ngr(z)p(dx) as n — +00. Now, M,(p) < 400 since
M,(p) < +00, hence, using Lebesgue’s dominated convergence theorem, we have {p, |2|%ng(z)p(dz) —

R—+o00

$ga [z|7p(d).
Besides, the uniform bound on the p—moment of p, ensures that the second term converges to
0 as R — +00 uniformly with respect to n. Indeed, using a Holder inequality with the exponents

(£, E.), we have:

p—

{70 (dz) < My(pa) 7P pu(RNB(0, R))'5" < C97p,(RN\B(0, R))

f b—gq
P,
R4\ B(0,R)

Moreover, one has RPp,(RN\B(0, R)) < SRd\B(O R) |zPpp(dz) < Mp(pn) < C. Combining these
inequalities and plugging it into (2.5)) then gives:

q q
[ lelron(an) < [ lelmateiontis) + 5.



Passing to the limg_, o limsup,,_,, ,, we obtain:

limsupf |z|9pp (dz) < f |z|9p(dz).
n—+o0 JRA4 Rd
Since  — |z]? is L.s.c and bounded from below, the functional p — M, (p) is Ls.c for the weak
convergence. Hence, (o, |2|%p(dz) < liminf, 4o (pa |2]%0n(dx), which concludes the proof. O

We also have, as a corollary of the previous lemma, a compactness result:

Lemma 2.6. Let 1 < p < +00 and (pn)nen be a sequence of probability measures in Pp(R?) such
that M,(py) is uniformly bounded with respect to n. Then, there exist a subsequence of (pp)neN
converging towards some p € Pp(Rd) in Wy distance for all q € [1,p).

Proof. As a sequence of probability measures, (py,)nen converges weakly towards some p € My(R?).
Now, the uniform bound on M, (p,) implies tightness on (py,)nen, hence it converges narrowly towards
p and therefore p is a probability measure. We can then use the l.s.c of the p—th order moment to
deduce that M,(p) < +00. Lemma [2.5|finally gives convergence of (py,)nen towards p in W, (R?) for
all g € [1,p). O

We finally define one last functional that will be useful in our proofs. Let p € (1,+00). We set

Ky = {(aab) eRxR?|a+ I%|b|p/ < 0} and, for (t,z) e Ry x R%
%Jfﬁ, if t >0,
fp(t,l’)z 0, ift=0,z=0,

+00, ift=0,x #0.
Then, for X a measurable space and for (p, E) € My(X) x My(X)?, we define the p—Benamou-

Brenier functional by:

B,(p, E) = sup {Jadp + Jb -dE; (a,b) € Cy(X, Kp)} .

The Benamou-Brenier functional satisfies the following properties (see |32], Proposition 5.18):
Lemma 2.7.

(i) B, is conver and Ls.c on P(X) x M(X)? for the weak convergence,

(i1) If p and E are absolutely continuous with respect to a positive measure p, then By(p, E) =
Sfp(p7 E)d,u;

(1it) Byp(p, E) < +0 only if E < p,
(iv) In that case, if we denote by v the density of E with respect to p, that is E = pv, then
P
Bp(P, E) = dep
p
We also have the following symmetrization lemma, which we will repeatedly use for V = VIV:

Lemma 2.8. Let V be a bounded odd vector field on RY, p e P(R?) and v a vector field on R? such
that v - (V = p) is integrable with respect to p. Then, one has:

[ v@)- (v s p)@ptdn) = 5 [ Ve =) - vla) = o)) tdn) ).



Proof. Using the fact that V is odd, we can write thanks to the change of variables z < y:

|[ = v vy = - [ Ve - ) owptdniptan.

Therefore, taking the half sum of the two quantities above:

[ v@)- v+ p)@pta fVm— (2)p(dz)p(dy)

<ﬂ vy p(dz)p(dy) — JVx— (y)p(dz)p (dy)>
-5 f j V(e —y) - (v(x) = v(y))p(dz)p(dy).
]

We finish with a computation of the derivative of WW along a curve satisfying a continuity equation:

Lemma 2.9. Let p be a curve on P(R?) that solves in the weak sense 0yp+V-pv = 0 with v, € L?(py)
for a.e. t€[0,T] and SO Hthm( dt < 4. Then:

Vt e [07 T]? W(pt) - W(pO) = JO J(W * ps) Vsdps. (27)

Proof. Let (W?)s=0 be an approximation of W such that W e C'(R%), W? o W uniformly on
R?, W9 is even, VIW? is bounded by a.,, and VIW?° P VW pointwise on R%\{0}.

We necessarily have VIZ(0) = 0 for all § > 0 and therefore VIV?° P W pointwise on R, On
the other hand, for § > 0, since W% € C'(RY) and W? is even, we have, for ¢ € [0, T]:

5 || et [[Wiapetmman = || 0 g)v@)p(dn)onnas.

(2.8)
Now, we can bound the integrand on the right-hand side writing [VW(z — y) - vs(z)| < aco|vs].
Noting that we have

1/2
f ffh)s )| ps(dx)ps(dy)ds —J sl z1(p,)ds < f(f HUSHLQ(p )ds> < 400,

we can then use Lebesgue’s dominated convergence theorem w.r.t ps(dx)ps(dy)ds to get that the

£
right-hand side in equation (2.8)) converges to J ff VW (z—y)-vs(x)ps(dz)ps(dy)ds, which is equal
0
t
to J(VW % ps) - Vsdps. The uniform convergence of WO towards W ensures convergence of the

0
left-hand side, which concludes the proof. ]

2.3 Preliminary results

We recall the following result of existence of a characteristic flow and well-posedness of measure-
valued solutions to (|1.2):



Theorem 2.10 (|10] Theorems 2.12 and 2.13, [11] Theorems 2.5 and 2.9). Assume W satisfies
hypotheses (A0)-(A1)-(A2)-(A3) and let p™ be given in P2(RY). Then, there exists a unique solution
p e C([0, +0), Wo(R?)) satisfying, in the sense of distributions, the aggregation problem where
alp] is replaced by a[p] as defined in (1.3).

This solution may be represented as the family of pushforward measures (p: 1= Z,(t, -)#pim)t20
where (Z,(t,-))i=0 is the unique Filippov characteristic flow associated with the one-sided Lipschitz
velocity field a[p]|. Besides, if p and p are the respective solutions to with p™ and p™ as
initial conditions in Pa(R?), then, for allt = 0,

Walpe, pe) < e N Wo(p™, p™), (2.9)

In [9], Carrillo, Gémez-Castro, Yao and Zeng proved the following well-posedness and regular-
ity Theorem for aggregation-diffusion equations with Lipschitz symmetric potentials. They prove
existence and uniqueness through a fixed-point argument and regularity applying a bootstrap ar-
gument in adequate fractional Sobolev spaces. The solutions they define are mild solutions, which
are stronger than our definition of solutions, which is in the sense of distributions. We recall the
definition of the heat kernel used in the mild formulation:

1 |2
Gix) = ——=€e 2
(@) (4rt)d/2
Theorem 2.11 (|9], Theorems 1.1, 2.1 and 2.2). Assume that W satisfies assumptions (A0)-(A1)-
(A2). Let e > 0 and p§ € P(RY).

(1) For all T > 0, there exists a unique solution pf € C([0,T], P(R?)) to the aggregation-diffusion
problem (1.1)) in the sense that:

t

Vie[0,T],  pf = Ge#pf+ L (VGei—s)) * (VW p5)p5) ds.

(2) This solution is actually a classical solution that belongs, for all T > 0, to C((0,T], WP (R%))
for all k € N and p € [1, +0] in the general case, and to C((0,T], W*P(R%)) for all s = 0 and
p € [1,+0] if we assume that p € W*P(RY).

Remark 2.12. In [9], the authors state the second item of the above Theorem under the assumption
that W € WH©(RY) and assuming that the initial datum belongs to L} (RY) with total unit mass
instead of P(RY). It seems to us that W e L is only required to obtain sharp decay of the energy
functional and that the L' assumption on p§ is only useful to simplify the notations.

In the above Theorem, we actually have p° € C([0, +oo[, Wa(R%)). Indeed, as we will see in the
proof of our Theorem [3.1| (see equation (3.7)), %—Hé’)lder continuity in time follows automatically
from a uniform bound with respect to t € [0,7'] on Ms(pf). This in turn comes from the following
computations, where we use, first, integration by parts, and, second, the symmetrization Lemma

2.8

d
SGMa(6)) = [1aPousi = [1o9 - (VW s gi)ef) + & [ |aP Do = =2 [+ (VW s pi)dpi + 220,

2 [ (VW ) = [ [ OW (e = 1) (2 = 0)pi (d)gi (dy) < 202202(67) < 2007/ D67

d
We thus get ﬁMg(pi) < 2a004/ M2(p5) + 2ed which implies, using a nonlinear Gronwall Lemma,
that Mas(pf) is bounded over a finite horizon.



We finish by mentioning the special case of the dimension d = 1, with potentials of the form
W(x) = a|z| for a € R\{0}, for which the vanishing viscosity limit can be obtained using the
correspondence with Burgers’ equation. Indeed, let us set, for € > 0, u®(t,z) = a(l -2 fE(t)), where
fe(¢) is the cumulative distribution function of pf. One can show that p solves if and only if
u® solves the viscous Burgers equation:

(u5)®

Oru’ + Oy = €0zU°, (2.10)
and, similarly, p solves the aggregation equation (|1.2a)) with the correct velocity field a[p] if and only
if u solves Burgers’ equation (see |5l |16, 21]). Using the fact that, in dimension d = 1, we have the
representation Wi(pf, pt) = [ f(t) — f(t)|11(r) and combining with Kuznetsov’s estimate hereafter
for the viscous Burgers equation (see [25]):

Juf (t) = w(t)| 1 ry < CTV (ug)Vet,
where C' is a positive constant, we deduce the following proposition:

Proposition 2.13. Assume d = 1 and W (x) = a|z| for some constant a € R\{0}. Let p™ € Py(R),
set p§ = p™ for all e > 0 and let (p°)e=o be the sequence of weak solutions to ([1.1]).
Then, for all T > 0, (p%)e=0 converges in Wi distance and uniformly on [0,T], towards a solution

p € C([0,T],W3(R)) to (1.2) with the velocity field a[p] being replaced by a[p] as defined in (1.3]).
More precisely, we have:

Vie [07 T]7 Wl(pf; pt) < C\/Eﬂ

where the constant C' > 0 depends on as only.

In the case of one initial Dirac mass p™ = §y, one can even obtain convergence of p® towards
p at order 1 with respect to € using simple scaling arguments. The initial data to the Burgers
problem is 4™ = 1 — 2Hy(z), and the solution to the inviscid Burgers problem is stationary, given
by u(t) = u™. One can also show that there exists a stationary solution to equation (2.10]) of the
form v*(t,x) = V (%), with V(—0) = 1, V(+w©) = —1 and V'(+00 = 0). We then have using a
contraction property of the viscous Burgers equation and the stationarity of v* and w:

u““(?) — V(g) ’d::: < QEJ

which gives Wi (p%, pr) < Ce with C' > 0 independent of time. This result can be extended to the
case of a finite sum of Dirac masses as initial datum, using the arguments of Teng and Zhang [37] to
compare shocks with traveling waves. We also refer to [35| |34}, 36| for generalizations of this result.

YL ve

)
<

[ () = w®lzr < [w2(8) — "By + [0°F) — u@llry < 2J

v~

<fumt—=v=(0)] 1 =[ve(0)—u™?| 1

3 O(¢'?) convergence rate when the potential is \—convex
In this section, we assume that W satisfies assumptions (A0)-(A1)-(A2)-(A3).

3.1 Method 1: computing W3 (p:, p;)

So as to make integration by parts rigorous, we actually compute %WQQ (pz, p?) for €,6 > 0 so that
p° and p° are regular (see Theorem [2.11)), and then we let § — 0. We therefore need to know that
p? converges in the sense of measures towards p;.
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3.1.1 Convergence in C([0, 7], W;(R%)) without convergence rate for IV satisfying
(A0)-(A1)-(A2)

Let T > 0 and let p° € C([0,T], Wo(R%)) be the solution to the aggregation-diffusion problem

on [0, T] x R%, as given by Theorem. Let us denote v* = —VW %p°® —5% so that the continuity

equation 0;p° + V - pv® = 0 is satistied in the sense of distributions. We formally have, by definition

of the first variation and then by integration by parts:

—FE J 5 (7)o JV ) - vidp; = — f

where, in the last equality, we used the identity %(p) =W p+e(lnp+ 1) to deduce that vf is

€

op
Lemma Integrating (3.1)) over time then yields:

2
dpi, (3.1)

nothing else than —V (pf). Proving rigorously (3.1) can be made using an easy adaptation of

Vte [0,T], F°(py) = F°(pf) j J dpSds.

