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Vanishing viscosity limit for aggregation-diffusion equations

This article is devoted to the convergence analysis of the diffusive approximation of the measure-valued solutions to the so-called aggregation equation, which is now widely used to model collective motion of a population directed by an interaction potential. We prove, over the whole space in any dimension, a uniform-in-time convergence in Wasserstein distance, in the general framework of Lipschitz potentials, and provide a Op ? εq rate, where ε is the diffusion parameter, when the potential is λ´convex. We give an extension to some repulsive potentials and prove sharp convergence rates of the steady states towards the Dirac mass, under some uniform attractiveness assumptions.

Introduction

This paper addresses the vanishing viscosity limit ε Ñ 0 for the following aggregation-diffusion problem on the whole space R d , in any dimension d (probably all the analysis could be performed on a bounded domain with homogeneous Neumann boundary condition):

B t ρ ε `∇ ¨parρ ε sρ ε q " ε∆ρ ε , (1.1a) 
arρ ε s " ´∇W ˚ρε , (1.1b)

ρ ε p0, ¨q " ρ ε 0 , (1.1c) 
where ε ą 0, W : R d Ñ R is a given interaction potential and the sequence of initial data pρ ε 0 q εą0 belongs to P 2 pR d q the set of probability measures with finite second order moment, and converges as ε goes to 0 towards a given ρ ini P P 2 pR d q.

Equation (1.1a)-(1.1b) is often used in population dynamics to describe the collective motion of a population subject to Brownian diffusion and interacting through the interaction potential W . The term ∇W ˚ρε pxq models the combined contribution of the interaction of a particle located at point x with particles at all other points. These equations appear in several applications arising from physics and biology to model, for instance, swarming, chemotaxis, crowd motion, bird flocks, or fish schools, see, e.g., [START_REF] Morale | An interacting particle system modelling aggregation behavior: from individuals to populations[END_REF][START_REF] Burger | On an aggregation model with long and short range interactions[END_REF][START_REF] Topaz | A Nonlocal Continuum Model for Biological Aggregation[END_REF][START_REF] Topaz | Swarming Patterns in a Two-Dimensional Kinematic Model for Biological Groups[END_REF][START_REF] Dolak | Kinetic models for chemotaxis: Hydrodynamic limits and spatiotemporal mechanisms[END_REF][START_REF] James | Chemotaxis: from kinetic equations to aggregate dynamics[END_REF]. The potential W depends on the model we consider. For example, the celebrated parabolic-elliptic Patlak-Keller-Segel model [START_REF] Keller | Model for chemotaxis[END_REF][START_REF] Keller | Traveling bands of chemotactic bacteria: a theoretical analysis[END_REF] for chemotaxis with an adequate set of parameters corresponds to the aggregation-diffusion equation in dimension d " 2 for the logarithmic potential W pxq " 1 2π lnp|x|q. In this work, we assume that the interaction potential W satisfies the following properties: (A0) For all x P R d , W pxq " W p´xq and W p0q " 0, (A1) W P C 1 pR d zt0uq, (A2) W is a 8 -Lipschitz continuous, for some constant a 8 ě 0.

In addition, some of our results only hold under one of the following supplementary assumptions: (A3) W is λ´convex for some λ ď 0, that is, x Þ ÝÑ W pxq ´λ 2 |x| 2 is convex, (A4´p) There exists a constant C ą 0 such that, for all x P R d , ∇W pxq ¨x ě C|x| p , where p ě 1. Potentials satisfying assumptions (A0)-(A1)-(A2)-(A3) but not differentiable at the origin are often referred to as pointy [START_REF] Carrillo | The Filippov characteristic flow for the aggregation equation with mildly singular potentials[END_REF][START_REF] Delarue | Convergence analysis of upwind type schemes for the aggregation equation with pointy potential[END_REF][START_REF] Lagoutière | Analysis and simulation of nonlinear and nonlocal transport equations[END_REF].

Remark 1.1. Note that assumption (A2) is incompatible with assumption (A4´p) whenever p ą 1. This is the reason why we only consider λ ď 0 in (A2), since (A2) with λ ą 0 implies (A4-2). Still, when studying well-posedness of inviscid aggregation equations, the case λ ą 0 can be tackled considering compactly supported data for, in that case, the support decreases in time (see [START_REF] Delarue | Convergence analysis of upwind type schemes for the aggregation equation with pointy potential[END_REF] Theorem 2.1 and [START_REF] Carrillo | Global-in-time weak measure solutions and finite-time aggregation for nonlocal interaction equations[END_REF] Remark 2.14). When ε ą 0, it is not clear however that we can reproduce this argument.

When the potential is pointy, finite time blowup of weak solutions occurs [START_REF] Bertozzi | Finite-time blow-up of Linfty-weak solutions of an aggregation equation[END_REF][START_REF] Bertozzi | Blow-up in multidimensional aggregation equations with mildly singular interaction kernels[END_REF] for the inviscid problem:

B t ρ `∇ ¨parρsρq " 0, (1.2a) 
arρs " ´∇W ˚ρ,

ρp0, ¨q " ρ ini , (

After blowup time, the solutions being possibly singular measures, the product arρsρ is no longer welldefined. For λ´convex potentials, the continuation of weak solutions valued in P 2 pR d q has therefore been studied through three different approaches: gradient flow solutions in the Wasserstein space [START_REF] Carrillo | Global-in-time weak measure solutions and finite-time aggregation for nonlocal interaction equations[END_REF], duality solutions à la Bouchut-James [START_REF] James | Equivalence between duality and gradient flow solutions for onedimensional aggregation equations[END_REF][START_REF] James | Chemotaxis: from kinetic equations to aggregate dynamics[END_REF] in one dimension of space and Filippov solutions [START_REF] Carrillo | The Filippov characteristic flow for the aggregation equation with mildly singular potentials[END_REF][START_REF] Lagoutière | Analysis and simulation of nonlinear and nonlocal transport equations[END_REF]. These notions of solutions turn out to be equivalent to that of solutions in the sense of distributions provided the velocity field arρs is replaced by: p arρspxq " ´ży‰x ∇W px ´yqρpdyq.

(1.3)

Our objective in this paper is to study the convergence of the viscous solutions pρ ε q εą0 towards such a weak measure solution to (1.2). When W is λ´convex, these asymptotics had previously been mentioned in [START_REF] Carrillo | Aggregation-diffusion equations: dynamics, asymptotics, and singular limits[END_REF], where the authors explain how to use the techniques for the Γ´convergence of gradient flows developed by Serfaty in [START_REF] Serfaty | Gamma-convergence of gradient flows on Hilbert and metric spaces and applications[END_REF]. Our method basically relies on the same arguments which actually do not require the λ´convexity of the potential but only its Lipschitz continuity -along with the standard assumptions (A0)-(A1). Starting from the so-called Energy Dissipation Equality (EDE) for the viscous problem 1.1, we prove lower bounds of lower semicontinuity-type on each term of the EDE. This amounts to verifying the assumptions of Theorem 2 in [START_REF] Serfaty | Gamma-convergence of gradient flows on Hilbert and metric spaces and applications[END_REF]; if, in addition, the initial data is well-prepared, then we meet all the hypotheses of this theorem. However, we deliberately pass to the limit by hand, so as not to invoke abstract gradient flow arguments. Therefore, our proof is self-contained for the reader with minimal background regarding optimal transport. In particular, in our Theorem 3.1 we recover, at the limit ε Ñ 0, the right definition of the velocity field for (1.2) as defined in (1.3).

We generalize this result in Corollary 3.4 to arbitrary P 2 pR d q initial data converging in Wasserstein distance towards the initial datum ρ ini of the inviscid problem, when W is, in addition, λ´convex. This is done by smoothing out the initial data and estimating the distance to the modified solutions at time t, which is possible since the interaction energy is λ´geodesically convex. We then provide a convergence rate based on the differentiation formula of the Wasserstein distance between two absolutely continous curves on the Wasserstein space. Note that, for the Newtonian potential, the vanishing viscosity limit had been established in [START_REF] Cozzi | The aggregation equation with Newtonian potential[END_REF] in dimension d ě 2 and up to the time of existence of weak solutions in L 1 X L 8 but, to the best of our knowledge, without convergence rates. This article is structured as follows. We recall in Section 2 some useful results and definitions regarding optimal transport and functionals defined over the Wasserstein spaces.

In Section 3, in the framework of Lipschitz potentials, we begin with the general convergence result of the diffusive solutions pρ ε q εą0 towards a solution ρ to the inviscid problem (1.2) for well-prepared initial data. We then relax some of our assumptions on the initial data and focus on λ´convex potentials, for which we prove that convergence still holds for arbitrary initial data pρ ε 0 q εą0 converging towards ρ ini . We then prove that convergence occurs at rate Op ? εq in Wasserstein distance. We give, in addition, an alternate proof based on the convergence estimates of an upwind-type scheme for the inviscid problem due to the first author with Delarue and Vauchelet [START_REF] Delarue | Convergence order of upwind type schemes for transport equations with discontinuous coefficients[END_REF][START_REF] Delarue | Convergence analysis of upwind type schemes for the aggregation equation with pointy potential[END_REF].

In Section 4, we show that convergence (without convergence rate) still holds, up to an extraction, for repulsive potentials that behave like W pxq " ´|x|. The idea is to estimate, as in the λ´convex case, the distance between solutions associated with smoothed out initial data and solutions associated with a fixed initial datum ρ ini . This is done by differentiating the Wasserstein distance between solutions and proving appropriate estimates on the aggregation velocity field using an additional integrability assumption on ∇ 2 W .

Section 5 is devoted to the study of the stationary problem and, in particular, we provide higher convergence rates for the viscous steady states towards the unique steady state of the aggregation equation, that is, up to translations, the Dirac mass, when the interaction potential satisfies the key assumption (A4-1) but is not necessarily Lipschitz continuous. Under assumption (A4´p) for an arbitrary p ě 1, estimates are also obtained and proved to be sharp for p " 2. We eventually illustrate our convergence results in Section 6 and observe all the proven convergence rates.
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Preliminaries

Notations

We denote by CpR d q the space of continuous functions from R d to R, and by C 0 pR d q (resp. C b pR d q, C c pR d q) the subspace of continuous functions vanishing at 8 (resp. of bounded continuous functions, of continuous and compactly supported functions). We also denote by M b pR d q the space of Borel signed measures with finite total variation, equipped with the weak topology σpM b pR d q, C 0 pR d qq. For a sequence pρ n q nPN P M b pR d q N and ρ P M b pR d q, we denote the weak convergence of pρ n q nPN towards ρ by ρ n á nÑ8 ρ.