Let us only use this equality as an inequality as it will turn out sufficient for passing to the limit, and

OF* 2 0F*

5 (p5)| as the half-sum — <|v":|2 ’V (p%)
P

the velocity v and the functional F' at the limit € — 0. ThlS way, we recover the so-called energy

dissipation equality (EDE, that we use as an inequality in our paper):

Vie[0,T], F(p5) = f [ esdpias + 5 j =G

Showing a sort of lower semicontinuity, when ¢ — 0, of each term in , we will prove that up
to successive extractions, (pf).>¢ converges towards a measure p that satisfies a continuity equation
and an EDE. Combining both, we will prove that p solves the aggregation problem . In case
the solution to such a Cauchy problem is unique, the whole sequence (p®).~o converges towards p.
This method does not require the A—convexity but only the Lipschitz continuity of the potential W.

let us write ‘V ) so as to recover a link between

dpgds (3.2)

Theorem 3.1. Assume W satisfies assumptions (A0)-(A1)-(A2). Let p'™ € Py(R?), and let (p°)-=0
be a sequence of weak solutions to (1.1)).

Assume that the sequence of initial data (p§)e>0 satisfies the following assumptions:

limsup F€(p§) < F(p™), (3.3a)
e—0

Ve >0, Mas(pp) <C, (3.3b)

lim Wa(p5, p™) = 0, (3.3¢)

E—>

for some constant C' > 0 independent of €. Then, for all T > 0, (p%)e=0 converges up to a subse-
quence, in Wy distance and uniformly on [0,T], towards a solution p € C([0,T], Wa(R%)) to (1.2)
with the velocity field a[p] being replaced by a[p] as defined in (1.3)):

sup Wi (pf, Pt) — 0.
te[0,T] -0

If the solution to (1.2)) is unique, then the whole sequence (p°)e=o converges towards p.

Remark 3.2. Note that assumptions (3.3 are automatically satisfied if the entropy U(p§) is uniformly
bounded w.r.t € > 0. In case we take p§ = p™, this corresponds to p™ having finite entropy.

11



The following lemma shows that it is possible to construct such a sequence of initial data:

Lemma 3.3. Recall that p'™ is given in Po(R?). For all p = 1 such that p'™ € Pp(Rd) and for all
a € (—1,0), there exists a sequence (11§)e=0 in Pp(R?) satisfying:

lim inf 7°(u5) < F(p™), (3.4a)
E—>

Ve >0, My(us) < Ce ", (3.4b)

lim W (45, P =0 (3.4c)

E—>

where the constant C' > 0 depends on p but not on €. Actually, we can be more specific in (3.4c|):
Ve >0, W,(u§, p™) < Ce™=".

Proof. Let o € (—1,0) and let p > 1 such that pi™ € P,(R%). Let (r:)e=0 be a sequence of
positive real numbers to be specified later in the proof. Let n e L! (]Rd) be a nonnegative function
supported on B(0, 1), with unit total mass, such that nlnn and |z[Pn(z) are integrable on R?. We

then set n°(z) = r;‘%(%) and p§ = n° = p™. Because of the compact support of n we have
My(nf % p™) < C(Mpy(p™) + Mpy(nF)) < C, so that, in particular, u§ € P,(R%) for all ¢ > 0.

Firstly, let us choose 7. so that eld(n°) goes to 0 as € — 0. Since 1° « Leb, we have U(n®) =
{77 Inn°. Therefore, using the change of variables = = r.y, one has:

) == [n( ) 1n (TE%(Z)) dz = [nw)tn (v 0(w))dy = [ ) mny)dy—dinr. (35)

Te

Based on the above computation, we choose r. = e~he/e for some positive sequence (he)e=o such
that liH(l) he = 0. More precisely, we set he = €1, that is 7. = e .
E—>

Now, using the convexity and the invariance under translation of U, we have U(n¢ * p™) < U(n°),
and therefore F*(u§) < W(u§) + eld(n). Since W is continuous on Wi (R?) thanks to Lemma
we just need the convergence u§ — p™ in Wq(R?) in order to have W(u§) — W(p™) and hence
limeo W(ug) + ed(n°) = W(p'™) = F(p™). Then, will immediately follow.

We now use

WE(u, p™) = WP = p™ 60 % p™) < WE(n®,60) = Mp(n°) — 0,

where the last limit is justified by M, (n°) = rfM,(n) = Ce P". This proves (3.4b]) and (3.4d) since
a < 0, and this in turn proves (3.4a)). O

Relaxing assumption can only be done under additional assumptions on the potential. In the
case W satisfies assumption (A3), replacing the original initial data pf by a smoothed out initial
data pg that verifies assumptions and using the A—convexity of the potential to estimate the
distance between p® and the new sequence of viscous solutions p®, we obtain as a byproduct of
Theorem the following corollary:

Corollary 3.4. Assume W satisfies assumptions (A0)-(A1)-(A2)-(A3). Let pi™ € Po(R%), and let
(p°)e=0 be the sequence of weak solutions to (L.1)). Assume that the sequence of initial data (p§)e=0
converges in Wo(RY) to p™ as e — 0.

Then, for all T > 0, the whole sequence (p®)=o converges in W1 distance, uniformly on [0,T],
towards the unique solution p € C([0,T], Wo(R%)) of with the velocity field a[p] being replaced
by alp] as defined in (|1.3)).

12



Proof of Theorem[3.1. First of all, let us extract from (p:):>0 a converging subsequence. For ¢ > 0,
recall that the contlnulty equation 0;p° + V - p*v® = 0 is satisfied. Moreover, let us rewrite equation

oF¢ Vp
using the identity V(S—( p)=VW=xp+ e and split it into three terms:
p p

1t 1t Vi |2
wel0.T) P = P+ | [ luildgids [ [[vwepseet
0 0

s

dpids =: Ty +T5 +1T5.

(3.6)
Note that, if Ma(pf) is uniformly bounded, then T} is uniformly bounded from below thanks to
the estimate in Lemma In that case, using the fact that 7% is nonnegative and the fact that
FE(pO) is bounded from above thanks to assumption (3 on the initial data, we can deduce that

SO §|vE]2dpSds < C for some constant C' > 0 1ndependent of ¢ and t. In particular, for all ¢ € [0,T7],

v§ € L?(pf) and So §|ve|?dpsds < +o0. Using Theorem | we obtain that p e AC([0,T], Wy(R9))
and that its metric derivative exists and is bounded by the L? norm of v<: |(p°)4| < v £2(pe) for
all s € [0,T]. We deduce the following bound, that is uniform with respect to e, by integration over

time: T’
| 1eypas <.
0

Then, using a Cauchy-Schwarz inequality, we get:

t
Vo<s<t<T, Wg(pf,pi)<f|( \ ldr < f| Vi) P Ts< =9, (37

which gives equicontinuity of (p%).~0 in Wy distance (and therefore in W; distance). If we still
assume that Ms(pf) is uniformly bounded, then the set {pf, € > 0} is relatively compact in W (R?)
in virtue of Lemma We can therefore apply Ascoli-Arzela theorem in the space C([0, T'], W1 (R%))
to extract from (p°)e.o a subsequence converging in Wy (R¢), uniformly in ¢ € [0, T], towards some
p € C([0,T], Wi(R?)). We still denote this subsequence (p)e>0. Moreover, the ls.c of the Wo

distance along with the weak convergence pt LA ) Pt for all t € [0, 7] allows to pass to the liminf in

e—
(3-7) to show that p e C([0,T], Wa(R?)). The hmlt p is actually 1/2—Holder in time and satifies the
same estimate as p°:

VO<s<t<T, Walp,ps) <A/C(t—s).

Let us come back to the boundedness of Ma(p). This bound can actually be obtained from inequality
(3.6). Indeed, from (3.6)) and assumption (3.3al), we get, since T5 > 0:

1 t
F(o) + 2f J v [2dptds < C. (3.8)
0

Let us show that the second term controls Ma(p5) if ¢ € [0,T"]. Differentiating Ms(p7) in time and
integrating by parts, we have:

d 1/2
GM60) =2 [ i) < 2300 ([ WPt

using Cauchy-Schwarz inequality. Applying a Gronwall Lemma, this implies, for all ¢ € [0, T,

¢ 1/2 ¢ 1/2
Ma(f)'? < Ma(pi)2 + f (f |v§|2dp§) ds<M2<p6>1/2+ﬁ<f j|v§|2dpids) ,
0
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where we used Jensen’s inequality w.r.t the measure %. Finally, we get:

¢
1
[ [ ilaes = 7 (02068) ~ 21255,
Plugging this inequality into (3.8) and using the estimate in Lemma one obtains:
1
—ax M (pf)"? — e(Ma(p5)* + C) + ﬁ(Mz(PZj) — Ma(p)) < C,

which provides a uniform bound on Ma(p5).

The point is now, for every t € [0, 7], to show Ls.c of each term 77, i = 1,2, 3, with respect to the
W1 convergence of (pf)-~0 towards p; that we just proved.

+ Dealing with 77 = F¢(pf).

Using Lemma the Wi—convergence of (pf)e=o towards p; ensures that liH(l) W(p) = W(ps).
E—
Besides, thanks to Lemma [2.4] we have for the entropy lim i(_r)lf U(p;) = U(p:), and we deduce in turn
£—>

lim iglf eU(p;) = 0. Therefore:

E—>

lim i(I)lf Fe(pj) = F(p:).
e—

. . 1 ! €12 9 €
+ Dealing with T5 = 3 |vs|*dpSds.

0
For € > 0, letting E* = p*v®, a Cauchy-Schwarz inequality shows that the total variation of E° is
uniformly bounded with respect to € > 0:

t t 1/2
wm@ﬂxWFJJMWM&¢(jﬁ@%mQ < VCT,
0 0

Thus, up to another extraction, we can assume that 5 = E for some E € My([0,t] x R)?. Now,

E—>
since p° and E° are absolutely continuous with respect to the Lebesgue measure on [0,¢] x R as
long as € > 0, Lemma [2.7] ensures that 75 rewrites as follows:

t
75 = | | faei, Eoyids = BaGet, )
0
Then the lower semicontinuity of Bz on M, ([0,t] x R?) x M, ([0,7] x RY)? yields:
limiglfTéE > Ba(p, E),
e—

which, in turn, implies that Ba(p, E) is finite and therefore gives the existence of a vector-valued
density v verifying F = pv. Using Lemma (iv), the above inequality rewrites:

1 t
liminf T > f J|vs|2dp5ds.
e—0 2 0

In addition, this transformation also allows to pass to the limit in the continuity equation d;p° +
V - B¢ = 0, which is now linear. Indeed, letting ¢ — 0 in the weak formulation, one easily gets
oip + V- (pv) = 0. This shows that the limit density p is still a solution to a continuity equation,
and the link between the velocity field v and the functional F' will be made thorough when passing
to the limit € — 0 in the EDE (3.2)).

14



Ak
s
As it is standard when dealing with terms belonging to L?(p%), we set GE = (VW * p°)p° + e¥ 5 p ,
so that TS = Ba(p®, G%).

We deduce from that 7% is uniformly bounded w.r.t €, which implies that G* is uniformly
bounded in My([0,] x R%)?. Therefore, up to another extraction, we can assume that G¢ = G

E—>

t
for some G' € M,([0,t] x RY)?. Since W is Lipschitz, we have f f‘VW x p5|dpids < axt thus
0

(VW % pf)p° is uniformly bounded too in My([0,t] x R%)4,
As a consequence, the difference svpff p° is also uniformly bounded in M, ([0,t] x R4, Now,
its limit when ¢ — 0 is 0 in the sense of distributions. Indeed, for ¢ € CP(RY), (eVpF, &) =

t
—EJ‘ JV{dpE which can be bounded, for instance, by et|V¢| L= and therefore goes to 0 as e — 0.
0

1 4
# Dealing with T5 = QL J‘VW wpS +e dpzds.