For ρ P M b pR d q and r P r0, `8q, we also denote by M r pρq the r´th moment of ρ, given by M r pρq " ş R d |x| r ρpdxq, where | ¨| is the Euclidean norm. For ρ P M b pR d q and Z a measurable map, we denote by Z # ρ the pushforward measure of ρ by Z, which satisfies, for any φ P C b pR d q, ż φpxq Z # ρpdxq " ż φpZpxqq ρpdxq.

Note that, in the above equality as in the whole article, whenever the integration domain is not specified, the integrals are considered over the whole space (which is R d here). If µ P M b pR d q is a positive measure, we also note ρ ! µ whenever ρ is absolutely continuous with respect to µ. We call PpR d q the subset of M b pR d q of probability measures and we denote, for p P r1, `8q, P p pR d q :" ␣ ρ P PpR d q, M p pρq ă `8( . For µ, ν P P p pR d q, we define the Wasserstein distance of order p between µ and ν by (see [START_REF] Ambrosio | Gradient Flows: In Metric Spaces and in the Space of Probability Measures[END_REF][START_REF] Santambrogio | Optimal Transport for Applied Mathematicians: Calculus of Variations, PDEs, and Modeling[END_REF][START_REF] Villani | Topics in Optimal Transportation[END_REF]):

W p pµ, νq :" inf γPΓpµ,νq "ij |x ´y| p γpdx, dyq * 1{p (2.1)
where Γpµ, νq is the set of measures on R d ˆRd with marginals µ and ν, i.e.

Γpµ, νq "

! γ P P p pR d ˆRd q; @ ξ P C 0 pR d q, ż ξpxqγpdx, dyq " ż ξpxqµpdxq, ż ξpyqγpdx, dyq " ż ξpyqνpdyq * .
Any measure that realizes the minimum in the definition (2.1) of W p is called an optimal plan, and the set of optimal plans is denoted by Γ 0 pµ, νq. The space P p pR d q equipped with the distance W p is called Wasserstein space of order p and denoted W p pR d q.

We recall that the Wasserstein distance W p metrizes the weak convergence of measures in the sense that, for pρ n q nPN P P p pR d q N and ρ P P p pR d q, W p pρ n , ρq ÝÑ nÑ`8 0 if and only if ρ n á nÑ`8 ρ and

M p pρ n q ÝÑ nÑ`8
M p pρq (see [START_REF] Villani | Topics in Optimal Transportation[END_REF], Theorem 7.12).

We shall also denote the conjugate exponent of p by p 1 P r1, `8s defined by 1 p `1 p 1 " 1, with the usual convention 1 1 " `8 and 8 1 " 1. For α P R, the positive and negative part of α are denoted by α `:" maxp0, αq and α ´:" maxp0, ´αq. With that convention, both α `and α ´are always nonnegative.

Throughout this paper, we will use the same notation C to denote any positive constant.

Curves and functionals over the Wasserstein space

Let p P r1, `8q and T ą 0. We call curve on the metric space W p pR d q any continuous function ρ P Cpr0, T s, W p pR d qq. We say that ρ is an absolutely continuous curve if there exists b P L 1 pr0, T sq such that W p pρ s , ρ t q ď ş t s bpτ qdτ for every 0 ď s ă t ď T , and we denote ACpr0, T s, W p pR d qq the set of absolutely continuous curves on W p pR d q. We also define for t P r0, T s, the metric derivative of ρ at time t as:

|ρ 1 t | :" lim hÑ0 W p pρ t`h , ρ t q h . (2.2)
If ρ is a Lipschitz curve on W p pR d q, then the above limit exists for a.e. t P r0, T s. Now, up to a reparametrization in time, any absolutely continuous curve can become Lipschitz continuous and therefore admits a metric derivative for almost every time.

The fundamental property of absolutely continuous curves in W p pR d q is the link with a continuity equation:

Theorem 2.1 ([1], Theorem 8.3.1). Let p P p1, `8q and T ą 0. Let ρ P ACpr0, T s, W p pR d qq. Then, for a.e. t P r0, T s there exists a vector field v t P L p pρ t , R d q such that:

• the continuity equation B t ρ `∇ ¨ρv " 0 is satisfied in the sense of distributions

• for a.e. t P r0, T s, }v t } L p pρtq ď |ρ 1 t |.
Conversely, if we take a curve ρ P Cpr0, T s, W p pR d qq such that, for each t P r0, T s, there exists a vector field v t P L p pρ t , R d q with ş T 0 }v t } L p pρtq dt ă `8 solving the continuity equation B t ρ `∇ ¨ρv " 0, then ρ P ACpr0, T s, W p pR d qq and for a.e. t P r0, T s, we have |ρ 1 t | ď }v t } L p pρtq . As a consequence, the velocity field v introduced in the first part of the statement actually satisfies }v t } L p pρtq " |ρ 1 t | for a.e. t P r0, T s. We now recall the definition of the first variation of a functional defined over probability measures. Definition 2.2. Let F : PpR d q ÝÑ R Y t`8u. Assume that ρ P PpR d q is such that: @δ P r0, 1s, @µ P PpR d q X L 8 c pR d q, F pp1 ´δqρ `δµq ă `8, then we call first variation of F at ρ, denoted δF δρ pρq, any measurable function g such that:

dF pρ `δχq dδ ˇˇδ "0 " ż gdχ,
whenever χ " µ ´ρ for some µ P PpR d q X L 8 c pR d q, where L 8 c pR d q denotes the set of compactly supported functions in L 8 pR d q. If it exists, the first variation is defined up to an additive constant.

We now introduce two functionals that are essential to our study, the interaction energy W and the entropy U, defined on PpR d q by:

Wpρq " 1 2 ij W px ´yqρpdxqρpdyq, (2.3) 
Upρq "

# ş ρ lnpρq, if ρ ! Leb `8 otherwise, (2.4) 
where Leb is the Lebesgue measure on R d . Note that, under assumption (A2), the interaction energy Wpρq is finite whenever ρ P P 1 pR d q. For ε ě 0, we shall also define the energy functional as F ε " W `εU. One can easily show that δW δρ pρq " W ˚ρ and δU δρ pρq " ln ρ `1. A key point in our proofs will be the lower semicontinuity (l.s.c) of the above functionals so that minimization arguments apply. Lemma 2.3.

(1) If W is l.s.c on R d and bounded from below, then the interaction energy W is l.s.c for the weak convergence.

(2) If W is Lipschitz continuous, then the interaction energy W is Lipschitz continuous for the W 1 distance.

Proof. Let us recall from [START_REF] Santambrogio | Optimal Transport for Applied Mathematicians: Calculus of Variations, PDEs, and Modeling[END_REF], Proposition 7.2. that if V : R d ˆRd ÝÑ R is l.s.c and bounded from below, then the functional ρ P PpR d q Þ ÝÑ ij V px, yqρpdxqρpdyq is l.s.c for the weak convergence of measures. This proves the first claim.

For the second claim, we will prove |Wpρq ´Wµq| ď LippW qW 1 pρ, µq.

Indeed, we can write Wpρq " The following lemma is proven in [START_REF] Santambrogio | Dealing with moment measures via entropy and optimal transport[END_REF], Proposition 2.1.

Lemma 2.4.

There exists a constant C only depending on d such that the entropy functional U satisfies Upρq ě ´CpM 1 pρq 1{2 `1q. Moreover, if pρ n q n P PpR d q is a sequence weakly converging towards some ρ P PpR d q such that M 1 pρ n q is bounded, then we have Upρq ď lim inf nÑ`8

Upρ n q.

In particular, this means that the entropy is l.s.c for the W q distance for all q ě 1.

In order to obtain convergence of the moments of a weakly converging sequence of probability measures, we will often make use of the following lemma: Lemma 2.5. Let 1 ď p ă `8 and pρ n q nPN be a sequence of probability measures in P p pR d q weakly converging towards ρ P P p pR d q as n Ñ `8. Assume that, for some constant C ą 0, we have for all n P N, M p pρ n q ď C. Then, for all q P p0, pq, M q pρ n q ÝÑ nÑ`8 M q pρq. In particular, if p ą 1 then pρ n q nPN converges towards ρ in W q distance for all q P r1, pq.

Proof. For R ą 0, we introduce a nonnegative cut-off function η R P C c pR d , Rq equal to 1 on Bp0, Rq. We write:

ż R d |x| q ρ n pdxq " ż R d |x| q η R pxqρ n pdxq `żR d zBp0,Rq |x| q p1 ´ηR pxqqρ n pdxq, (2.5) 
ď ż R d |x| q η R pxqρ n pdxq `żR d zBp0,Rq |x| q ρ n pdxq. (2.6) 
Firstly, x Þ ÝÑ |x| q η R pxq P C 0 pR d q, therefore the weak convergence ρ n á nÑ`8

ρ ensures that the first term in the above inequality converges to ş R d |x| q η R pxqρpdxq as n Ñ `8. Now, M q pρq ă `8 since M p pρq ă `8, hence, using Lebesgue's dominated convergence theorem, we have ş

R d |x| q η R pxqρpdxq ÝÑ RÑ`8 ş R d |x| q ρpdxq.
Besides, the uniform bound on the p´moment of ρ n ensures that the second term converges to 0 as R Ñ `8 uniformly with respect to n. Indeed, using a Hölder inequality with the exponents p p q , p p´q q, we have:

ż R d zBp0,Rq |x| q ρ n pdxq ď M p pρ n q q{p ρ n pR d zBp0, Rqq p´q p ď C q{p ρ n pR d zBp0, Rqq p´q p .
Moreover, one has R p ρ n pR d zBp0, Rqq ď ş R d zBp0,Rq |x| p ρ n pdxq ď M p pρ n q ď C. Combining these inequalities and plugging it into (2.5) then gives:

ż R d |x| q ρ n pdxq ď ż R d |x| q η R pxqρ n pdxq `C R p´q .
Passing to the lim RÑ`8 lim sup nÑ`8 , we obtain:

lim sup nÑ`8 ż R d |x| q ρ n pdxq ď ż R d |x| q ρpdxq.
Since x Þ ÝÑ |x| q is l.s.c and bounded from below, the functional ρ Þ ÝÑ M q pρq is l.s.c for the weak convergence. Hence, ş R d |x| q ρpdxq ď lim inf nÑ`8 ş R d |x| q ρ n pdxq, which concludes the proof. We also have, as a corollary of the previous lemma, a compactness result: Lemma 2.6. Let 1 ď p ă `8 and pρ n q nPN be a sequence of probability measures in P p pR d q such that M p pρ n q is uniformly bounded with respect to n. Then, there exist a subsequence of pρ n q nPN converging towards some ρ P P p pR d q in W q distance for all q P r1, pq.

Proof. As a sequence of probability measures, pρ n q nPN converges weakly towards some ρ P M b pR d q. Now, the uniform bound on M p pρ n q implies tightness on pρ n q nPN , hence it converges narrowly towards ρ and therefore ρ is a probability measure. We can then use the l.s.c of the p´th order moment to deduce that M p pρq ă `8. Lemma 2.5 finally gives convergence of pρ n q nPN towards ρ in W q pR d q for all q P r1, pq.

We finally define one last functional that will be useful in our proofs. Let p P p1, `8q. We set

K p " ! pa, bq P R ˆRd | a `1 p 1 |b| p 1 ď 0 ) and, for pt, xq P R `ˆR d , f p pt, xq " $ ' & ' % 1 p |x| p t p´1 , if t ą 0, 0, if t " 0, x " 0, `8, if t " 0, x ‰ 0.
Then, for X a measurable space and for pρ, Eq P M b pXq ˆMb pXq d , we define the p´Benamou-Brenier functional by: B p pρ, Eq " sup

"ż adρ `ż b ¨dE ; pa, bq P C b pX, K p q * .
The Benamou-Brenier functional satisfies the following properties (see [START_REF] Santambrogio | Optimal Transport for Applied Mathematicians: Calculus of Variations, PDEs, and Modeling[END_REF] We also have the following symmetrization lemma, which we will repeatedly use for V " ∇W :

Lemma 2.8. Let V be a bounded odd vector field on R d , ρ P PpR d q and v a vector field on R d such that v ¨pV ˚ρq is integrable with respect to ρ. Then, one has:

ż vpxq ¨pV ˚ρqpxqρpdxq " 1 2 ij V px ´yq ¨pvpxq ´vpyqqρpdxqρpdyq.
Proof. Using the fact that V is odd, we can write thanks to the change of variables x Ø y: ij V px ´yq ¨vpxqρpdxqρpdyq " ´ij V px ´yq ¨vpyqρpdxqρpdyq.

Therefore, taking the half sum of the two quantities above:

ż vpxq ¨pV ˚ρqpxqρpdxq " ij V px ´yq ¨vpxqρpdxqρpdyq " 1 2 ˆij V px ´yq ¨vpxqρpdxqρpdyq ´ij V px ´yq ¨vpyqρpdxqρpdyq " 1 2 ij V px ´yq ¨pvpxq ´vpyqqρpdxqρpdyq.
We finish with a computation of the derivative of W along a curve satisfying a continuity equation:

Lemma 2.9. Let ρ be a curve on PpR d q that solves in the weak sense B t ρ`∇¨ρv " 0 with v t P L 2 pρ t q for a.e. t P r0, T s and ş T 0 }v t } 2 L 2 pρtq dt ă `8. Then: @t P r0, T s, Wpρ t q ´Wpρ 0 q "

ż t 0 ż p z ∇W ˚ρs q ¨vs dρ s . (2.7) 
Proof. Let pW δ q δą0 be an approximation of W such that

W δ P C 1 pR d q, W δ ÝÑ δÑ0 W uniformly on R d , W δ is even, ∇W δ is bounded by a 8 , and ∇W δ ÝÑ δÑ0 ∇W pointwise on R d zt0u.
We necessarily have ∇W δ p0q " 0 for all δ ą 0 and therefore ∇W δ ÝÑ δÑ0 z ∇W pointwise on R d . On the other hand, for δ ą 0, since W δ P C 1 pR d q and W δ is even, we have, for t P r0, T s: 

1 2 ij W δ px´yqρ

Preliminary results

We recall the following result of existence of a characteristic flow and well-posedness of measurevalued solutions to (1.2):

Theorem 2.10 ([10] Theorems 2.12 and 2.13, [START_REF] Carrillo | The Filippov characteristic flow for the aggregation equation with mildly singular potentials[END_REF] Theorems 2.5 and 2.9). Assume W satisfies hypotheses (A0)-(A1)-(A2)-(A3) and let ρ ini be given in P 2 pR d q. Then, there exists a unique solution ρ P Cpr0, `8q, W 2 pR d qq satisfying, in the sense of distributions, the aggregation problem (1.2) where arρs is replaced by p arρs as defined in (1.3). This solution may be represented as the family of pushforward measures pρ t :" Z ρ pt, ¨q# ρ ini q tě0 where pZ ρ pt, ¨qq tě0 is the unique Filippov characteristic flow associated with the one-sided Lipschitz velocity field p arρs. Besides, if ρ and µ are the respective solutions to (1.2) with ρ ini and µ ini as initial conditions in P 2 pR d q, then, for all t ě 0, W 2 pρ t , µ t q ď e ´λt W 2 pρ ini , µ ini q.

(2.9)

In [START_REF] Carrillo | Asymptotic simplification of Aggregation-Diffusion equations towards the heat kernel[END_REF], Carrillo, Gómez-Castro, Yao and Zeng proved the following well-posedness and regularity Theorem for aggregation-diffusion equations with Lipschitz symmetric potentials. They prove existence and uniqueness through a fixed-point argument and regularity applying a bootstrap argument in adequate fractional Sobolev spaces. The solutions they define are mild solutions, which are stronger than our definition of solutions, which is in the sense of distributions. We recall the definition of the heat kernel used in the mild formulation:

G t pxq " 1 
p4πtq d{2 e ´|x| 2 4t
Theorem 2.11 ([9], Theorems 1.1, 2.1 and 2.2). Assume that W satisfies assumptions (A0)-(A1)-(A2). Let ε ą 0 and ρ ε 0 P PpR d q.

(1) For all T ą 0, there exists a unique solution ρ ε P Cpr0, T s, PpR d qq to the aggregation-diffusion problem (1.1) in the sense that:

@t P r0, T s, ρ ε t " G εt ˚ρε 0 `ż t 0 `∇G εpt´sq ˘˚`p ∇W ˚ρε s qρ ε s ˘ds.
(2) This solution is actually a classical solution that belongs, for all T ą 0, to Cpp0, T s, W k,p pR d qq for all k P N and p P r1, `8s in the general case, and to Cpp0, T s, W s,p pR d qq for all s ě 0 and p P r1, `8s if we assume that ρ ε 0 P W s,p pR d q.

Remark 2.12. In [START_REF] Carrillo | Asymptotic simplification of Aggregation-Diffusion equations towards the heat kernel[END_REF], the authors state the second item of the above Theorem under the assumption that W P W 1,8 pR d q and assuming that the initial datum belongs to L 1 `pR d q with total unit mass instead of PpR d q. It seems to us that W P L 8 is only required to obtain sharp decay of the energy functional and that the L 1 assumption on ρ ε 0 is only useful to simplify the notations. In the above Theorem, we actually have ρ ε P Cpr0, `8r, W 2 pR d qq. Indeed, as we will see in the proof of our Theorem 3.1 (see equation (3.7)), 1 2 -Hölder continuity in time follows automatically from a uniform bound with respect to t P r0, T s on M 2 pρ ε t q. This in turn comes from the following computations, where we use, first, integration by parts, and, second, the symmetrization Lemma 2.8:

$ ' & ' % d dt M 2 pρ ε t q " ż |x| 2 B t ρ ε t " ż |x| 2 ∇ ¨`p∇W ˚ρε t qρ ε t ˘`ε ż |x| 2 ∆ρ ε t " ´2 ż x ¨p∇W ˚ρε t qdρ ε t `2εd, ´2 ż x ¨p∇W ˚ρε t qdρ ε t " ´ij ∇W px ´yq ¨px ´yqρ ε t pdxqρ ε t pdyq ď 2a 8 M 1 pρ ε t q ď 2a 8 b M 2 pρ ε t q.
We thus get d dt M 2 pρ ε t q ď 2a 8 b M 2 pρ ε t q `2εd which implies, using a nonlinear Grönwall Lemma, that M 2 pρ ε t q is bounded over a finite horizon.

We finish by mentioning the special case of the dimension d " 1, with potentials of the form W pxq " a|x| for a P Rzt0u, for which the vanishing viscosity limit can be obtained using the correspondence with Burgers' equation. Indeed, let us set, for ε ě 0, u ε pt, xq " a `1 ´2f ε ptq ˘, where f ε ptq is the cumulative distribution function of ρ ε t . One can show that ρ ε solves (1.1a) if and only if u ε solves the viscous Burgers equation:

B t u ε `Bx pu ε q 2 2 " εB xx u ε , (2.10) 
and, similarly, ρ solves the aggregation equation (1.2a) with the correct velocity field p arρs if and only if u solves Burgers' equation (see [START_REF] Bonaschi | Equivalence of gradient flows and entropy solutions for singular nonlocal interaction equations in 1D[END_REF][START_REF] Fabrèges | Relaxation Limit of the Aggregation Equation with Pointy Potential[END_REF][START_REF] James | One-dimensional aggregation equation after blow up: existence, uniqueness and numerical simulation[END_REF]). Using the fact that, in dimension d " 1, we have the representation W 1 pρ ε t , ρ t q " }f ε ptq ´f ptq} L 1 pRq and combining with Kuznetsov's estimate hereafter for the viscous Burgers equation (see [START_REF] Kuznetsov | Accuracy of some approximate methods for computing the weak solutions of a first-order quasi-linear equation[END_REF]):

}u ε ptq ´uptq} L 1 pRq ď CT V pu 0 q ? εt,
where C is a positive constant, we deduce the following proposition:

Proposition 2.13. Assume d " 1 and W pxq " a|x| for some constant a P Rzt0u. Let ρ ini P P 2 pRq, set ρ ε 0 " ρ ini for all ε ą 0 and let pρ ε q εą0 be the sequence of weak solutions to (1.1). Then, for all T ą 0, pρ ε q εą0 converges in W 1 distance and uniformly on r0, T s, towards a solution ρ P Cpr0, T s, W 2 pRqq to (1.2) with the velocity field arρs being replaced by p arρs as defined in (1.3). More precisely, we have:

@t P r0, T s, W 1 pρ ε t , ρ t q ď C ? εt,
where the constant C ą 0 depends on a 8 only.