We deduce that &£ p° actually converges in the sense of measures towards 0, hence the limit, in
the sense of measures, of G¢ is that of (VW x p®)p®

T Limit in the sense of measures of (VIV x p%)p°.

Let € € Co([0,t] x RY) and let us consider the duality bracket (VW # p)p°, &) as € goes to 0.
That quantity equals, using Lemma [2.8 applied to the even vector field VW

M VWiz =) tls 2o (dw)s(dy)d f | v =) (€652 - 66,0 pita)pi s

(3.9)
Now, since W is Lipschitz, VW is bounded, therefore the map

(87‘7;73/) i VW<.TJ - y) ' (5(8737) - E(Svy))

is continuous and the weak convergence pf @ p° — p®p (which is equivalent to narrow convergence

since we deal with probability measures) allows to pass to the limit ¢ — 0 in the above quantity to
obtain:

lim f [[ 7w @) €000 @siana f [ 7= (€s10) = 5. putaipu(an)as.

e—0
(3.10)

Note that, until now, the value of VW (0) does not matter. Actually, all the integrals when & > 0
hold w.r.t to the Lebesgue measure and therefore the diagonal {z = y} can be avoided. We therefore
only need VW (z) = —VW (—z) for nonzero z to apply Lemma and this do not impose any
value to VIW(0).

Now, to come back to some duality bracket tested against £, one needs to unsymmetrize the
resulting expression by writing:

3| ] YW= (€0~ e i@ anas (.11)

% (JO J W(IE - y) . 5(3,$)ps(d$)Ps(d@/)d8 - L f W(x — y) . f(S,y)ps(d:L‘)ps(dy)ds>

;( | [ =n- e aptdnpganas« | | ﬂm_y).g(s,;U)ps(dx)ps(dy)ds)

- Jo J VW (x —y) - £(s.2)ps(d) ps(dy)ds,
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where we used the fact that €V\V(z) = —€I/I\/(—z) for all z € R, which now imposes €V\V(O) =0.
Remark 3.5. These computations could hold against a test function ¢ that is only Lipschitz on
[0,1] x R? provided VW (z) < C/|z|'=? for some 3 > 0. Indeed, the map (s,z,y) —> VW (z —y) -
(£(s,x) — £(s,y)) would be continuous on the diagonal and hence everywhere on [0,¢] x (R%)2. This
could provide a way to deal with the non Lipschitz potentials W (z) = |z|? for 0 < § < 1, that are
more singular than the Lipschitz potentials but are still less singular than the logarithmic potential.
However, extra difficulties arise for the limit analysis when W is not Lipschitz.

— 1t —
We finally get that G = (VW = p)p and therefore Ba(p, G) = ZJ J|VW % ps|2dpsds. Using the
0

l.s.c of By we finally get:

¢
lim iglf Ts > f J\VW % ps|2dpsds.
E— 0

* Passing to the liminf to recover a limit EDE.

e—0
We can now pass to the lim iélf in (3.2) using the assumption (3.3a)) for the left-hand side to get
E—>

the following EDE (which, once again is written as an inequality):

2
dpsds. (3.12)

. 1 1t 1t () —o
F(p™) = F(pt) + J JIUSIdesds + J ﬂVW * Ps
2 0 2 0

Recall that p still solves the continuity equation dip + V - pv = 0 in the sense of distributions.
Identifying the velocity v is made through Lemma which gives:

Vte [0,T], Flpr) — F(po) = fo f (S  ps) - vadps.

Since (p§)e=0 converges to both py and p™ in Wi(R?), we have pg = p™. Plugging the above

identity into (3.12]) then yields:
1 t
20,1

so that v = — VW * p = a[p] almost everywhere. We deduce that p solves the aggregation equation
(1.2) in the sense of distributions with the correct velocity field a[p], which concludes the proof.
Incidentally, the identity v = —VW xp confirms that the limit EDE (3.12]) is actually an equality. [J

— 2
vs + VW = ps| dpsds < 0,

Proof of Corollary[5.4 We now come back to the case of arbitrary initial data pf§ i.e. we do not
assume anymore that assumptions hold. However, we still assume that Wa(p§, p™) " 0 and
in addition, we now assume W to be A—convex.

Let (ug)e=0 be a sequence of smoothed out initial data for which Wa(u§, p™™) " 0 and the
assumptions hold on (uf)e=0. We denote by p° a solution to for the modified initial data
pg- Applying Theorem we know that pf converges in C([0,T], W1 (R%)) towards p solution to
as € — 0, up to a subsequence. But since W satisfies the assumptions of Theorem such
a solution is unique and we deduce that the whole sequence (u®)c~o converges towards p.

It remains to show that Wa(p§, u§) goes to 0 as ¢ — 0 by estimating this quantity thanks to the
A—convexity of W:

Lemma 3.6. Assume W satisfies assumptions (A0)-(A1)-(A2)-(A3). Let p, € Po(RY) and denote
(p,v) a pair of Kantorovitch potentials from p to u for the quadratic cost c(xz,y) = %\x —y?. In
addition, we assume that p or u is an absolutely continuous measure. Then,

| ve-alotao + | V- aludn < AW o) (3.13)
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Remark 3.7.

(1) In particular, we recover the last estimate in Theorem [2.10 if p, u € ACoe([0, +00), Wo(R?))
are solution to (T.2) with initial data p™ ™™ e Po(R?) and if p; or py is an absolutely
continuous measure, the following inequality holds:

d
dtW 5 (pes i) < —2XW3 (i, pue).- (3.14)

Indeed, this is a direct consequence of Lemma and of the following computation (see [32]
Theorem 5.25 or |1] Theorem 8.4.7)

d1

79 W3 (pt, j1t) = JV% “vpdpy + JV% - wydpu, (3.15)

whenever p, i satisfy the continuity equations d;p + V - pv = 0, dyu + V - pw = 0. Inequality
(3.14) then yields the aforementioned estimate using a Gronwall Lemma:

Wa(pr, i) < e MWa(p™, ™). (3.16)

Relaxing the assumptions that either p; or p; is an absolutely continuous measure can be done
replacing p; by p; for instance, and passing to the limit € — 0 in the resulting estimate, thanks
to Corollary [3.4]

(2) Another way of proving Lemma [3.6| can be found in [30], Lemma 4.12.

Proof. Assume p is an absolutely continuous measure. Then, there exists an optimal map from p to
p for the cost ¢(z,y) = %]a: — y|?, which we denote T. Since Vi) o T = —V, using p = Ty p yields:

JVso ~alpldp + fvw -alpldp = stO ~(alp] — alu] o T)dp
- j V(z) - VIV(x — y)p(dy)p(dz) fw VW(T(z) — y)u(dy)plde)

= [ v (YW - - YW (T @) - 7)) (o),

where we used once more yu = Tl p. Symmetrizing the above integral as in Lemma , since VW is
odd, and using Vi =id — T, we get:

| ve-atotan + [ V- aldn = = [[ (e@) = Vetw) - (VWia =) = VW (1() - 7)) play)p(da)
~ 5 [ @y @@ - 10) - (YW ) - YW (2@ - TW)) )oldpldo)
<=5 [[1e- 1@ - @ - T@)Potanptan)

where we used the A\—convexity of W. We then expand the square to obtain:

o=@ -t-rPotanptan) = 2 [ le-r@Pota -2 [[ (o - 7 d:c>)2<2w22<p,u>,

which concludes the proof, as we assumed in (A3) that A < 0. O
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We now come back to the proof of Corollary Denoting (¢f,%f) a pair of Kantorovitch
potentials from p; to pj, and using Lemma along with equation (3.15]), we get:

d1

oWt k) < —AWE(of ) — = [ (Vigi - Vi + Vi - Vi),

The last term above being nonpositive (see [32] exercise 66 for instance), we obtain, using a Gronwall
lemma, that Wa(pf, 11f) < e MWa(pf, 15). We then write, for ¢ € [0, 7],

W05, pe) < Wi, 15) + Wi (pg, pe) < e M Wa(pf, ) + . Wi (1S, ps),
s€0,

where we used the fact that W; < Ws. Since both sequences (p§)s>0 and (1§)e>0 converge in Wy (R9)
to the same limit, Wa(p, i) goes to 0 as € — 0. Moreover, (°)s>0 converges to p in W) distance
uniformly in [0, 7]. These two facts along with the above inequality show that (p%).~¢ also converges
to p in C([0,T], W1 (R%)). O

3.1.2 Convergence rate

We are now in position to prove the following theorem:

Theorem 3.8. Assume W satisfies assumptions (A0)-(A1)-(A2)-(A3). Let p™ € Py(RY), and let
(p°)e=0 be the sequence of weak solutions to (L1)). Here, we assume that (p§)e>o is an arbitrary
sequence in Po(RY).

Denoting p € C([0, +0), Wy (R9)) the unique solution of with a[p] being replaced by alp] as
defined in , we have the following estimate:

o 1 — e—2Xt
Ve >0, Walpf.pr) <ef”W2<p8,pzm>+x/+x/£ (3.17)

Please note that in the above estimate A < 0. If A\ < 0, 1 — e~ > and A are negative numbers so
the ratio is positive and for A = 0 the expression should be extended by continuity.

Remark 3.9. In dimension d = 1 with the Newtonian potential W (z) = |z|, the correspondence with
Burgers’ equation stated in Proposition m, gives convergence at rate v/et in Wy distance. Due to
W being 0—convex, our estimate leads to the same estimate but in W5 distance, since taking A = 0
in gives Wa(pf, pt) < V2det for any t > 0.

If assumption (A4d—p) is satified for some p > 1 instead of assumption (A3) and if pj = d¢ for all
€ > 0, one can also obtain the exact same estimate using a direct computation. Indeed, in that case,
pt = g for all ¢ = 0 and we have, using integration by parts and Lemma [2.8}

GRG0 = 5 [ aPpitdn) = = [ VW (e~ ) (@~ y)oid)oi ) + 22 | i)

<-C ff |z — y|Pp; (dx)pf (dy) + 2ed, using assumption (A4 — p),
< 2ed.

Hence Wa(pf, 60) < v/2det for all t = 0.

Proof. Take a sequence of initial data (1§)e~0 converging in Wa(R%) to pi™ as ¢ — 0 and denote

(e )e>0 the sequence of solutions to (1.1 with such initial data. Let € > 0. For all § > 0, using
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Lemma along with equation (3.15)), we have, denoting (¢, 1) a pair of Kantorovitch potentials
for the quadratic cost from p; to pf and integrating by parts:

d1l
Wi i) < —AWf(pi,uf)—stsot-fo—5Jth-Vuf < —/\Wf(pi,uf)JrsJAsot P§+5JA¢% e
The map z — py(x) — @ being concave, V2¢; < I, hence Ay; < d and the same holds for ;.
Therefore:

d 2/ ¢ 0 2/ e 0

£W2 (PF, 1g) < —2AW5 (pf, py) + 2(e + 6)d,
which gives the result after using a Gronwall lemma and passing to the limit 6 — 0 thanks to
Corollary [3.4] O

3.2 Method 2: using a numerical scheme

We now turn to a different proof of the previous result. This alternate proof will also allow to
illustrate the results and the behavior of solutions with numerical results. Our main idea is to let,
for a fixed € > 0, p%, be a suitable numerical approximation of the viscous solution p® to the problem
with fixed initial data p§ = p™, and then use the formalism of |13] to estimate the distance
from this discretized solution to the solution p to the aggregation problem in terms of e:

VneN, Wa(pXl, pm) < Ct"VAzZ +e,

under suitable stability conditions for the numerical scheme, and where At > 0 is the time step,
t" = nAt and Az > 0 denotes the maximal space step. Proving the convergence of the scheme with
fixed € beforehand using compactness arguments and a Lax-Wendroff-type theorem, then letting
Ax — 0, we shall deduce:

vt >0, Wa(pi,pe) < Ct)e,

where we shall specify the constant C(t). Note that our method also allows to deal with the case of
arbitrary Py(R%) initial data p§ as in Theorem but we choose to present it with initial data not
depending on ¢ for the sake of clarity.