In the case of one initial Dirac mass ρ ini " δ 0 , one can even obtain convergence of ρ ε towards ρ at order 1 with respect to ε using simple scaling arguments. The initial data to the Burgers problem is u ini " 1 ´2H 0 pxq, and the solution to the inviscid Burgers problem is stationary, given by uptq " u ini . One can also show that there exists a stationary solution to equation (2.10) of the form v ε pt, xq " V `x ε ˘, with V p´8q " 1, V p`8q " ´1 and V 1 p˘8 " 0q. We then have using a contraction property of the viscous Burgers equation and the stationarity of v ε and u:

}u ε ptq ´uptq} L 1 ď }u ε ptq ´vε ptq} L 1 looooooooomooooooooon ď}u ini ´vε p0q} L 1 `}v ε ptq ´uptq} L 1 loooooooomoooooooon "}v ε p0q´u ini } L 1 ď 2 ż ˇˇu ini ´x ε ¯´V ´x ε ¯ˇˇd x ď 2ε ż ˇˇu ini ´V ˇˇ,
which gives W 1 pρ ε t , ρ t q ď Cε with C ą 0 independent of time. This result can be extended to the case of a finite sum of Dirac masses as initial datum, using the arguments of Teng and Zhang [START_REF] Teng | Optimal L1-Rate of Convergence for The Viscosity Method and Monotone Scheme to Piecewise Constant Solutions with Shocks[END_REF] to compare shocks with traveling waves. We also refer to [START_REF] Tang | Error Estimates of Approximate Solutions for Nonlinear Scalar Conservation Laws[END_REF][START_REF] Tang | Viscosity Methods for Piecewise Smooth Solutions to Scalar Conservation Laws[END_REF][START_REF] Teng | First-order L1-convergence for relaxation approximations to conservation laws[END_REF] for generalizations of this result.

3 Opε 1{2 q convergence rate when the potential is λ´convex

In this section, we assume that W satisfies assumptions (A0)-(A1)-(A2)-(A3).

Method 1: computing

d dt W 2 2 pρ ε t , ρ t q
So as to make integration by parts rigorous, we actually compute d dt W 2 2 pρ ε t , ρ δ t q for ε, δ ą 0 so that ρ ε and ρ δ are regular (see Theorem 2.11), and then we let δ Ñ 0. We therefore need to know that ρ δ t converges in the sense of measures towards ρ t .

Convergence in

Cpr0, T s, W 1 pR d qq without convergence rate for W satisfying (A0)-(A1)-(A2)
Let T ą 0 and let ρ ε P Cpr0, T s, W 2 pR d qq be the solution to the aggregation-diffusion problem (1.1) on r0, T sˆR d , as given by Theorem 2.11. Let us denote v ε " ´∇W ˚ρε ´ε ∇ρ ε ρ ε so that the continuity equation B t ρ ε `∇ ¨ρε v ε " 0 is satisfied in the sense of distributions. We formally have, by definition of the first variation and then by integration by parts:

d dt F ε pρ ε t q " ż δF ε δρ pρ ε t qB t ρ ε t " ż ∇ δF ε δρ pρ ε t q ¨vε t dρ ε t " ´ż ˇˇ∇ δF ε δρ pρ ε t q ˇˇ2dρ ε t , (3.1) 
where, in the last equality, we used the identity δF ε δρ pρq " W ˚ρ `εpln ρ `1q to deduce that v ε t is nothing else than ´∇ δF ε δρ pρ ε t q. Proving rigorously (3.1) can be made using an easy adaptation of Lemma 2.9. Integrating (3.1) over time then yields:

@t P r0, T s, F ε pρ ε 0 q " F ε pρ ε t q `ż t 0 ż ˇˇ∇ δF ε δρ pρ ε s q ˇˇ2dρ ε s ds.
Let us only use this equality as an inequality as it will turn out sufficient for passing to the limit, and let us write ˇˇ∇ δF ε δρ pρ ε s q ˇˇ2 as the half-sum

1 2 ˆ|v ε s | 2 `ˇˇ∇ δF ε δρ pρ ε s q ˇˇ2 ˙so
as to recover a link between the velocity v and the functional F at the limit ε Ñ 0. This way, we recover the so-called energy dissipation equality (EDE, that we use as an inequality in our paper):

@t P r0, T s, F ε pρ ε 0 q ě F ε pρ ε t q `1 2 ż t 0 ż |v ε s | 2 dρ ε s ds `1 2 ż t 0 ż ˇˇ∇ δF ε δρ pρ ε s q ˇˇ2dρ ε s ds, (3.2) 
Showing a sort of lower semicontinuity, when ε Ñ 0, of each term in (3.2), we will prove that up to successive extractions, pρ ε q εą0 converges towards a measure ρ that satisfies a continuity equation and an EDE. Combining both, we will prove that ρ solves the aggregation problem (1.2). In case the solution to such a Cauchy problem is unique, the whole sequence pρ ε q εą0 converges towards ρ. This method does not require the λ´convexity but only the Lipschitz continuity of the potential W .

Theorem 3.1. Assume W satisfies assumptions (A0)-(A1)-(A2). Let ρ ini P P 2 pR d q, and let pρ ε q εą0 be a sequence of weak solutions to (1.1).

Assume that the sequence of initial data pρ ε 0 q εą0 satisfies the following assumptions:

lim sup εÑ0 F ε pρ ε 0 q ď F pρ ini q, (3.3a) @ε ą 0, M 2 pρ ε 0 q ď C, (3.3b) lim εÑ0 W 2 pρ ε 0 , ρ ini q " 0, (3.3c) 
for some constant C ą 0 independent of ε. Then, for all T ą 0, pρ ε q εą0 converges up to a subsequence, in W 1 distance and uniformly on r0, T s, towards a solution ρ P Cpr0, T s, W 2 pR d qq to (1.2) with the velocity field arρs being replaced by p arρs as defined in (1.3):

sup tPr0,T s W 1 pρ ε t , ρ t q ÝÑ εÑ0 0.
If the solution to (1.2) is unique, then the whole sequence pρ ε q εą0 converges towards ρ.

Remark 3.2. Note that assumptions (3.3) are automatically satisfied if the entropy Upρ ε 0 q is uniformly bounded w.r.t ε ą 0. In case we take ρ ε 0 " ρ ini , this corresponds to ρ ini having finite entropy.

The following lemma shows that it is possible to construct such a sequence of initial data:

Lemma 3.3.
Recall that ρ ini is given in P 2 pR d q. For all p ě 1 such that ρ ini P P p pR d q and for all α P p´1, 0q, there exists a sequence pµ ε 0 q εą0 in P p pR d q satisfying:

lim inf εÑ0 F ε pµ ε 0 q ď F pρ ini q, (3.4a) @ε ą 0, M p pµ ε 0 q ď Ce ´Cε α , (3.4b) lim εÑ0 W p pµ ε 0 , ρ ini q " 0 (3.4c)
where the constant C ą 0 depends on p but not on ε. Actually, we can be more specific in (3.4c):

@ε ą 0, W p pµ ε 0 , ρ ini q ď Ce ´εα .
Proof. Let α P p´1, 0q and let p ě 1 such that ρ ini P P p pR d q. Let pr ε q εą0 be a sequence of positive real numbers to be specified later in the proof. Let η P L 1 pR d q be a nonnegative function supported on Bp0, 1q, with unit total mass, such that η ln η and |x| p ηpxq are integrable on R d . We then set η ε pxq " r ´d ε η ´x rε ¯and µ ε 0 " η ε ˚ρini . Because of the compact support of η we have M p pη ε ˚ρini q ď CpM p pρ ini q `Mp pη ε qq ď C, so that, in particular, µ ε 0 P P p pR d q for all ε ą 0. Firstly, let us choose r ε so that εUpη ε q goes to 0 as ε Ñ 0. Since η ε ! Leb, we have Upη ε q " ş η ε ln η ε . Therefore, using the change of variables x " r ε y, one has:

Upη ε q " r ´d ε ż η ´x r ε ¯ln ˜r´d ε η ´x r ε ¯¸dx " ż ηpyq ln ´r´d ε ηpyq ¯dy " ż ηpyq ln ηpyqdy´d ln r ε . (3.5)
Based on the above computation, we choose r ε " e ´hε{ε for some positive sequence ph ε q εą0 such that lim εÑ0 h ε " 0. More precisely, we set h ε " ε α`1 , that is r ε " e ´εα . Now, using the convexity and the invariance under translation of U, we have Upη ε ˚ρini q ď Upη ε q, and therefore F ε pµ ε 0 q ď Wpµ ε 0 q `εUpη ε q. Since W is continuous on W 1 pR d q thanks to Lemma 2.3, we just need the convergence µ ε 0 Ñ ρ ini in W 1 pR d q in order to have Wpµ ε 0 q Ñ Wpρ ini q and hence lim εÑ0 Wpµ ε 0 q `εUpη ε q " Wpρ ini q " F pρ ini q. Then, (3.4a) will immediately follow. We now use

W p p pµ ε 0 , ρ ini q " W p p pη ε ˚ρini , δ 0 ˚ρini q ď W p p pη ε , δ 0 q " M p pη ε q Ñ 0,
where the last limit is justified by M p pη ε q " r p ε M p pηq " Ce ´pε α . This proves (3.4b) and (3.4c) since α ă 0, and this in turn proves (3.4a).

Relaxing assumption 3.3a can only be done under additional assumptions on the potential. In the case W satisfies assumption (A3), replacing the original initial data ρ ε 0 by a smoothed out initial data µ ε 0 that verifies assumptions (3.3) and using the λ´convexity of the potential to estimate the distance between ρ ε and the new sequence of viscous solutions µ ε , we obtain as a byproduct of Theorem 3.1 the following corollary: Corollary 3.4. Assume W satisfies assumptions (A0)-(A1)-(A2)-(A3). Let ρ ini P P 2 pR d q, and let pρ ε q εą0 be the sequence of weak solutions to (1.1). Assume that the sequence of initial data pρ ε 0 q εą0 converges in W 2 pR d q to ρ ini as ε Ñ 0.

Then, for all T ą 0, the whole sequence pρ ε q εą0 converges in W 1 distance, uniformly on r0, T s, towards the unique solution ρ P Cpr0, T s, W 2 pR d qq of (1.2) with the velocity field arρs being replaced by p arρs as defined in (1.3).