Let us be more specific. We consider a Cartesian mesh of R? where the space step in the ith
direction is denoted by Ax; > 0. The nodes of the mesh are denoted by z; = (J1Axq, ..., JgAxy)
for any J = (Ji,...,J4) € Z%, and the cell centered on z; is denoted by Cy := [(J1 — §)Azq, (J1 +
DAz] x ..ox [(Ja — $)Azq, (Jg + 3)Azg]. We also denote by e; the ith vector of the canonical
basis of RY. We initialize our discretization with:

P = fc P (dx) = 0, Jezl, (3.18)
J

and we consider an upwind type discretization for the aggregative part [14, 26, |13] and an explicit
discretization for the diffusive part. It writes, for n € N,

d
At _ _
o = o= Y o (@) 05 = (@) 7P e, — (@) e, + (@) 1))
7

d =1 (3.19)
At T 7 n
+e Z A2 (Plse, — 205 + Pl—c,) »
i=1 i
where the macroscopic velocity is defined by:
a;’y = — 2 P DWE  where D;WE = m(:w —TK). (3.20)

Kezd
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Note that, for the sake of simplicity, we drop, in this section, the superscripts € when it comes
to the discrete unknowns (p7) jeza nen but these unknowns always solve numerical schemes for the
aggregation equation with viscosity € > 0.

Since W is even, we also have Din( = —DiWI‘é for all JJK € Z% and i = 1,...,d. Using a
symmetrization argument as in the continuous setting, we deduce the discrete equivalent of Lemma

2.8
Lemma 3.10. Denote, for J, K € Z¢, DWE = (DleK, .o, DaWEY and whenever (vy) jeza is a

discrete vector field on the mesh, vy = (viy,...,v47) € RY. For any (vy) jeza, we have:
) 1
Vi=1,...,d, Zvuai’}pZ}:iZ Z DiWE (vig —vir) p% 0,

Jezd JeZd Kezd

and therefore:

D vr-dipi =5 Z >, DWE - (vg —vk) pf pic.
Jezd JeZdKeZd

Proof. Using the definition of the macroscopic velocity and the fact that Din = fDiW]%, we
have:

K J
D viailypli ==Y > DiWfvisipk = >, >, DiWitvis ply ik
Jezd JeZ KeZ4 JeZ KeZ4
K
D > DiW i ol ol
JezZd Kezd

thanks to exchanging K and J in the latter sum. Taking the half sum of the first sum and the latter,
we obtain:

1
> vigalply = 3 DD DWW (vig — vik) P P
Jezd Jez? Kezd
Summing over ¢ = 1,...,d concludes the proof. O

It is also natural to consider, instead of the explicit discretization of the Laplacian, an implicit
discretization:

At _ _
o =0 = 3 o (@) 95 = (@ se) P e, — (@) P e, + (ai) )
=177 (3.21)

d At n+1 n+1 n+1
+€Z A2 (pJ+61 B 20 +py- el> )
i=1 i

However, for the sake of simplicity, we only provide the proof of our convergence estimate for the
explicit scheme , although our method would also works for the implicit discretization
but the computations are a bit more involved. Naturally, both schemes are asymptotic-preserving
since they degenerate towards the upwind-type scheme of [13] when & goes to 0.

One could also consider the §—scheme, for 0 € [0, 1], defined by:

At _ _
oy =pi}—Z—Am((ax})w’}—(am Pve, = (e 05—, + (5%
(2

=, 4 A (3.22)
t 1 1 1
ZA 7 (Pae, =205+ ) + 20 35 o (AL =207 40570
i=1 )
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The point of defining such as scheme comes from the fact that, for the heat equation d;p = eAp, under

4 At 1
a parabolic CFL condition & Z N < 2(1 — 26)
a _

the #—scheme is known to be convergent in L2 norm at rate O(At+Axz?). Moreover, for § = 1/2, one
obtains the so-called Crank-Nicolson scheme, which is convergent at rate O(At? + Ax?). However,
the convergence order of the #—scheme for the aggregation-diffusion equation will
anyway be limited by the order of the upwind scheme. Also, the positivity of the density can only

if # € [0,1/2) and unconditionally if § € [1/2,1],

d d
At At
be guaranteed if the more restrictive parabolic CFL condition ay 2 Az +2e(1 —0) Z A 2 <1

holds. Preservmg a hyperbohc CFL condition thus imposes takmg 9 = 1, which corresponds to the

implicit scheme .

Proposition 3.11. Assume W satisfies assumptions (A0)-(A1)-(A2)-(A3) and let p € C([0, +00), Wy (R%))
be the unique measure solution to the aggregation equation (1.2)) with initial data p™ € Py(R?) as
giwen by Theorem [2.10. Assume in addition that the following strict CFL condition holds:

d

At At 1

— + 22— | < —. 3.23
Z (aooAxi + €A$Z2> 5 (3.23)
Denote also the reconstruction:

PR = Z P50z, meN

where (p7}) jezd nen 15 defined through the explicit discretization (3.18)~(3.19)~(3.20). Then, there
exists a constant C > 0, depending only on X\, ax and d, such that, for all n € N*,

1— —4\t™
Wa(pim, pX) < C S VArte+e ™M As. (3.24)

Remark 3.12. In estimate (3.24)), the v/Ax + € term corresponds to the error induced by the scheme
(3.19) and the Az term corresponds to the finite volume discretization of the initial data (3.18]). As
in |13], one can also improve the prefactor in the exponentials to get the slightly better estimate:

1— e—2>\t
Wa(pen, p3) < CAl ————VAz + ¢ + e M Az,
which is similar to the estimates of the continuous setting, for instance -, when At is small.
In the above proposition as in the whole paper, we do as if our discrete reconstructions (p%,.)Az>0
depended only on Az. Rigorously speaking, they also depend on At, but under the CFL condition

(13.23]) At goes to 0 as Az goes to 0. Setting At to be an adequate function of Az, we can therefore
consider (pi,)Aaz>0 as sequence labeled by Az only.

Theorem 3.13. Assume W satisfies assumptions (A0)-(A1)-(A2)-(A8). Let p € C([0, +0), Wo(R?))
be the unique measure solution to the aggregation equation (1.2) with initial data p™ € Po(R?) as
giwen by Theorem and let (p%)e=0 be the sequence of weak solutions to (1.1)) with initial data
pO _ pznz

Then, there exists a constant C' > 0, depending only on A\, as and d, such that, for all t > 0 the

following estimate holds:
1 — e 4
Wa(pi, pr) < C f\/gv (3.25)

Remark 3.14. The estimate above is slightly worse than the estimate (3.17) that we obtain using
gradient flow arguments. Although, as in the previous remark, the exponential factor can be im-
proved to e~ > a bit more technical computations, we do not manage to obtain the same constant

C =+d.
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3.2.1 Properties of the scheme

Lemma 3.15. As in the continuous setting, our discretization (3.19) preserves

(1) total mass:

VneN, > pj=1; (3.26)
Jezd

(2) positivity of the density and the bound on the velocity field:
V(n,J)eNxZ% Vi=1,....,d, P’ =0, la;’}| < aw,

under the CFL condition: ;
At At

(3) the center of mass:

* 0
VneN*, Y wspf= > xsp).
Jezd Jezd

Proof. The first item comes from summing equation (3.19) over J € Z?. Moreover, using the
following rewriting of p”Jrl as a positive combination of py and pjie,, ¢ =1,...,d:

n n At 25At n  _  EAL
Pt = ol [1 Z (A |ail;| + ) Z Pte; < Ar (@ifre,)” + M) (3.28)

=1 7

eAt
+ZPJel< al?E)tFAm%)’

’L

it is classical to prove the second item by induction on n € N, under the CFL condition (3.27]).

Using the discretization (3.19)) together with a discrete integration by parts, we have:

At
Z zpt = 2 Tp — 2 (@) ph(zg — 2se,) — (@i7)” pF(Tg—e, — )
Jezd Jezd JeZd

4 At
e a2y (@ =) (e, = 0):
i=1 i Jezd

By definition of x;, we have zj_., — x; = —Aux;. Hence, we deduce:
d
1
Daptt =) fﬂJPﬁAtZ D ailypli— 62 Z (P1ei=P5) = X wapj+ALY T Y alhpl.
Jezd Jezd 1=1 jezd 1= 1 b Jezd Jezd 1=1 jezd

Applying the symmetrization Lemma to the constant vector field given by vy = (1,...,1) € R?

for all J € Z%, we have Z a;'yp'; =0 forall i =1,...,d, hence the result. d
Jezd

The following lemma ensures that Ms(p}) remains bounded over finite time. It turns out nec-

essary for the proof of convergence of the scheme by compactness, in order to extract a converging

subsequence.
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Lemma 3.16 (Bound on the second moment). For all n € N*, the following estimate holds:
d
M3 Ay = Z |z 2" < e M (MSAJC + axt” Z Azx; + 2d5t”>.
Jezd i=1

Proof. Using (3.19)) and a discrete integration by parts, one can write:

D lealPlt = Y0 el

Jezd Jezd

Z Z @) (12a? = l2sse,?) = (@) 0 (12-er = sl
; Jezd

By definition of zy, |22 — |2j1e,|? = —2J; A2x? — Az? and |2)_,|? — |24]? = —2J; Ax? + Ax?.
Therefore, we get:

Z |='L'J el |=75J| )(pJ—&-ei _pJ)'

Jezd

Z g ?p ! = Z |xj\2p7}+2AtZ Z JAJ:ZaUpJ—kAtZ:AacZ Z p'rla:’;]

Jezd Jezd i=1 Jezd i=1 Jezd
—i—eAtZ Z —2J;+1 Aml(pprez—p]).
i1=1 jez4d

As a consequence of Lemma we have |a;"}| < aw. Using, in addition, the mass conservation,
we deduce that the penultimate term is bounded by axAt 2?:1 Ax;. As for the last term, another
integration by parts shows that the last term equals 2de At. Finally, Lemma applied to the
discrete vector field given by vy = x5 yields:

d
2AtZ 2 JiAx;a;'y ply = 2At Z ry-ajpy=—At 2 DWE (xy—ag)ptp

=1 Jezd Jezd J,KeZ4
2
—NAE Y feg — kPl
J,KeZd
—ANAL Y |ag[?p,
Jezd

where we used the A—convexity of W and the inequality |v; — zx|?> < 2(|zs|? + |zx|?) along with
the fact that A\ is nonpositive. We obtain

Z |zs \2 ntl < ( 4)\At> Z ]a:J] P —I—aooAtZA:nl + 2de At.
Jezd Jezd

We conclude the proof using a discrete version of Gronwall’s lemma. O
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3.2.2 Proof of Proposition (3.11

Before going through the proof of Proposition [3.11} let us introduce, for J € Z% and y € R? the
following coefficients:

d
11— Z <|<y — 2l _ 2€At> when y € C,

-

~ Ax; A:c?
eAt .
Oéj(y) =/ Al’z (<y — L J—e;» ez>) A.%'% when ye CJ—EN for 7 = 1> s 7da (329)
1 eAt

Ao ((y = Tyter€)) + N when y € Cyy,, fori=1,...,d,
K3

7

0 otherwise.

It then holds that, for any J, L € Z¢,

d
l—g(mimﬁi—ii;) when L = J,
oy (g + Atal) = ﬁ;(ai’}eirr + i;; when L = J —e;, fori=1,...,d, (3.30)
ﬁ;(ai§+ei)_+§;§ when L =J +e¢;, fori=1,...,d,
L 0 otherwise,
so that we have the key identity:
VJez pitt= Z piay(zr + Atal), (3.31)

Lezd

Lemma 3.17. For any y € R?, we have

Z ar(y) =1 and Z rrpar(y) =

Lezd Lezd

Proof. Let J € Z% such that y € C';. To prove the first claim, we just use the definition of ar,(y):

d
Z aL( Z OCJ+61 +04J—ei(y))

= Zd: <|<ny,eZ>| 2€At> Zd]

=1

-z, ei>) (<y -z, el> +2 Z 5At

.
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As for the preservation of the barycenter, we once again using the definition of the coefficients a,(y):

d
S wron) = 2505 @) + 3 wriesie @) + Y 5 et e(y)

Lezd i=1 i=1
d d
|y — x g, ei>| QEAt
gy [1 -y ( N * Yo

eAt
— [L‘J, ez>) Ax2>

i

St

7

— [1 N Z ( [y — $J7€z>| Alxi ((y—ase) +

d

o)

_|_
=

e; ((<y —zse)) = (-, €i>)_>
1

d
= $J+Z<y—$],6i>€i
i=1

= .
Ul

We now turn to the proof of Proposition [3:11}

For n € N*, we denote D,, := Ws (ptn, p‘ZZ). The point is, roughly speaking, to obtain an estimate
of the type D2, < D% + CAt(At + Az + ¢) and then use a discrete Grénwall lemma to obtain
estimate (|3.24)).

Let v be an optimal transport plan between p;n and p37, so that D2 = fj |z — y|*~(dx, dy). We

also let a; . be any continuous reconstruction of the velocity, for instance piecewise affine, such that
ai (xy) = a" for all J € Z4.

To construct an adequate coupling 7' € F(ptnﬂ peA;H ), recall that Theorem m gives pimt+1 =
Z (t"“, t", -)#pen, where Z is the Filippov characteristic flow associated to a[p] given by Theorem
except that here the second Variable of Z denotes the time of the Cauchy data (which is the
thlrd variable) whereas in Theorem it was omitted as it was 0. If the discrete measure p” ik
was a pushforward measure of p", we Would also define 7/ as a pushforward of ~, but it is not the

case. Instead, if we denote by v the kernel on (R?, B(R?)) given by:

¥(y, B) e RY x B[RY),  v(y,B) = )| as(y+ Ata, (y))dx,(B),
Jezd

we have the kernel representation:
VBEBRY,  pR(B) = [ vl Bk

The pushforward pgm+1 = Z(t" 1 ¢" )#pm can also be seen as a kernel representation. Indeed,
setting pu(z, A) = 0z(n+14n 2)(A) for (z,A) € RY x B(R?), we have:

VAEBRY, pes(4) = [ La(ZE )i () = [ Sgpnisny(Apen(d0) = [ (o Ao (o)
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We now define the product kernel K on (Rd X Rd) x B (Rd X Rd) by:

IC((x,y),A X B) = u(z, A)v(y, B) = 5Z(t"+1,t",z)(’4) Z ar (3/ + Ataﬁx(y))foL(B)
Lezd
and then set 7/(A x B) Jf ), A x B)~y(dz,dy). Equivalently, for any 6 € Cp(R? x RY),

R4 x R4
we have:

[ ot tas.ds) = [[{[ ot ot stz dy o, ay)

”[ Dozt @), 2 )an(y + Atak,(y ))}v(dx,dy),

Lezd

+

One can show as in [13] that the marginals of 4" are p;n+1 and pa "% In particular, we have:

D2, < JJ \z — y|2y/ (dz, dy).
Using the definition of 4/, we get:

Dn+1 Jf Z |Z t"Jrl " x —93L| aL(y + Atax,(y ))’y(daz, dy). (3.32)
Lezd

Writing Z (t" ¢, 2) —zp, = Z(t" Tt 2) — (y + Ata'k ,(y)) — (2 — (y+ Atak . (y))) and expanding

the square, we obtain:

Z ‘Z(t"“; t" x) — «TL‘ZOZL (y + AtaR,(y))

LeZd
= 25t ) —y — Atak, )] + Y Jer —y — AtaR, () oz (y + Atak,(y))
LeZd
. 2(2@”*1; " 2) —y— Amzz@)) ' ( S (2 — g — Atal, ()ar (s + Atazx<y>>. (3.33)
LeZd

Now, the last term in scalar product vanishes as we have, using Lemma

O (wr—y = AtaR,(v))or(y + AtaR,(y)) = y + Atak,(y) — (v + AtaR,(y)) = 0.

Lezd
Plugging (3.33)) into (3.32)), we therefore deduce, using the fact that p is the second marginal of
v:

Dy < f |Z(" 87, @) — y — Atal,, (y)]*(dz, dy)
w35 fon -y - Atk () Pan(y + Ataa ()i ds), (3.31)
Lez?
Let us deal with the last term in the above inequality. We have p3" (y) = 3. jcza P40z, (y), therefore:

5 [lon == Ata, ) (v + Atay, () o)
Lezd

= Z 2 ‘xL—a:J—Ataf}‘QaL(xJ—i-Ataf})pf}.
JeZd LeZd
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Moreover, using the definition of ay, in (3.29), we compute:

At 2e At
. or = ws — AtajPar (a; + Atal) = AP|a)? (1 — 2 Ay wal - A€z2>
LeZd = ~ ?
t n €At At . gAt

< CAt(At + Az +¢),

where we used, for the last inequality, the CFL condition (3.23)) and the fact that the velocity a'j is
uniformly bounded. Multiplying by p’;, summing over J € 7%, and injecting into (3.34)) yields:

Dn+1 JﬁZ(t"H; ") —y— Atazx(y)lzfy(dx, dy) + CAt(At + Ax + €). (3.35)

Dealing with the first term amounts to estimating the distance between the exact characteristics
Z(t"*1¢" x) and the forward Euler discretization y + Ata ,(y). To this end, we write, on the one
hand, using the definition of the Filippov characteristics |17} [29]:

¢n+1

Z(tn+1;tn,x> — x+f ap(87Z<3;tn?x))ds
t

:x_fn

On the other hand, we have, whenever y is a node of the mesh,

tn+1

JVW (s;t™, @) — Z(s;™,€)) pen (d€)ds

-+ Mta () =y = At [ T (y = )l (d0).
Thus, still for y a node of the mesh, we have:

2
|Z(t" 7 1) — y — Atak, (y)]” < o —yf®

tn+1
p f

ﬂ (2= v) - (YW (251", 2) = Z(558",€)) = VW (y — Q) ) pun (d€)pT1(dC) + CAL.
Since v € I'(pn, pR) and since the above integral can be decoupled using the linearity of the scalar
product, we also have:
|] (2= 0)-(FW (25200 = 20587.0) = Ty = ) )o@ (d0)
~ [ (2= v) - (T (2(s5272) = 25307, €)) = Ty = O ), o).
Injecting into , we get:
D2, < D2+ CAt(At + Az +¢)
tn+1 -
2 ][] (o) (T (s - 2500,0) = Ty = ) )1 (d. e (o ).

Decomposing = —y = x — Z(s;t",x) + Z(s;t",x) — y and using the fact that |Z(s;t",z) — 2| <
axls — t"|, we get:

D2, < D2+ CALAL+ Az +¢)

n+1
2J‘
tn
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Using the fact that W is even to symmetrize the last term as in Lemma [2.8] we obtain:

D2, < D? + CAt(At + Az +¢)

fm HH (s;t", @) — Z(s;t", ) —y + C)~

(VW (2(s:7,2) = Z(s1" E))fﬂ?(y—o)v(df,dC)v(dw,dy)-

The A-convexity of W then yields:

tn+1

Dn+1 < D2 + CAL(AL + Az +¢) — ij |Z st x y—Z(s;t",ﬁ)+C|2fy(d§,dC)’y(dm,dy).

Expanding the last term gives:

tn+1

D2, < D+ CALAL+ Az +¢) — 2)\f f |Z(s;t", @) — y’2fy(da?, dy)
tn+l

12\ f H(Z(s;t”,x) —y) ~(dx, dy) 2

Now, since A < 0, the last term above is nonpositive. It remains to estimate the penultimate term.
Writing:

(3.36)

’Z(s;t”,x) —y‘ < ‘Z(s;t”, — x’ + ’:1: —y’ aoo‘s —t”} + ’:): —y’

we deduce:
}Z(s;t", x) — y’Q < Q(agols - t"|2 + |x - y|2> < 203 At + 2‘3: - y‘Q,

whenever s € [t",t"*1]. Integrating in space with respect to v(dz,dy) and integrating over s €
[t", " F1], we obtain:

_QAJ

Together with (3.36), this yields:

tn+1

f | Z(s;1", ) — y|2 v(dz, dy) < —4Xa% At3 — ANALD?.

D2, < (1 —4)MAt)D2 + CAL(AL + Az +¢).

Using a discrete Gronwall lemma, we finally get:

1 — o=t

D < e DE + Czi/\(At + Az +¢).

Now, one can easily prove that D3 = W3(p™ pX,) < Az?. This, along with the CFL condition
(3.23)), which implies that At < CAx, gives the desired result.

3.2.3 Proof of Theorem 3.8

We are now in position to prove Theorem using estimate and passing to the limit Az — 0.
To do so, we must verify that, for a given € > 0, the approximate solutions given by the numerical
scheme f converge, say uniformly in time (over a finite horizon) and weakly, in the sense
of measures, in space, towards the solution p® to the aggregation-diffusion problem (1.1]) with initial
datum p™ as Az — 0. In all this section, ¢ is a fixed positive real number.
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Let T > 0 and let N € N be such that NAt = T where At satisfies the CFL condition. We
consider the following piecewise affine reconstruction in time, defined for ¢t € [0, T'] by

N thrl —t t— tn 41
e,n en

paAac,t = (AtpAm + Ttpr ) 1[t7l,t"+1[(t)’ (337&)

n=0

€,n n

PRy i= D p30e; m=0,...,N, (3.37b)

Jezd
where, once again, (pf})’}:;g”’]v is given by the explicit discretization (3.19)—(3.18) (it actually de-

pends on ¢ but we drop this dependence for convenience). Lemmas and show that, for
all n € {0,...,N}, pX € Po(R?), hence (pi,)az~0 is a collection, indexed by Az, of curves in
C([0,T], W1 (R%)) (they are actually curves on Wy(R?) but compactness arguments require to work
in a smaller space).

Outline of the proof. We begin with assuming that p™ € L?(R?). Then, from (p%,)Az>0
we shall extract a subsequence, that we still denote (p%,)az=0, converging in the C([0, 7], M(R%))
topology towards a limit p € C([0,T], W5 (R%)). To do so, we apply the Ascoli-Arzela Theorem: the
relative compactness assumption follows quite directly from the uniform bound on Mg(pZ’Z’) that
we proved in Lemma ; the equicontinuity assumption, however, is more involved and requires
discrete H! estimates (Lemma in order to control the diffusive term. Then, using classical
discrete integration by parts, we show that p solves the aggregation-diffusion initial value problem,
the solution of which is unique, hence the whole sequence actually converges. Passing to the limit
Az — 0 in estimate will give us the desired estimate for L?(R?) initial datum, and it
will only remain to use a regularization argument to conclude in the case of arbitrary Py (R) initial
datum.

Lemma 3.18. For allm e {0,..., N}, we have:

m—1 P 2 (p0)2
At YL D 2T < Claw,die,T) 35 25,
n=0 Jezdi=1 v Jezd

3 &

with C(aw7d75’T) — % <1 + SdTagO ZJEZd exp (%)) .

Proof. The idea is to perform a discrete version of the following rationale. If p solves (1.1)) with
L?*(R%) initial data, we have:

d [ (p)”
dt 2

—— [V oW e sisei —< [ 1VaiP (3.38)

First, using an adequate Young inequality on the first term along with the fact that VW is bounded
allows to absorb the |Vp$|? term into the last one, getting:

d pg2 € 2 P82 2
— (ef) <—QJ|VP§’2+CL;OJ(;) <%J

(05)”
dt 2 € '

2

2
(>
A Gronwall Lemma then ensures that J(Pt) remains bounded over finite time, where the bound

depends on e, but ¢ is fixed. Second, plugging back this bound into the above estimate gives a

bound on S(:]F |V pf 12L11(]Rd)dt' Let us reproduce these computations in the discrete setting.
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(v5)"
Step 1: bound on Z p; .
Jezd
For the sake of compactness, let us note F ., = (ai')) T — (i} 1e,) P4e, Using twice the

definition of the explicit scheme (3.19), we have:

pn+1 2 _ pn 2 pn+1 +/7
57 O =0 g B
JeZ4 JEZd
anrl +pn At d At
= Zdt]2‘]< ZA:E (Fn F§L_P§>+52Ax12(’07}+e’_2p7}+p7}_61)
JEL ie
d d
At At
== ZA ,<F‘7+2—FJ)PJ+€ 2 ZA (PF1e; =205+ Pl—c;) PG
Jezdi=1 S ? 2 Jezdi=1 x
2
1 4Nt At
+§ <_ZA$ <F}l+el F" el>+€2A 2 pJ-‘reZ 2:0J+pJ e))
Jezd i=1 ¢
=S+ 5y

Performing discrete integrations by parts and using Young’s inequality |ab| < ‘2’—2 + # with a = F}"Jr o

Phte,—P]
and b = JZ#

= N Y A () = X AP =

we can estimate ST as follows:

2

Jezd i=1 Jezd i=1
2
d (Fn e-) n d
< At 2 e 7 _
2 Z ( 2e + 2 Ax; ) Z Z Py
JezZd i=1 JeZd i= 1
2
d (P"l )
<22At _7ZZA 2’pJ+ez_ 7
Jezd i=1 Jezdi=1

As for S, straightforward computations and the repeated use of (a £ b)? < 2a% + 2b? lead to:

4 AdAt2 2 & At 2
12348y () S (20

i=1 i gezd 7 c7d

‘ 2

7 7
Pite; — PJ

Using the fact that:
n 2 n n 2 2 n\2 n 2
(FJ_;,_%) < (aOOPJ + aOOpJ+ei) < 2aoo<(pj) + (pJ-HEi) )

2
we deduce that ) ;.4 (F;+%) < 4a%Y e (,09)2. Reporting in both estimates we found on ST
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and S%, and summing both, we obtain:

3 (63)° (3.39)
i=1 2

+Z< 2A2 4d<2§>2>;

Under the Courant-Friedrichs-Lewy condition

2
€ ‘ Az?
Jezd = g

D (5™ = ()" _ <4dAta?,o RS 32da§OAt2>
2 ~

2
7 n
Pite; — PJ’ :

At 1

ed— < for any 1,
Am? 8 Y

the last term in the above estimate is nonpositive, thus we get

n+1)

gz]d (v - (y)* 4dAtaoo< Zil] 2) 3 (o)

2
i Jezd

4dAta 1 (07)?  4Ata? (o)
< €°°<1+d>2 = 2(1+d) )] .