Proof of Theorem 3.1. First of all, let us extract from pρ ε q εą0 a converging subsequence. For ε ą 0, recall that the continuity equation B t ρ ε `∇ ¨ρε v ε " 0 is satisfied. Moreover, let us rewrite equation (3.2) using the identity ∇ δF ε δρ pρq " ∇W ˚ρ `ε ∇ρ ρ and split it into three terms:

@t P r0, T s, F ε pρ ε 0 q ě F ε pρ ε t q `1 2 ż t 0 ż |v ε s | 2 dρ ε s ds `1 2 ż t 0 ż ˇˇ∇W ˚ρε s `ε ∇ρ ε s ρ ε s ˇˇ2dρ ε s ds ": T ε 1 `T ε 2 `T ε 3 . (3.6) Note that, if M 2 pρ ε
t q is uniformly bounded, then T ε 1 is uniformly bounded from below thanks to the estimate in Lemma 2.4. In that case, using the fact that T ε 3 is nonnegative and the fact that F ε pρ ε 0 q is bounded from above thanks to assumption (3.3a) on the initial data, we can deduce that ş T 0 ş |v ε s | 2 dρ ε s ds ď C for some constant C ą 0 independent of ε and t. In particular, for all t P r0, T s,

v ε t P L 2 pρ ε t q and ş T 0 ş |v ε s | 2 dρ ε s ds ă `8.
Using Theorem 2.1, we obtain that ρ ε P ACpr0, T s, W 2 pR d qq and that its metric derivative exists and is bounded by the L 2 norm of v ε s : |pρ ε q 1 s | ď }v ε s } L 2 pρ ε s q for all s P r0, T s. We deduce the following bound, that is uniform with respect to ε, by integration over time:

ż T 0 |pρ ε q 1 s | 2 ds ď C.
Then, using a Cauchy-Schwarz inequality, we get:

@0 ď s ď t ď T, W 2 pρ ε t , ρ ε s q ď ż t s |pρ ε q 1 τ |dτ ď ´ż t s |pρ ε q 1 τ | 2 dτ ¯1{2? t ´s ď a Cpt ´sq, (3.7) 
which gives equicontinuity of pρ ε q εą0 in W 2 distance (and therefore in W 1 distance). If we still assume that M 2 pρ ε t q is uniformly bounded, then the set tρ ε t , ε ą 0u is relatively compact in W 1 pR d q in virtue of Lemma 2.6. We can therefore apply Ascoli-Arzelà theorem in the space Cpr0, T s, W 1 pR d qq to extract from pρ ε q εą0 a subsequence converging in W 1 pR d q, uniformly in t P r0, T s, towards some ρ P Cpr0, T s, W 1 pR d qq. We still denote this subsequence pρ ε q εą0 . Moreover, the l.s.c of the W 2 distance along with the weak convergence ρ ε t á εÑ0 ρ t for all t P r0, T s allows to pass to the lim inf εÑ0 in (3.7) to show that ρ P Cpr0, T s, W 2 pR d qq. The limit ρ is actually 1{2´Hölder in time and satifies the same estimate as ρ ε : @0 ď s ď t ď T, W 2 pρ t , ρ s q ď a Cpt ´sq.

Let us come back to the boundedness of M 2 pρ ε t q. This bound can actually be obtained from inequality (3.6). Indeed, from (3.6) and assumption (3.3a), we get, since T ε 3 ě 0:

F ε pρ ε t q `1 2 ż t 0 ż |v ε s | 2 dρ ε s ds ď C. (3.8)
Let us show that the second term controls M 2 pρ ε t q if t P r0, T s. Differentiating M 2 pρ ε t q in time and integrating by parts, we have:

d dt M 2 pρ ε t q " 2 ż x ¨vε t pxqρ ε t pdxq ď 2M 2 pρ ε t q 1{2 ˆż |v ε t | 2 dρ ε t ˙1{2 ,
using Cauchy-Schwarz inequality. Applying a Grönwall Lemma, this implies, for all t P r0, T s,

M 2 pρ ε t q 1{2 ď M 2 pρ ε 0 q 1{2 `ż t 0 ˆż |v ε s | 2 dρ ε s ˙1{2 ds ď M 2 pρ ε 0 q 1{2 `?T ˆż t 0 ż |v ε s | 2 dρ ε s ds ˙1{2 ,
where we used Jensen's inequality w.r.t the measure ds t . Finally, we get:

ż t 0 ż |v ε s | 2 dρ ε s ě 1 T `M2 pρ ε t q ´M2 pρ ε 0 q ˘.
Plugging this inequality into (3.8) and using the estimate in Lemma 2.4 one obtains:

´a8 M 2 pρ ε t q 1{2 ´εpM 2 pρ ε t q 1{4 `Cq `1 2T `M2 pρ ε t q ´M2 pρ ε 0 q ˘ď C,
which provides a uniform bound on M 2 pρ ε t q. The point is now, for every t P r0, T s, to show l.s.c of each term T ε i , i " 1, 2, 3, with respect to the W 1 convergence of pρ ε t q εą0 towards ρ t that we just proved. ˚Dealing with T ε 1 " F ε pρ ε t q. Using Lemma 2.3, the W 1 ´convergence of pρ ε t q εą0 towards ρ t ensures that lim εÑ0 Wpρ ε t q " Wpρ t q. Besides, thanks to Lemma 2.4, we have for the entropy lim inf εÑ0 Upρ ε t q ě Upρ t q, and we deduce in turn lim inf εÑ0 εUpρ ε t q ě 0. Therefore:

lim inf εÑ0 F ε pρ ε t q ě F pρ t q.
˚Dealing with T ε 2 "

1 2

ż t 0 ż |v ε s | 2 dρ ε s ds. For ε ą 0, letting E ε " ρ ε v ε ,
a Cauchy-Schwarz inequality shows that the total variation of E ε is uniformly bounded with respect to ε ą 0:

|E ε |pr0, ts ˆRd q " ż t 0 ż |v ε s |dρ ε s ds ď ? t ˆż t 0 ż |v ε s | 2 dρ ε s ds ˙1{2 ď ? CT ,
Thus, up to another extraction, we can assume that E ε á εÑ0 E for some E P M b pr0, ts ˆRd q d . Now, since ρ ε and E ε are absolutely continuous with respect to the Lebesgue measure on r0, ts ˆRd as long as ε ą 0, Lemma 2.7 ensures that T ε 2 rewrites as follows:

T ε 2 " ż t 0 ż f 2 pρ ε s , E ε s qdxds " B 2 pρ ε , E ε q.
Then the lower semicontinuity of B 2 on M b pr0, ts ˆRd q ˆMb pr0, ts ˆRd q d yields:

lim inf εÑ0 T ε 2 ě B 2 pρ, Eq,
which, in turn, implies that B 2 pρ, Eq is finite and therefore gives the existence of a vector-valued density v verifying E " ρv. Using Lemma 2.7 (iv), the above inequality rewrites:

lim inf εÑ0 T ε 2 ě 1 2 ż t 0 ż |v s | 2 dρ s ds.
In addition, this transformation also allows to pass to the limit in the continuity equation B t ρ ε ∇ ¨Eε " 0, which is now linear. Indeed, letting ε Ñ 0 in the weak formulation, one easily gets B t ρ `∇ ¨pρvq " 0. This shows that the limit density ρ is still a solution to a continuity equation, and the link between the velocity field v and the functional F will be made thorough when passing to the limit ε Ñ 0 in the EDE (3.2). ˚Dealing with T ε 3 "

1 2 ż t 0 ż ˇˇ∇W ˚ρε s `ε ∇ρ ε s ρ ε s ˇˇ2dρ ε s ds.
As it is standard when dealing with terms belonging to L 2 pρ ε s q, we set G ε " p∇W ˚ρε qρ ε `ε ∇ρ ε ρ ε ρ ε , so that T ε 3 " B 2 pρ ε , G ε q. We deduce from (3.6) that T ε 3 is uniformly bounded w.r.t ε, which implies that G ε is uniformly bounded in M b pr0, ts ˆRd q d . Therefore, up to another extraction, we can assume that G ε á εÑ0 G for some G P M b pr0, ts ˆRd q d . Since W is Lipschitz, we have

ż t 0 ż
ˇˇ∇W ˚ρε s ˇˇdρ ε s ds ď a 8 t thus p∇W ˚ρε qρ ε is uniformly bounded too in M b pr0, ts ˆRd q d . As a consequence, the difference ε ∇ρ ε ρ ε ρ ε is also uniformly bounded in M b pr0, ts ˆRd q d . Now, its limit when ε Ñ 0 is 0 in the sense of distributions. Indeed, for ξ P C 8 c pR d q, xε∇ρ ε , ξy " ´ε ż t 0 ż ∇ξdρ ε which can be bounded, for instance, by εt}∇ξ} L 8 and therefore goes to 0 as ε Ñ 0.

We deduce that ε ∇ρ ε ρ ε ρ ε actually converges in the sense of measures towards 0, hence the limit, in the sense of measures, of G ε is that of p∇W ˚ρε qρ ε .

: Limit in the sense of measures of p∇W ˚ρε qρ ε .

Let ξ P C 0 pr0, ts ˆRd q and let us consider the duality bracket xp∇W ˚ρε qρ ε , ξy as ε goes to 0. That quantity equals, using Lemma 2.8 applied to the even vector field ∇W : (3.10) Note that, until now, the value of ∇W p0q does not matter. Actually, all the integrals when ε ą 0 hold w.r.t to the Lebesgue measure and therefore the diagonal tx " yu can be avoided. We therefore only need ∇W pzq " ´∇W p´zq for nonzero z to apply Lemma 2.8, and this do not impose any value to ∇W p0q. Now, to come back to some duality bracket tested against ξ, one needs to unsymmetrize the resulting expression by writing: where we used the fact that z ∇W pzq " ´z ∇W p´zq for all z P R d , which now imposes z ∇W p0q " 0.

ż t 0 ij ∇W px ´yq ¨ξps, xqρ ε s pdxqρ ε s pdyqds "
1 2 ż t 0 ij ∇W px
Remark 3.5. These computations could hold against a test function ξ that is only Lipschitz on r0, ts ˆRd provided ∇W pzq ď C{|z| 1´β for some β ą 0. Indeed, the map ps, x, yq Þ ÝÑ ∇W px ´yq pξps, xq ´ξps, yqq would be continuous on the diagonal and hence everywhere on r0, ts ˆpR d q 2 . This could provide a way to deal with the non Lipschitz potentials W pxq " |x| β for 0 ă β ă 1, that are more singular than the Lipschitz potentials but are still less singular than the logarithmic potential. However, extra difficulties arise for the limit analysis when W is not Lipschitz.

We finally get that G " p z ∇W ˚ρqρ and therefore B 2 pρ, Gq " 1 2

ż t 0 ż | z ∇W ˚ρs | 2 dρ s ds.
Using the l.s.c of B 2 we finally get:

lim inf εÑ0 T ε 3 ě ż t 0 ż | z ∇W ˚ρs | 2 dρ s ds.
˚Passing to the lim inf εÑ0 to recover a limit EDE.