Jezd 2 ¢ JezZ4 2
Using a discrete Gronwall Lemma, we deduce the following bound on the discrete L? norm of p

n)? 4(1 + d)t"a?, 0)?
Z(pg)éexp((+) >Z(p;)

Jezd <
Step 2: discrete H! bound.

Assume a stricter CFL condition: there exists d such that

A 1
6dA$tZz <6< 3 for any 1. (3.40)
Then, for any i,
eAt\?  eAt et eAt 5
4d — = 8d -1 —-(86—1) <0.
<Axlz> 2Az?  2Ax? ( Az? ) d( ) <
Thus, thanks to [3.39
d 2
323 e — 4
=1 Jjez4d
2 d 2 A2 n)2 n+1\2 [ n\2
61— 86) € ~ Ax? 2 2
1= Jezd Jezd
2 i1y 2 2
d 4dAtaZ, daZ At () (5 )" — (o)
< £y 2 X
0(1—80) € ~ € 2 2
i= Jezd Jezd
which implies, thanks to the L? estimate

i=1 Jezd

d . 2 d 8dAta’ 4(1 + d)t"a?
2 "’J+ei_”°” <5(1-85)( aaooeXp(( —
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Summing over n = 0,...,m — 1 yields

=y 2 d 8dTa2, 4(1 + d)Ta2, (09)°
ZZ B ‘<6(1—85)< € eXp( € )Z g

n=0 i=1 jezd JeZd
-y G5 )
Jezd Jezd
Finally

1

m-1 d 2 d 8dTa, A(1 + d)Ta2, ()
Z;ZZ: <M<1+ 6 ZeXp<6>>Z ; :

This is the desired result choosing 6 = 1/16. Ul

We now resume the proof of Theorem From now on, we always assume condition (3.40) to
hold.

Step 1: Ascoli-Arzela Theorem. Let us denote, for K — R? any compact set, Lipx :=
Ce(K) n WH*(RY) the space of Lipschitz continuous functions supported in K and | - | the
Lipschitz seminorm. We then introduce the pseudo-distance defined in duality with | - |z, by:

Vu,v e PL(RY), Wi k(p,v):= sup J¢d(ﬂ - V),

¢eLipr, || Lip<1

For 0 < s <t < T, we have, thanks to the Cauchy-Schwarz inequality:

t t
Wik (P s Pies) = f |(phn ) |dr < VE—s \/ J (o, ) dr. (3.41)

Here, the metric derivative is the one associated to the pseudo-distance Wy g. Since we chose pj,
to be the piecewise affine reconstruction of the pX for n = 0,...N, we have, for 7 € [t",t"T1],
(Paer)| = AWk (X2, 3. Indeed, pf, is a constant-speed geodesic in W1 (K) from p3” to
pZZH hence its length on [t",#""1[ equals At‘(pizﬁ)" by definition and Wi (o7, pEAZH) by the
Benamou-Brenier formula. Therefore:

t et N=LWW2 (05", p% 7;+1)
J ‘(pEAI,T)/’2dT < L | prT ‘ dr = Z f pAm,T)I‘QdT = Z K AAt = : (342)
s k=0

Now, let ¢ € szK such that [|¢[ i < 1. We have, denoting ¢; = ¢(xs) and using the definition of
the scheme 9) along with discrete integrations by parts in space:

f¢d pEAT;'i‘]. En Z ¢] TL+1 n)

Jezd
d

= Z ZA:L‘ J+ez <¢J+ez ¢J>—€ Z Z pJ+ez_:07}) <¢J+ei_¢J>

Jezd i=1 Jezd i= 1

0o — 07
< 2dagp At + eAt e TJ)
o e Z Z sz
Jezd i=1
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Taking the supremum over ¢ and using (a + b)? < 2a® + 2b?, we get:

2
Prie. — Pl
Az;

" n
Prtve; — PJ
Al‘i

d
WE (P32, pR0T) < 8d2a2 At + 252At2< oy
Jezdi=1

2

dLeb(K d
< 8d2a2COAt2 + 282 At 7; (K) E E
AV -
=1 1 Jezd i=1

where we used a discrete Cauchy-Schwarz inequality so as to use the discrete H' estimate we proved
in Lemma indeed, summing for n = 0,..., N — 1 and plugging into (3.42)), we obtain, using
the aforementioned Lemma:

t
L|(pZI7T)'|2dT<8d2a§OT-I-2dQHL€b At 2 > Z

7 1 n=0 jezdi=1

> (p(})?)' (3.43)

d
Hi:1 Az; Jezd

pJ+el -

< Clag,d, e, T, K) (1 +

Now, since we assumed that p™ e L?(R?), the term 1_[‘;_7 D Jezd (,OJ) is bounded with respect
to Az. Indeed, a Cauchy-Schwarz inequality along with our initialization of the scheme ({3.18]) yield:

>0 = (L p””’>2

Jezd Jezd
<Y Leb(ct])f in) (HA:UZ D f pimi) ]_[sz)nplmup
Jezd Cy Jezd

Reporting into , we obtain a bound on Sz ’(pzwﬁ)”zdr that is uniform with respect to s,t
and Az. Combining with , we deduce that (pi,)Az>0 is equi—%—Hélder and in particular,
equicontinuous in C([0,T], (Lipk)'). Lemma ensures, in addition, that My (pix,t) is uniformly
bounded with respect to ¢ € [0,7] and Az > 0. Using Lemma we deduce that (p%, ;)Az>0
lies in a relatively compact set for all ¢ € [0,7] and Az > 0. We can therefore apply the Ascoli-
Arzela Theorem along with a diagonal extraction to extract a subsequence, that we still denote
(p,)Az=0, converging in C([0,T], M,(R?)) topology towards some p°. The uniform bound on
M, (Pzz,t) combined with Lemma W ensures that p¢ actually belongs to C([0, T], Wy (R%)).

Step 2: p° solves (|1.1)).

Using discrete integrations by parts as in |11, [26], we can prove that p}, satisfies the following
approximate weak form of (I.1]), for any ¢ € C([0, T[xR%):

T t o
| [t tdniar + | ol Tot o, dode+ [ 60,00 (i)
0 0
T
_ sf quﬁ(t, ) paes(dr) + O(Az + At).  (3.44)
0

Passing to the limit Az — 0 in (3.44)) is straightforward for the linear terms since PAxt Aio pf

uniformly in time. For the nonlinear term, this convergence also ensures that Pazt ® Pagt Ao
p; ® pf. Then, passing to the limit is done using a symmetrization argument as in equations (3.9)-

(3.10)-(3.11) using the fact that W is Lipschitz and even.
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We deduce that p° solves in the sense of distributions the aggregation-diffusion problem ((1.1)) with
initial datum p§ = p™’. Since such a solution is unique (see Theorem [2.11)), we deduce that the
whole initial sequence (p%,)Az>0 actually converges towards p°.

Step 3: passing to the limit in (3.24) and relaxing the assumption p™ e L2(R?).
Now, let ¢t > 0 and let n € {0,..., N} such that t € [t",t"*![. Estimate (3.24)) gives:

1 — e 44X
A
Passing to the limit Az — 0 in the above estimate using the semicontinuity of Wy then gives the

desired estimate ([3.25)), hence proving Theorem in case of L?(R?) initial datum.

Remark 3.19. As a byproduct of this proof, we obtain uniform in time convergence in W; distance in
space of the numerical scheme (3.19)~(3.18) towards the C([0, T, W2(R?)) distributional solution to
the aggregation-diffusion initial value problem, in case of L?(R%) initial datum, and under 1/6-CFL
condition. In fact, we expect this convergence result to hold for arbitrary Py(R?) initial datum and
under the standard CFL condition:

W2(pt7p€Aac7t) <C m + €_2>\tAZL‘.

i a ﬁ + 267At < 1
] OOAZL‘l' Aa:f = 6'

4 Convergence for repulsive potentials such that AW < 0 and
V2W e Lro(RY)

For any Lipschitz potential satifying assumptions (A0)-(A1)-(A2), Theorem guarantees the con-
vergence of p° towards a solution p to the aggregation equation up to a subsequence if the initial
data satisfies the assumptions (3.3). Then, Corollary extended this result to arbitrary initial
data by an approximation procedure, and using A—convexity to estimate the distance between two
solutions. The goal of this section is to proceed similarly in the case of repulsive potentials, typi-
cally W(z) = —|z|, where A\—convexity will be replaced by some intergability of the Hessian. More
precisely, we focus on initial data equal to p™™, for which we only assume finiteness of moments.

The outline of the proof is the same as that of Corollary [3.4 However, we can no more use the
A—convexity of W but, using the additional assumption V2W e LPo(R?) for a suitable pg, we still
manage to estimate the distance between p; and a sequence of viscous solutions associated with
smoothed out initial data. More precisely, we obtain the following result:

Theorem 4.1. Let W be an interaction potential satisfying assumptions (A0)-(A1)-(A2) along with
the additional assumption:

d
(A5) : AW <0 and V?W e LP(RY) for some py > max (57 1),

and let p™ be an initial datum belonging to € Po(RY). Denote (pf)e=q the sequence of weak solutions
to where the initial data is set to pf := p™ for all e > 0.

Then, for all T > 0, the sequence (p°)e=o converges in C([0,T], W1(R%)), up to an extraction,
towards a solution p € C([0,T], Wo(R?)) to equation with the velocity field a[p] being replaced

by alp] as defined in (|1.3).
o , P
If, in addition, p™ € LPo(RY)NL ho-7 (RY), then there exists a unique solution in C([0, T], Wa(R%))n
/ _Po_
L*([0,T], LPo(R%) n Lro—# (R?)) to (T.2) and the whole sequence (pf)e=o actually converges.

Remark 4.2.
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(1) For W () = —|z|, this result cannot be applied in dimension d = 1, since VW = —§; is not
TR I, 1
\

] |’

integrable. When d > 1, we have V2W (z) = hence V2W e LP° if and

only if pp < d (up to cutting off the potential at infinity) and therefore we can find pg € (%l, d)
so as to apply our result.

(2) In dimension d = 1, for W (z) = —|z|, Proposition [2.13|shows that the whole sequence (p)z=0
converges in C([0,T], W (R)) towards a solution to the aggregation equation that can be
obtained as the derivative of the entropy solution to a Burgers-type equation since entropy
solutions and viscosity solutions coincide for scalar conservation laws.

(3) As a byproduct of our result, one obtains existence of a solution in C([0,T], Wa(R%)) to the
aggregation problem ((1.2)) for potentials satisfying (A0)-(A1)-(A2)-(A5).

Proof. Let T > 0. As in the proof of Corollary for ¢ > 0, we introduce p° € C([0,T], Wy (R%))
solution to (1.1)) with smoothed out initial data g, that we now assume to satisfy assumptions (3.4
for some a € (—1,0). In particular, (uf)->0 satisfies assumptions and Theorem applies to
(1f)e=0 and guarantees convergence of a subsequence, in C([0,T], W1 (R%)), towards a solution to
the aggregation equation . As for Corollary the key ingredient is now to prove that the
distance W), (p7, 17) goes to 0 as € — 0, for some p > 1 that will be specified later.

For the sake of clarity, let us drop the superscripts e for the remaining of this section.

Denoting (¢, 1) a pair of Kantorovitch potentials from p; to p for the cost %|:U — y|P, we can
formally write (see Theorem 5.24 in 32| or Theorem 8.4.7. in [1])

d
I;%W;?(Pt, pe) = JV% ~alpi]dpy + vat - alpe]dpg — EJ (Vﬁﬂt Vi + Vg - VMt) dx.
The last term above is nonnegative thanks to the so-called five (actually four) gradients inequality
proven in |7] for the W), case with p > 1. Actually, |7] proves the inequality in a compact setting
and a full treatment of this last term would require a suitable approximation procedure. Yet, the
inequality we need, i.e.

;Zwﬁ(m, pt) < JV% ~alpi]dpy + JV”(/% - alpe]dp
can also be justified in many different ways, for instance by the stochastic interpretation of p; and
iy as laws of the solutions of suitable SDE where the choice of a common Brownian motion would
allow to get rid of the term coming from diffusion (see, for instance, [4]); since the diffusion effect of
the Laplacian in the equation could also be handled using convolution with the heat kernel, another
possible way to prove the same inequality would be to approximate the solutions by a splitting
method, alternating convolutions (which decrease the W), distance) and transport (which lets the
other term appear).

We thus get, using a triangle inequality along with the fact that V() = |o—T;(z) [P~ (x —/-ﬂa:)) =
—V(x), where T} is the optimal transport map from p; to p; (which exists since p; « Leb whenever
e>0):

W) < |1 + |B, (4.12)
ho= f\fff ~ Ty(2)P (& — Ty(x)) - (alpe) (@) — alpe] o Ty(@))pr(da), (4.1b)
I = J o — Ty(@) P~ (z — Ty(x)) - (alpe] o To(x) — alpe] © Ty(w))py(de). (4.1¢)
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To estimate I, we use the following bound on the Lipschitz constant of a[p¢]:
Lip(a[pe]) = [V2W # pell = < [V*W Lol oi]l -

We deduce:
11| < Lip(a[p] JW—Tt( 2)Ppe(da) < [V2W oo lpell oy WE (o 12)-

To estimate I, we first apply a Holder inequality w.r.t the measure p;(dz) and with the exponents
(', p). We get, since p'(p — 1) =

1/p

1/p
] < ( | o1 >|Ppt<dx>> (ﬂa[pt]oﬂ(x)—a[m]oﬂ(x)\”pt(dx)) o 42)

We recognize that the first factor equals W) 71(pt, ue) since £ =p — 1.

Let us deal with the second one. We consider vy := (pl— s)id + sTy) 4 Pt the constant-speed
geodesic from p; to ;. Note that this curve implicitly depends on ¢t. We also denote by bs € LP(vs)
the velocity field associated with v € AC([0,1], W,(R%)), as given by Theorem . We have as a
consequence of the Benamou-Brenier formula 0sv5+V-(bsvs) = 0 and ||bs| o,y = [(vs)'| = Wp(pr, i)
for a.e. s € [0,1]. Therefore, for any y € R%, one has:

alp)(w) ~ alpel(y) = — [ VW~ 2)(eu(2) - ()i
- Jo jVW(y — 2)0svs(z)dzds
1
_ L j VW (y — 2)V - (bs(2)ws(2))dzds

1
= J jV2W(y — 2)bs(2)vs(dz)ds,
0
so that the inequality (4.2) rewrites:

P 1/p
Pt(dﬂc)) :

Besides, using a Jensen inequality w.r.t the measure vg(dz)ds for the convex function |- |P, we have:

1
ds f VAW (Ty(z) — 2)bs(2)vs(dz)ds
0

L] < WE(pt, pue) (

p

1 1
dstQW(Tt(x) — 2)bs(2)vs(dz)ds| pi(dx) < JJO J|V2W(Tt(m) — 2)|P|bs(2)[Prs(dz)dsp (dx)

< [ [t [ 192w i) - e azyis

Now, since p; = Ty ypt, we have §|V2W (Ty(z) — 2)|Ppe(da) = §|V*W (y — 2)|Pue(y)dy. Applying a
Holder inequality w.r.t dy and the exponents (g, ¢’), where we will specify ¢ right afterwards, we get:

1/q' 1/q
| e w - 2Paut) ( | rvew —z|ﬂ‘1dy) ( | mt(y)wdy) L rm
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We therefore have to take ¢ such that pg’ = po, so that |[V?W|,,, remains finite. This requires that
we choose p such that p < pg, which imposes pg > 1 since we also needed p > 1. We also need to
choose p such that p™ € P,, which means p < 2. Using So §16s(2)[Prs(dz)ds = W) (p, e), we finally
obtain:

Bl < IV W Lol LEWE v ), forg = -,

where the value of ¢ is computed so that we have ¢’ = %0. We therefore have the following Gronwall

inequality on W) (p, put):

1d 1
o VB e ) < IVPW oo (ol + Il 1) WE G, ). (4.3)

Now, we need a bound on |p¢|zr. The following lemma implies that, if the interaction potential W
satisfies AW < 0, then the bound on p; is not worse than the one we would obtain if p solved the
sole heat equation and does not depend on the initial datum.

Lemma 4.3. Let p € (1,4+00), € > 0 and let p solve the following Fokker-Planck equation on the
whole space R%:
op+ V- (pVV) =eAp, (4.4)

where the potential V' might depend on p and satisfies AV = 0. Assume that p; is smooth for any
t > 0, and that is has unit total mass. Then one has:

ot v < C(et)~ 4?7,
for a positive constant C = C(p,d) depending on p only and not on the initial datum py.

Proof. In the following, C(p) stands for any positive constant depending only on p. For ¢ > 0,
testing equation (4.4) against p} ! and integrating by parts yields:

d 1 p—1
- Vv — 2 P22 v P22
since AV = 0. Using the following Gagliardo-Nirenberg-Sobolev inequality 18| 28|:

fpp+d<c pr/?

and interpolating the LP norm between the L' and Pt norms, we deduce that y; := {p} verifies
the following nonlinear Gronwall inequality:

Y — eCp)y" T <0,
Integrating this inequality on [s,t] for 0 < s < ¢, we get:
g T 2y 0 4 2C(p) = <Cp).
and therefore |p¢|rr = y, P < C(p)(et)~¥P=1/2 = (&t)=4/2’| This is the bound one would obtain

using a LP x L' convolution inequality if p solved the sole heat equation on the whole space, that
is, if we had p; = G4 * pg where Gy denotes the heat kernel. L]
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Using Lemma [£:3] with the potential V' = —W = p which has a positive Laplacian under the
assumption AW < 0, we get o, + HutﬂlL/qp < C(d, po)(et) =20 which, in turn, yields the Gronwall
inequality:

d )
W oo ) < C(e)™ PP WE (1, ),

where C' is a positive constant that depends on p, pg and |V2W/|rro only. We deduce:

t )~ 4/2P0 dr
WE (i, i) < WE(po, po)elo € 0dr,
provided pg > % so that 7-%2P0 is integrable on (0,¢]. Under this assumption, using Lemma
along with the fact that py = p'™, we get, for some constant C' > 0 depending on d, p,py and
IV2W||ro only:

WT) Wy < 0ol ) G o tom) ot

9

which goes to 0 uniformly in ¢ € [0,7T], as ¢ — 0, provided o < —d/2pg. Since —d/2py > —1, it is
possible make such a choice while guaranteeing o € (—1,0). To finish, we conclude the proof as in
that of Corollary [3-4]

Now, note that AW < 0 ensures that any LP norm of solutions to is nonincreasing in time.

, _po_
Therefore, when the initial datum belong to LPo(R%) n Lro—r (R?), estimate (4.3) still holds for
e = 0 between any two solutions to (|1.2)) and gives uniqueness of the solution among the class of

C([0,T], Wo(R%)) A L*([0, T, LPo (R%) Lo (R%)) solutions. O

5 Higher convergence rate for steady states under assumptions
(A0)-(A1)-(A4-p)

In this section, we compare stationary solutions to the aggregation-diffusion equation for a
given € > 0 with stationary solutions to the aggregation equation . We discard, in this section,
the assumptions of A—convexity and Lipschitz continuity on W but still assume that assumptions
(A0) and (A1) hold. In addition, we require the potential to satisfy assumption (A4—p), that is, to
be at least as attractive as |z|P, for some p € [1, ).

Note that this assumption along with (A0) implies W (x) > C% for all z € R?%. If, in addition,

W satisfies assumption (A1) then W is l.s.c on R? and this implies that W is ls.c for the weak
convergence thanks to Lemma [2.3]

Also, without loss of generality, we only consider measures with 0 center of mass, that is, measures
p € P(R?) verifying:

pr(dm) =0.
We define steady states for the aggregation-diffusion equation in the spirit of [22]:

Definition 5.1. Let € > 0. A steady state for the aggregation-diffusion equation (1.1a)) is a proba-
bility measure p € P1(RY) such that:

ife =0, VIV p=0, onsupp(p),

and, if € > 0:
VW*prE@:O on RY,
p

p>0 onR%
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One can prove that this definition is equivalent to that of stationary solutions, in the sense of
distributions, to equation . Besides, if € > 0, one can show that a distributional solution to the
elliptic problem —V - (VW #p)p = eAp is necessarily regular and positive on R? (see Theorem .

The following lemma justifies why we compare steady states for the aggregation equation to the
Dirac mass.

Lemma 5.2. Under assumptions (A0)-(A1)-(A4—p) for p = 1, the unique steady state for the
aggregation equation (1.2al) is, up to a translation, the Dirac mass dy.

Proof. Let p be a steady state for (1.2]) and assume that p is centered. Since VW p = 0 on the
support of p, testing against pzr and using Lemma with the odd vector field VW yields:

[[ 77 =) tx = wptasiptas) - o

Under assumption (Ad—p), we therefore have ({|z — y[Pp(dz)p(dy) = 0. In particular p ® p is
concentrated on the diagonal. Now, if p is not a Dirac mass, then there exists disjoint Borel sets A
et B with p(A) > 0 and p(B) > 0. Then we have, since A x B is disjoint from the diagonal

0=p®p(Ax B)=p(A)p(B) >0,
and this contradiction concludes the proof. ]

Note that the Dirac mass is actually the only minimizer of the interaction energy W under these
assumptions. Conversely, Proposition 7.20 in [32] ensures that minimizers of the energy F© are
actually steady states. This provides a way to prove existence of steady states for ((1.1al) when ¢ > 0.

5.1 Existence of minimizers of F¢ for ¢ > 0

Proposition 5.3. Assume that W satisfies assumptions (A0)-(A1)-(A4-p) for some p =1 and let
€ >0 be fizred. The functional F¢ =W + eld admits a minimizer over P(R?) that actually has finite
p-th order moment.

Remark 5.4. We were not able to prove uniqueness of the minimizer under such assumptions on W
but it is likely to hold. Moreover, numerical illustrations will show that, if we remove assumption
(A4-p), multiple steady states can coexist even though ¢ > 0 (in case ¢ = 0, it is easy to build
explicit counterexamples).

To prove this proposition, we will use that under assumptions (A0) and (A4-p), controlling W(p)
gives control on {{ |z — y[Pp(dx)p(dy), and this latter quantity is equivalent to M, (p) whenever p is
centered, thanks to the following lemma:

Lemma 5.5. Let pe [1,00) and p € Pp(R?). Assume that the center of mass of p is 0. Then:

My(p) < j j & — y[Pp(dz)p(dy) < 22" My(p).

Proof. Let u(z) = {|x — y|Pp(dy). Since p = 1, u is a convex function and therefore, using a Jensen
inequality, we get:

My(p) = u(0) = u( [ apld)) < [u(a)otde).

In other terms, M), (p) < {§ |z—y[Pp(dz)p(dy). The upper bound comes from the inequality |z —y[? <
2274 ([P + [yIP). O
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Proof. Let (pn)nen be a sequence of probability measures that minimize F°. We can assume that
these measures are centered because F* is invariant under translation. Up to an extraction, we can
assume that (p,)nen converges weakly towards some p € My(RY). To ensure that p € P(RY), we
need to prove tightness of (pp)nen. To do so, let us find a bound on My (py,).