We can now pass to the lim inf εÑ0 in (3.2) using the assumption (3.3a) for the left-hand side to get the following EDE (which, once again is written as an inequality):

F pρ ini q ě F pρ t q `1 2 ż t 0 ż |v s | 2 dρ s ds `1 2 ż t 0 ż ˇˇz ∇W ˚ρs ˇˇ2dρ s ds. (3.12) 
Recall that ρ still solves the continuity equation B t ρ `∇ ¨ρv " 0 in the sense of distributions.

Identifying the velocity v is made through Lemma 2.9 which gives: @t P r0, T s, F pρ t q ´F pρ 0 q " ż t 0 ż p z ∇W ˚ρs q ¨vs dρ s .

Since pρ ε 0 q εą0 converges to both ρ 0 and ρ ini in W 1 pR d q, we have ρ 0 " ρ ini . Plugging the above identity into (3.12) then yields:

1 2 ż t 0 ż
ˇˇv s `z ∇W ˚ρs ˇˇ2dρ s ds ď 0, so that v " ´z ∇W ˚ρ " p arρs almost everywhere. We deduce that ρ solves the aggregation equation (1.2) in the sense of distributions with the correct velocity field p arρs, which concludes the proof. Incidentally, the identity v " ´z ∇W ˚ρ confirms that the limit EDE (3.12) is actually an equality.

Proof of Corollary 3.4. We now come back to the case of arbitrary initial data ρ ε 0 i.e. we do not assume anymore that assumptions (3.3) hold. However, we still assume that W 2 pρ ε 0 , ρ ini q ÝÑ εÑ0 0 and in addition, we now assume W to be λ´convex.

Let pµ ε 0 q εą0 be a sequence of smoothed out initial data for which W 2 pµ ε 0 , ρ ini q ÝÑ εÑ0 0 and the assumptions (3.3) hold on pµ ε 0 q εą0 . We denote by µ ε a solution to (1.1) for the modified initial data µ ε 0 . Applying Theorem 3.1, we know that µ ε converges in Cpr0, T s, W 1 pR d qq towards ρ solution to (1.2) as ε Ñ 0, up to a subsequence. But since W satisfies the assumptions of Theorem 2.10, such a solution is unique and we deduce that the whole sequence pµ ε q εą0 converges towards ρ.

It remains to show that W 2 pρ ε t , µ ε t q goes to 0 as ε Ñ 0 by estimating this quantity thanks to the λ´convexity of W : Lemma 3.6. Assume W satisfies assumptions (A0)-(A1)-(A2)-(A3). Let ρ, µ P P 2 pR d q and denote pφ, ψq a pair of Kantorovitch potentials from ρ to µ for the quadratic cost cpx, yq " 1 2 |x ´y| 2 . In addition, we assume that ρ or µ is an absolutely continuous measure. Then, ż ∇φ ¨arρsdρ `ż ∇ψ ¨arµsdµ ď ´λW 2 2 pρ, µq.

(3.13) Remark 3.7.

(1) In particular, we recover the last estimate in Theorem 2.10: if ρ, µ P AC loc pr0, `8q, W 2 pR d qq are solution to (1.2) with initial data ρ ini , µ ini P P 2 pR d q and if ρ t or µ t is an absolutely continuous measure, the following inequality holds:

d dt W 2 2 pρ t , µ t q ď ´2λW 2 2 pρ t , µ t q. (3.14)
Indeed, this is a direct consequence of Lemma 3.6 and of the following computation (see [START_REF] Santambrogio | Optimal Transport for Applied Mathematicians: Calculus of Variations, PDEs, and Modeling[END_REF] Theorem 5.25 or [START_REF] Ambrosio | Gradient Flows: In Metric Spaces and in the Space of Probability Measures[END_REF] Theorem 8.4.7)

d dt 1 2 W 2 2 pρ t , µ t q " ż ∇φ t ¨vt dρ t `ż ∇ψ t ¨wt dµ t , (3.15) 
whenever ρ, µ satisfy the continuity equations B t ρ `∇ ¨ρv " 0, B t µ `∇ ¨µw " 0. Inequality (3.14) then yields the aforementioned estimate using a Grönwall Lemma:

W 2 pρ t , µ t q ď e ´λt W 2 pρ ini , µ ini q. (3.16)
Relaxing the assumptions that either ρ t or µ t is an absolutely continuous measure can be done replacing ρ t by ρ ε t for instance, and passing to the limit ε Ñ 0 in the resulting estimate, thanks to Corollary 3.4.

(2) Another way of proving Lemma 3.6 can be found in [START_REF] Santambrogio | { Euclidean, Metric, and Wasserstein } Gradient Flows: an overview[END_REF], Lemma 4.12.

Proof. Assume ρ is an absolutely continuous measure. Then, there exists an optimal map from ρ to µ for the cost cpx, yq " 1 2 |x ´y| 2 , which we denote T . Since ∇ψ ˝T " ´∇φ, using µ " T # ρ yields: where we used the λ´convexity of W . We then expand the square to obtain:

ż
ij |x´T pxq´py´T pyqq| 2 ρpdyqρpdxq " 2 ż |x´T pxq| 2 ρpdxq´2 ˆij `x ´T pxq ˘ρpdxq ˙2 ď 2W 2 2 pρ, µq,
which concludes the proof, as we assumed in (A3) that λ ď 0.

We now come back to the proof of Corollary 3.4. Denoting pφ ε t , ψ ε t q a pair of Kantorovitch potentials from ρ ε t to µ ε t , and using Lemma 3.6 along with equation (3.15), we get:

d dt 1 2 W 2 2 pρ ε t , µ ε t q ď ´λW 2 2 pρ ε t , µ ε t q ´ε ż p∇φ ε t ¨∇ρ ε t `∇ψ ε t ¨∇µ ε t q.
The last term above being nonpositive (see [START_REF] Santambrogio | Optimal Transport for Applied Mathematicians: Calculus of Variations, PDEs, and Modeling[END_REF] exercise 66 for instance), we obtain, using a Grönwall lemma, that W 2 pρ ε t , µ ε t q ď e ´λt W 2 pρ ε 0 , µ ε 0 q. We then write, for t P r0, T s,

W 1 pρ ε t , ρ t q ď W 1 pρ ε t , µ ε t q `W1 pµ ε t , ρ t q ď e ´λT W 2 pρ ε 0 , µ ε 0 q `sup sPr0,T s W 1 pµ ε s , ρ s q,
where we used the fact that W 1 ď W 2 . Since both sequences pρ ε 0 q εą0 and pµ ε 0 q εą0 converge in W 2 pR d q to the same limit, W 2 pρ ε 0 , µ ε 0 q goes to 0 as ε Ñ 0. Moreover, pµ ε q εą0 converges to ρ in W 1 distance uniformly in r0, T s. These two facts along with the above inequality show that pρ ε q εą0 also converges to ρ in Cpr0, T s, W 1 pR d qq.

Convergence rate

We are now in position to prove the following theorem: Theorem 3.8. Assume W satisfies assumptions (A0)-(A1)-(A2)-(A3). Let ρ ini P P 2 pR d q, and let pρ ε q εą0 be the sequence of weak solutions to (1.1). Here, we assume that pρ ε 0 q εą0 is an arbitrary sequence in P 2 pR d q.

Denoting ρ P Cpr0, `8q, W 2 pR d qq the unique solution of (1.2) with arρs being replaced by p arρs as defined in (1.3), we have the following estimate: @t ą 0, W 2 pρ ε t , ρ t q ď e ´λt W 2 pρ ε 0 , ρ ini q `c 1 ´e´2λt λ ? dε.

(3.17)

Please note that in the above estimate λ ď 0. If λ ă 0, 1 ´e´2λt and λ are negative numbers so the ratio is positive and for λ " 0 the expression should be extended by continuity. Remark 3.9. In dimension d " 1 with the Newtonian potential W pxq " |x|, the correspondence with Burgers' equation stated in Proposition 2.13, gives convergence at rate ? εt in W 1 distance. Due to W being 0´convex, our estimate leads to the same estimate but in W 2 distance, since taking λ " 0 in (3.17) gives W 2 pρ ε t , ρ t q ď ? 2dεt for any t ą 0. If assumption (A4´p) is satified for some p ě 1 instead of assumption (A3) and if ρ ε 0 " δ 0 for all ε ą 0, one can also obtain the exact same estimate using a direct computation. Indeed, in that case, ρ t " δ 0 for all t ě 0 and we have, using integration by parts and Lemma 2.8:

d dt W 2 2 pρ ε t , δ 0 q " d dt ż |x| 2 ρ ε t pdxq " ´ij ∇W px ´yq ¨px ´yqρ ε t pdxqρ ε t pdyq `2ε ż ρ ε t pdxq ď ´C ij |x ´y| p ρ ε t pdxqρ ε t pdyq `2εd, using assumption (A4 ´pq, ď 2εd.
Hence W 2 pρ ε t , δ 0 q ď ? 2dεt for all t ě 0.

Proof. Take a sequence of initial data pµ ε 0 q εą0 converging in W 2 pR d q to ρ ini as ε Ñ 0 and denote pµ ε q εą0 the sequence of solutions to (1.1) with such initial data. Let ε ą 0. For all δ ą 0, using Lemma 3.6 along with equation (3.15), we have, denoting pφ t , ψ t q a pair of Kantorovitch potentials for the quadratic cost from ρ ε t to ρ δ t and integrating by parts: d dt

1 2 W 2 2 pρ ε t , µ δ t q ď ´λW 2 2 pρ ε t , µ δ t q´ε ż ∇φ t ¨∇ρ ε t ´δ ż ∇ψ t ¨∇µ δ t ď ´λW 2 2 pρ ε t , µ δ t q`ε ż ∆φ t ρ ε t `δ ż ∆ψ t µ δ t .
The map x Þ ÝÑ φ t pxq ´|x| 2 2 being concave, ∇ 2 φ t ď I d , hence ∆φ t ď d and the same holds for ψ t . Therefore: d dt W 2 2 pρ ε t , µ δ t q ď ´2λW 2 2 pρ ε t , µ δ t q `2pε `δqd, which gives the result after using a Grönwall lemma and passing to the limit δ Ñ 0 thanks to Corollary 3.4.