Since (pn)nen is @ minimizing sequence, F=(p,) = W(pn) +eld(py) is bounded from above by some
constant that we still denote C' > 0. Moreover, using assumption (A0) and (A4-p) and Lemma
since p, is centered, we have:

C C
— P —
W(pn) = 2pJ |z — y[P pu(dz) pp(dy) = 2pMp(p”)'

In order to get a lower bound involving M,(p,) on the entropy term, recall that, using a Legendre
transform, ylny + e*~! > yz for all y > 0 and z € R. Setting, for z € RY, y = p,(z) and 2z = —|z|*?
for some exponent a > 0 to be specified later, and integrating over z € R%, we get:

fpn Inp, > — J(\$|p)o‘pn(d:r) + fe_map_ldx

Choosing « € (0,1) so that z — |z|® is concave, and using a Jensen inequality, we deduce U(p,,) =
—My,(pn)® + C(p, ), where C(p, ) depends on a and p only. Finally, we obtain:
C

%Mp(pn) —eMp(pn)* +eC(p,a) < C,
which implies, since a < 1, that M,(py) is uniformly bounded with respect to n.

On the one hand, this implies that (p,)nen is tight, hence p € P(R?). Since M, is ls.c on
P(R?) and p, ijr p, we also get p € Pp(RY). On the other hand, the uniform bound on M, (p,)

n—+0o0
along with Lemma ensures that My(py,) = M,(p) for any g € (0,p). Lemma then gives
n——+0o

U(p) < limJirrgon/I(pn , and, since W is L.s.c for the weak convergence, we get F*(p) < limJirlgof F(pp).
n— n—

This proves that p minimizes F*© since (pp)nen is a minimizing sequence. O

5.2 O(e) convergence rate in W, for potentials such that VIV (z) - 2 > C|x|

In this section, we focus on assumption (A4-1) under which the potential is “really pointy” and the
aggregation compensates the diffusion so that convergence occurs at rate O(e):

Theorem 5.6. Assume that W satifies assumptions (A0)-(A1)-(A4-1). There exists a constant
C > 0 depending on d, such that for any € > 0 and p® steady state for (1.1a)) which center of mass
1s 0, the following estimate holds:

Wi (p®,d0) < Ce. (5.1)
Proof of Theorem[5.6 Let € > 0 and let p° be a steady state for (1.1]), that is:
<, Ve
VW s pf + e~ = 0. (5.2)

Testing the above equation against p*x we obtain:
Jpea: VW = pfdx +5fx -Vp°dx =0
Integrating by parts and using Lemma with the odd vector field VW yields:
% f VW (z —y) - (z = y)p*(dz)p"(dy) = ed.

The desired result then follows from assumption (A4-1) and Lemmal5.5|with p = 1, since Wy (p%, 8y) =
My (p%). O
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Note that, from equation (5.2), one has p° = C(e)e~"W*#°/¢. The value of the constant C(g) can
be computed by imposing a total mass 1, so that we get p® = eiw#. Using this equality along
Y Se W p€ [e

with estimate (5.1), we obtain a bound in W), distance for p € [1,00) provided W is also Lipschitz
continuous:

Theorem 5.7. Assume that W satisfies assumptions (A0)-(A1)-(A2)-(A4-1). There exists a con-
stant C > 0 depending on d and as, such that for any p € [1,00), € > 0 and p° steady state for
(1.1a) which center of mass is 0, the following estimate holds:

W, (0%, 80) < Ce. (5.3)

Remark 5.8. At least in dimension one, this result is optimal. Indeed, we can take for W the

Newtonian potential W (x) = |z|, for which, using the correspondence with Burgers’ equation, p°
. 1—tanh?(% . .
can be written as p®(z) = %p(%), where p(z) = ta%m, and a scaling argument then gives

W5 (p°,00) = eP Myy(p).

Proof. Since
. e—W=p®/e
P = SefW*pE/s’

we have:
{ |x|pe—W*ps(x)/€dx

Se—W*pE/a ’

Wg(p€7 (50) =
Now, since W is Lipschitz continuous, one has

|W s p° — W % 0o| < aew sup fwd(ps —d0) = auWi(p°,00) < Ck,
Lip(p)<1

because of Theorem [5.6] Thus, —W * p* < Ce — W and therefore:
J]w\pe Wep(@)/e gz < CJ lzPeW@)/eqy < C£p+dj\y|pe Wiev)/e qy,

using the change of variables = ey. Recall that Assumption (A4-1) ensures W(x) > C|z| for all
z € R%. This allows us to bound S|y|p6_W(ay)/5dy uniformly with respect to €.

On the other hand, since W' is aq—Lipschitz continuous, we have W (z) < ae|z| + W(0) = ax|z|.
Integrating with respect to p®(dz), we deduce W = p*(0) < aesWi(p®,dp). Besides, W * p° is also
ao—Lipschitz continuous. Hence,

W s pf(z) S W p®(0) + ag|z] < ansWi(p%,00) + aso|z] < Ce + aw x|,

thanks again to estimate (5.1)). After another rescaling, we deduce:
feW*pE/s > ng’

8p+d

thus getting Wy (p%,d0) < C= = CeP, which concludes the proof. O
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5.3 O(e?) convergence rate in W, for potentials such that VW (z) -2 > C|z|’

Assume W satisfies assumptions (A0), (A1) and (A4-p) for some p € [1,00). Under this assumption,
a straightforward adaptation of the proof of Theorem provides an estimate on W), (p®, dp):

Theorem 5.9. Assume that W satifies assumptions (A0)-(A1)-(A4-p) for some p € [1,00). There
exists a constant C' > 0 depending on d, such that for any e > 0 and p° steady state for (1.1al) which
1s centered, the following estimate holds:

Wy (p®,d0) < Cel/r. (5.4)
Remark 5.10. It is possible to prove optimality of this rate for p = 2. Let us consider the quadratic
potential W (x) = |z|?, that satisfies assumption (A4-2). Recall that p° = % Expanding

W(z —y) = |z — y|> and using both facts that the total mass of p is 1 and that p° is centered, one
has:

e WHE — exp {—i (f [o[*p* (y)dy — 22 - fypa(y)dy + f\yﬁf(y)dy> }

f— €7|$‘2/€67W22(p5750)/€.

o—lal?/e

Hence, pa(l') = m

, which in turn yields:

2
2 o oy SlaPPe " ed
WQ (P a50) - S6_|x|2/€dl‘

A change of variables in both integrals then gives W2 (p,8g) = Ce.

6 Numerical illustrations

This sections aims to illustrate our convergence results both in the evolutive case and in the sta-
tionary case. The implementation of the schemes has been done in Python and the code is available
at github.com /strantien/aggregation. Tests are conducted on [—1, 1], with 2J + 1 cells, and the ve-
locity field is always discretized by . Wasserstein distances between two arbitrary probability
measures are computed using the POT package.

6.1 Evolutive solutions

We begin with the convergence rate in Wasserstein distance of the viscous solutions p® associated
with a fixed initial datum p (not depending on ¢). In this subsection pA, is computed using the
implicit discretization , for which the CFL condition is less restrictive than the parabolic CFL
condition of the explicit scheme. We also implemented no-flux boundary conditions so as to preserve
total mass. In the absence of a reference solution, the convergence rate w.r.t € is estimated taking
Az small enough so that p%, approximates p°, and computing Wp(pZ;}T, pZI7T).

In Theorems and when W satisfies assumptions (A0)-(A1)-(A2)-(A3), we proved con-
vergence at rate O(¢'/2) in Wy distance, which is what we recover when W is smooth, as shows
Figure . In practice, for this test case, we observe 0(51/ 2) convergence rate in W, distance for any
p € [1,4o[. However, in case W has a Lipschitz discontinuity at the origin (Figure [2)) we observe
convergence at order 1 in Wy distance. This is the superconvergence phenomenon investigated by
Tang, Teng and Zhang |34} 37] in the framework of scalar conservation laws. In terms of aggregation,
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Convergence order in W, distance, upwind scheme with implicit diffusion, /= 5000.0, W(x) = |x|}°*1, T=0.50, CFL = 0.9
-1

—%— Scheme
—— Slope 0.5
—— Slope 1

logio of the error in W, distance

logio (&)

Figure 1: Order 1/2 convergence in W distance of pé. towards pr for p™(z) = 2\/%6_2012, W(z) =

2.

Convergence order in W, distance, upwind scheme with implicit diffusion, /= 5000.0, W(x) = |x|%°*1, T=0.50, CFL = 0.9

—%— Scheme
Slope 0.5
—— Slope 1

I |
B w

logio of the error in W, distance
&

-7 -6 -5 -4 -3 -2 -1
10910 (€)

Figure 2: Order 1 convergence in W distance of p5. towards pr for p™(z) = 2\/56*20‘”2, W(z) = |z|.

the interpretation is that, when W is singular, the concentration is strong enough to compensate
part of the diffusion. In other W), distances, converges seems to occur at order 1 when ¢ is not too
small, and then degenerates quite clearly towards order 1/p for any p € [1,+o[ (see Figure [3 for
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p = 3). Note that, in every case, the convergence order is robust with respect to the test case (be it
for smooth or singular initial data, e.g. Dirac masses).

Convergence order in W5 distance, upwind scheme with implicit diffusion, / = 5000.0, W(x) = |x|%°*1, T=0.50, CFL = 0.9

-1
—— Scheme

—— Slope 0.33
—— Slope 1

logio of the error in W distance

-7 -6 -5 -4 -3 -2 -1
l0g10(€)

Figure 3: Order 1/3 convergence in Wj distance, for small €, of pf towards pr for p™(z) =

2 26720332, W(x) = |z|.

6.2 Steady states

In order to simulate the steady states for € > 0, recall that they are characterized, over the whole

space, by the following equation:
e—W*pE /e
p° = W. (6.1)
We therefore use a fixed-point method on equation , which stops as soon as the W), distance
between two iterations exceeds some tolerance. Numerically, we observe that this method turns two
symmetric Gaussian bumps almost immediately (after the first iteration) into a centered Gaussian
whenever W is attractive and Lipschitz.

We first investigate the convergence rate towards the Dirac mass, for centered steady states. The
error is estimated computing the integral {|z[Pp(dz) = W} (p,dy). When W satisfies assumptions
(A0)-(A1)-(A4-1), we proved O(e) convergence rate in Wi distance, which we do recover in Table
for W(z) = |z|. We also explore the case when W verifies (A0)-(A1)-(A4-1) but is not Lipschitz
continuous, which is the case of W (x) = 4/|z| + |z|. For this potential, we obtain, in Figure
convergence at order 1.82264413 which is slightly less than 2, in W; distance. This can be linked
to the fact that W satisfies a sort of assumption (A4-1) when |z| < 1. Under assumptions (A0)-
(A1)-(A2)-(A4-3), we observe convergence at rate 1/3 in W3 distance as we proved in (5.4)), as shows
Figure |5, More generally, under assumptions (A0)-(A1)-(A2)-(A4-p), convergence at rate 1/p seems
to occur in any W, distance, ¢ € [1,+00[, which is what we proved in for p = 1 or for p = ¢. To
illustrate this latter case, we compute the convergence order in W), distance for W (x) = |z|P, which
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Convergence order in W; distance, / =80000, tolerance = 1le-12
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Figure 4: Order of convergence in Wi distance of p® towards &g, for the non-Lipschitz potential

W (z) = 4/|z| + |z|. The initial density is the centered Gaussian 2 26*2012.

seems indeed to be 1/p, see Table [1| (when p = 1, since the potential is pointy, one has to refine the

mesh so as to observe proper convergence at order 1).

Table 1: Convergence order ~ % of p® towards g for W(x) = |x[P, tol = 1076, ¢; =27 i =4,...

initial density 2

2
5 =20z
s
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P Order J

1| 1.00205259 | 50000
2 1 0.49999997 | 2000
3 1 0.33333333 | 2000
4 | 0.25000000 | 2000
5 | 0.20000000 | 2000

, 16,



Convergence order in W3 distance, / = 1000, tolerance = 1e-06

—0.6  —%— Fixed-point method
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Figure 5: O(e'/?) convergence in W3 distance of p° towards &y, W (x) = |z|>. The initial density is
the centered Gaussian 2\/%(3_20”32.
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