Method 2: using a numerical scheme

We now turn to a different proof of the previous result. This alternate proof will also allow to illustrate the results and the behavior of solutions with numerical results. Our main idea is to let, for a fixed ε ą 0, ρ ε ∆x be a suitable numerical approximation of the viscous solution ρ ε to the problem (1.1) with fixed initial data ρ ε 0 " ρ ini , and then use the formalism of [START_REF] Delarue | Convergence analysis of upwind type schemes for the aggregation equation with pointy potential[END_REF] to estimate the distance from this discretized solution to the solution ρ to the aggregation problem (1.2) in terms of ε:

@n P N, W 2 pρ ε,n ∆x , ρ t n q ď Cpt n q ? ∆x `ε,
under suitable stability conditions for the numerical scheme, and where ∆t ą 0 is the time step, t n " n∆t and ∆x ą 0 denotes the maximal space step. Proving the convergence of the scheme with fixed ε beforehand using compactness arguments and a Lax-Wendroff-type theorem, then letting ∆x Ñ 0, we shall deduce: @t ą 0, W 2 pρ ε t , ρ t q ď Cptq ? ε,

where we shall specify the constant Cptq. Note that our method also allows to deal with the case of arbitrary P 2 pR d q initial data ρ ε 0 as in Theorem 3.8, but we choose to present it with initial data not depending on ε for the sake of clarity.

Let us be more specific. We consider a Cartesian mesh of R d where the space step in the ith direction is denoted by ∆x i ą 0. The nodes of the mesh are denoted by x J " pJ 1 ∆x 1 , . . . , J d ∆x d q for any J " pJ 1 , . . . , J d q P Z d , and the cell centered on x J is denoted by

C J :" rpJ 1 ´1 2 q∆x 1 , pJ 1 1 2 q∆x 1 s ˆ. . . ˆrpJ d ´1 2 q∆x d , pJ d `1 2 q∆x d s.
We also denote by e i the ith vector of the canonical basis of R d . We initialize our discretization with:

ρ 0 J :" ż C J ρ ini pdxq ě 0, J P Z d , (3.18) 
and we consider an upwind type discretization for the aggregative part [START_REF] Delarue | Convergence order of upwind type schemes for transport equations with discontinuous coefficients[END_REF][START_REF] Lagoutière | Analysis and simulation of nonlinear and nonlocal transport equations[END_REF][START_REF] Delarue | Convergence analysis of upwind type schemes for the aggregation equation with pointy potential[END_REF]] and an explicit discretization for the diffusive part. It writes, for n P N,

ρ n`1 J " ρ n J ´d ÿ i"1 ∆t ∆x i ´pa i n J q `ρn J ´pa i n J`e i q ´ρn J`e i ´pa i n J´e i q `ρn J´e i `pa i n J q ´ρn J ε d ÿ i"1 ∆t ∆x 2 i `ρn J`e i ´2ρ n J `ρn J´e i ˘, (3.19) 
where the macroscopic velocity is defined by:

a i n J :" ´ÿ KPZ d ρ n K D i W K J , where D i W K J :" { B x i W `xJ ´xK ˘. (3.20)
The point of defining such as scheme comes from the fact that, for the heat equation B t ρ " ε∆ρ, under a parabolic CFL condition ε

d ÿ i"1 ∆t ∆x 2 i ď 1 2p1 ´2θq
if θ P r0, 1{2q and unconditionally if θ P r1{2, 1s, the θ´scheme is known to be convergent in L 2 norm at rate Op∆t`∆x 2 q. Moreover, for θ " 1{2, one obtains the so-called Crank-Nicolson scheme, which is convergent at rate Op∆t 2 `∆x 2 q. However, the convergence order of the θ´scheme (3.22) for the aggregation-diffusion equation (1.1a) will anyway be limited by the order of the upwind scheme. Also, the positivity of the density can only be guaranteed if the more restrictive parabolic CFL condition a 8

d ÿ i"1 ∆t ∆x i `2εp1 ´θq d ÿ i"1 ∆t ∆x 2 i ď 1 
holds. Preserving a hyperbolic CFL condition thus imposes taking θ " 1, which corresponds to the implicit scheme (3.21).

Proposition 3.11. Assume W satisfies assumptions (A0)-(A1)-(A2)-(A3) and let ρ P Cpr0, `8q, W 2 pR d qq be the unique measure solution to the aggregation equation (1.2) with initial data ρ ini P P 2 pR d q as given by Theorem 2.10. Assume in addition that the following strict CFL condition holds:

d ÿ i"1 ˆa8 ∆t ∆x i `2ε ∆t ∆x 2 i ˙ă 1 2 . (3.23)
Denote also the reconstruction:

ρ ε,n ∆x :" ÿ JPZ d ρ n J δ x J , n P N.
where pρ n J q JPZ d ,nPN is defined through the explicit discretization (3.18)-(3.19)-(3.20). Then, there exists a constant C ą 0, depending only on λ, a 8 and d, such that, for all n P N ˚,

W 2 pρ t n , ρ ε,n ∆x q ď C c 1 ´e´4λt n λ ? ∆x `ε `e´2λt n ∆x. (3.24) 
Remark 3.12. In estimate (3.24), the ? ∆x `ε term corresponds to the error induced by the scheme (3.19) and the ∆x term corresponds to the finite volume discretization of the initial data (3.18). As in [START_REF] Delarue | Convergence analysis of upwind type schemes for the aggregation equation with pointy potential[END_REF], one can also improve the prefactor in the exponentials to get the slightly better estimate:

W 2 pρ t n , ρ ε,n ∆x q ď C c 1 ´e´2λt n λ ? ∆x `ε `e´λt n ∆x.
which is similar to the estimates of the continuous setting, for instance (2.9), when ∆t is small. In the above proposition as in the whole paper, we do as if our discrete reconstructions pρ ε ∆x q ∆xą0 depended only on ∆x. Rigorously speaking, they also depend on ∆t, but under the CFL condition (3.23) ∆t goes to 0 as ∆x goes to 0. Setting ∆t to be an adequate function of ∆x, we can therefore consider pρ ε ∆x q ∆xą0 as sequence labeled by ∆x only. Theorem 3.13. Assume W satisfies assumptions (A0)-(A1)-(A2)-(A3). Let ρ P Cpr0, `8q, W 2 pR d qq be the unique measure solution to the aggregation equation (1.2) with initial data ρ ini P P 2 pR d q as given by Theorem 2.10 and let pρ ε q εą0 be the sequence of weak solutions to (1.1) with initial data ρ ε 0 " ρ ini . Then, there exists a constant C ą 0, depending only on λ, a 8 and d, such that, for all t ą 0 the following estimate holds:

W 2 pρ ε t , ρ t q ď C c 1 ´e´4λt λ ? ε, (3.25) 
Remark 3.14. The estimate above is slightly worse than the estimate (3.17) that we obtain using gradient flow arguments. Although, as in the previous remark, the exponential factor can be improved to e ´2λt a bit more technical computations, we do not manage to obtain the same constant C " ? d.

As for the preservation of the barycenter, we once again using the definition of the coefficients α L pyq:

ÿ LPZ d x L α L pyq " x J α J pyq `d ÿ i"1
x J`e i α J`e i pyq `d ÿ i"1 xy ´xJ , e i ye i " y.

x J´e i α J´e i pyq " x J « 1 ´d ÿ i"1 ˆ|xy ´xJ , e i y| ∆x i ´2ε∆t ∆x 2 i ˙ff `d ÿ i"1 x J ˆ1 ∆x i `xy ´xJ , e i y ˘``ε ∆t ∆x 2 i ḋ ÿ i"1 x J ˆ1 ∆x i `xy ´xJ , e i y ˘´`ε ∆t ∆x 2 i " x J « 1 `d ÿ i"
We now turn to the proof of Proposition 3.11.

For n P N ˚, we denote D n :" W 2 `ρt n , ρ ε,n ∆x ˘. The point is, roughly speaking, to obtain an estimate of the type D 2 n`1 ď D 2 n `C∆tp∆t `∆x `εq and then use a discrete Grönwall lemma to obtain estimate (3.24).

Let γ be an optimal transport plan between ρ t n and ρ ε,n ∆x , so that D 2 n " ij |x ´y| 2 γpdx, dyq. We also let a n ∆x be any continuous reconstruction of the velocity, for instance piecewise affine, such that a n ∆x px J q " a n J for all J P Z d . To construct an adequate coupling γ 1 P Γ `ρt n`1 , ρ ε,n`1 ∆x ˘, recall that Theorem 2.10 gives ρ t n`1 " Zpt n`1 , t n , ¨q#ρ t n , where Z is the Filippov characteristic flow associated to p arρs given by Theorem 2.10, except that here the second variable of Z denotes the time of the Cauchy data (which is the third variable) whereas in Theorem 2.10 it was omitted as it was 0. If the discrete measure ρ ε,n`1 ∆x was a pushforward measure of ρ ε,n ∆x , we would also define γ 1 as a pushforward of γ, but it is not the case. Instead, if we denote by ν the kernel on pR d , BpR d qq given by: @py, Bq P R d ˆBpR d q, νpy, Bq "

ÿ JPZ d α J py `∆ta n ∆x pyqqδ x J pBq,
we have the kernel representation:

@B P BpR d q, ρ ε,n`1 ∆x pBq " ż νpy, Bqρ ε,n ∆x pdyq.
The pushforward ρ t n`1 " Zpt n`1 , t n , ¨q#ρ t n can also be seen as a kernel representation. Indeed, setting µpx, Aq " δ Zpt n`1 ,t n ,xq pAq for px, Aq P R d ˆBpR d q, we have: One can show as in [START_REF] Delarue | Convergence analysis of upwind type schemes for the aggregation equation with pointy potential[END_REF] that the marginals of γ 1 are ρ t n`1 and ρ ε,n`1 ∆x . In particular, we have:

@A P BpR d q, ρ t n`1 pAq " ż 1 A pZpt n`
D 2 n`1 ď ij |x ´y| 2 γ 1 pdx, dyq.
Using the definition of γ 1 , we get: Let us deal with the last term in the above inequality. We have ρ ε,n ∆x pyq "

D 2 n`1 ď ij ÿ LPZ d ˇˇZpt n`1 ; t n ,
ř JPZ d ρ n J δ x J pyq, therefore: ÿ LPZ d ż ˇˇx L ´y ´∆ta n ∆x pyq ˇˇ2 α L `y `∆ta n ∆x pyq ˘ρε,n ∆x pdyq " ÿ JPZ d ÿ LPZ d ˇˇx L ´xJ ´∆ta n J ˇˇ2 α L `xJ `∆ta n J ˘ρn J .
Moreover, using the definition of α L in (3.29), we compute:

ÿ LPZ d ˇˇx L ´xJ ´∆ta n J ˇˇ2 α L `xJ `∆ta n J ˘" ∆t 2 |a n J | 2 ˜1 ´d ÿ i"1 ∆t ∆x i |a i n J | ´d ÿ i"1 2ε∆t ∆x 2 i ḑ ÿ i"1 ˆˇ∆ x i e i ´∆ta n J ˇˇ2 ´∆t ∆x i pa i n J q ``ε∆t ∆x 2 i ¯`ˇˇ∆ x i e i `∆ta n J ˇˇ2 ´∆t ∆x i pa i n J q
´`ε∆t

∆x 2 i ¯ď C∆tp∆t `∆x `εq,
where we used, for the last inequality, the CFL condition (3.23) and the fact that the velocity a n J is uniformly bounded. Multiplying by ρ n J , summing over J P Z d , and injecting into (3.34) yields:

D 2 n`1 ď ij ˇˇZpt n`1 ; t n , xq ´y ´∆ta n ∆x pyq ˇˇ2 γpdx, dyq `C∆tp∆t `∆x `εq. (3.35)
Dealing with the first term amounts to estimating the distance between the exact characteristics Zpt n`1 ; t n , xq and the forward Euler discretization y `∆ta n ∆x pyq. To this end, we write, on the one hand, using the definition of the Filippov characteristics [START_REF] Filippov | Differential Equations with Discontinuous Righthand Sides: Control Systems[END_REF][START_REF] Poupaud | Measure solutions to the linear multi-dimensional transport equation with non-smooth coefficients[END_REF]: Since γ P Γpρ t n , ρ ε,n ∆x q and since the above integral can be decoupled using the linearity of the scalar product, we also have: Together with (3.36), this yields:

Zpt n`1 ; t n , xq " x `ż t n
ij
D 2 n`1 ď p1 ´4λ∆tqD 2 n `C∆tp∆t `∆x `εq.
Using a discrete Grönwall lemma, we finally get:

D 2 n ď e ´4λt n D 2 0 `C 1 ´e´4λt n 4λ p∆t `∆x `εq.
Now, one can easily prove that D 2 0 " W 2 2 pρ ini , ρ 0 ∆x q ď ∆x 2 . This, along with the CFL condition (3.23), which implies that ∆t ď C∆x, gives the desired result.

Proof of Theorem 3.8

We are now in position to prove Theorem 3.8 using estimate (3.24) and passing to the limit ∆x Ñ 0. To do so, we must verify that, for a given ε ą 0, the approximate solutions given by the numerical scheme (3.19)-(3.18) converge, say uniformly in time (over a finite horizon) and weakly, in the sense of measures, in space, towards the solution ρ ε to the aggregation-diffusion problem (1.1) with initial datum ρ ini , as ∆x Ñ 0. In all this section, ε is a fixed positive real number.

Let T ą 0 and let N P N be such that N ∆t " T where ∆t satisfies the CFL condition. We consider the following piecewise affine reconstruction in time, defined for t P r0, T s by

ρ ε ∆x,t :" N ÿ n"0 ˆtn`1 ´t ∆t ρ ε,n ∆x `t ´tn ∆t ρ ε,n`1 ∆x ˙1rt n ,t n`1 r ptq, (3.37a) ρ ε,n ∆x :" ÿ JPZ d ρ n J δ x J , n " 0, . . . , N, (3.37b) 
where, once again, pρ n J q n"0,...,N JPZ d is given by the explicit discretization (3.19)-(3.18) (it actually depends on ε but we drop this dependence for convenience). Lemmas 3.15 and 3.16 show that, for all n P t0, . . . , N u, ρ ε,n ∆x P P 2 pR d q, hence pρ ε ∆x q ∆xą0 is a collection, indexed by ∆x, of curves in Cpr0, T s, W 1 pR d qq (they are actually curves on W 2 pR d q but compactness arguments require to work in a smaller space).

Outline of the proof. We begin with assuming that ρ ini P L 2 pR d q. Then, from pρ ε ∆x q ∆xą0 , we shall extract a subsequence, that we still denote pρ ε ∆x q ∆xą0 , converging in the Cpr0, T s, M b pR d qq topology towards a limit ρ P Cpr0, T s, W 2 pR d qq. To do so, we apply the Ascoli-Arzelà Theorem: the relative compactness assumption follows quite directly from the uniform bound on M 2 pρ ε,n ∆x q that we proved in Lemma 3.16 ; the equicontinuity assumption, however, is more involved and requires discrete H 1 estimates (Lemma 3.18) in order to control the diffusive term. Then, using classical discrete integration by parts, we show that ρ solves the aggregation-diffusion initial value problem, the solution of which is unique, hence the whole sequence actually converges. Passing to the limit ∆x Ñ 0 in estimate (3.24) will give us the desired estimate (3.25) for L 2 pR d q initial datum, and it will only remain to use a regularization argument to conclude in the case of arbitrary P 2 pR d q initial datum.

Lemma 3.18. For all m P t0, . . . , N u, we have:

∆t m´1 ÿ n"0 ÿ JPZ d d ÿ i"1 ˇˇˇˇρ n J`e i ´ρn J ∆x i ˇˇˇˇ2 ď Cpa 8 , d, ε, T q ÿ JPZ d `ρ0 J ˘2 2 , with Cpa 8 , d, ε, T q " 1 2ε ´1 `8dT a 2 8 ε ř JPZ d exp ´4p1`dqT a 2 8 ε ¯¯.
Proof. The idea is to perform a discrete version of the following rationale. If ρ ε solves (1.1) with L 2 pR d q initial data, we have:

d dt ż `ρε t ˘2 2 " ´ż ∇ρ ε t ¨p∇W ˚ρε t qρ ε t ´ε ż |∇ρ ε t | 2 . (3.38) 
First, using an adequate Young inequality on the first term along with the fact that ∇W is bounded allows to absorb the |∇ρ ε t | 2 term into the last one, getting: 

d dt ż `ρε t ˘2 2 ď ´ε 2 ż |∇ρ ε t | 2 `a2 8 ε ż `ρε t ˘2 2 ď a 2 8 ε ż `ρε t ˘2 2 
ÿ JPZ d `ρn`1 J ˘2 ´`ρ n J ˘2 2 ď ˜4d∆ta 2 8 ε `d ÿ i"1 32da 2 8 ∆t 2 ∆x 2 i ¸ÿ JPZ d `ρn J ˘2 2 (3.39) `d ÿ i"1 ˜´ε∆t 2∆x 2 i `4d ˆε∆t ∆x 2 i ˙2 ¸ÿ JPZ d ˇˇρ n J`e i ´ρn J ˇˇ2.
Under the Courant-Friedrichs-Lewy condition

εd ∆t ∆x 2 i ď 1 8
for any i, the last term in the above estimate is nonpositive, thus we get

ÿ JPZ d `ρn`1 J ˘2 ´`ρ n J ˘2 2 ď 4d∆ta 2 8 ε ˜1 `d ÿ i"1 8ε∆t ∆x 2 i ¸ÿ JPZ d `ρn J ˘2 2 ď 4d∆ta 2 8 ε ˆ1 `1 d ˙ÿ JPZ d `ρn J ˘2 2 " 4∆ta 2 
8 ε p1 `dq ÿ JPZ d `ρn J ˘2 2 .
Using a discrete Grönwall Lemma, we deduce the following bound on the discrete L 2 norm of ρ ε,n ∆x :

ÿ JPZ d `ρn J ˘2 2 ď exp ˆ4p1 `dqt n a 2 8 ε ˙ÿ JPZ d `ρ0 J ˘2 2 .
Step 2: discrete H 1 bound. Assume a stricter CFL condition: there exists δ such that

εd ∆t ∆x 2 i ď δ ă 1 8
for any i.

Then, for any i,

4d ˆε∆t ∆x 2 i ˙2 ´ε∆t 2∆x 2 i " ε∆t 2∆x 2 i ˆ8d ε∆t ∆x 2 i ´1˙ď δ d p8δ ´1q ă 0.
Thus, thanks to 3.39,

d ÿ i"1 ÿ JPZ d ˇˇρ n J`e i ´ρn J ˇˇ2 ď d δp1 ´8δq ˜˜4d∆ta 2 8 ε `d ÿ i"1 32da 2 8 ∆t 2 ∆x 2 i ¸ÿ JPZ d `ρn J ˘2 2 ´ÿ JPZ d `ρn`1 J ˘2 ´`ρ n J ˘2 2 ḑ d δp1 ´8δq ˜˜4d∆ta 2 8 ε `d ÿ i"1 4a 2 8 ∆t ε ¸ÿ JPZ d `ρn J ˘2 2 ´ÿ JPZ d `ρn`1 J ˘2 ´`ρ n J ˘2 2 
which implies, thanks to the L 2 estimate,

d ÿ i"1 ÿ JPZ d ˇˇρ n J`e i ´ρn J ˇˇ2 ď d δp1 ´8δq ˜8d∆ta 2 8 ε exp ˆ4p1 `dqt n a 2 8 ε ˙ÿ JPZ d `ρ0 J ˘2 2 ´ÿ JPZ d `ρn`1 J ˘2 ´`ρ n J ˘2 2 
Summing over n " 0, . . . , m ´1 yields

m´1 ÿ n"0 d ÿ i"1 ÿ JPZ d ˇˇρ n J`e i ´ρn J ˇˇ2 ď d δp1 ´8δq ˜8dT a 2 8 ε exp ˆ4p1 `dqT a 2 8 ε ˙ÿ JPZ d `ρ0 J ˘2 2 ´ÿ JPZ d `ρm J ˘2 2 `ÿ JPZ d `ρ0 J ˘2 2 ¸. Finally m´1 ÿ n"0 d ÿ i"1 ÿ JPZ d ˇˇρ n J`e i ´ρn J ˇˇ2 ď d δp1 ´8δq ˜1 `8dT a 2 8 ε ÿ JPZ d exp ˆ4p1 `dqT a 2 8 ε ˙¸ÿ JPZ d `ρ0 J ˘2 2 .
This is the desired result choosing δ " 1{16.

We now resume the proof of Theorem 3.13. From now on, we always assume condition (3.40) to hold.

Step 1: Ascoli-Arzelà Theorem. Let us denote, for K Ă R d any compact set, Lip K :" C c pKq X W 1,8 pR d q the space of Lipschitz continuous functions supported in K and } ¨}Lip the Lipschitz seminorm. We then introduce the pseudo-distance defined in duality with } ¨}Lip by: @µ, ν P P 1 pR d q, W 1,K pµ, νq :" sup ϕPLip K , }ϕ} Lip ď1 ż ϕdpµ ´νq, For 0 ď s ă t ď T , we have, thanks to the Cauchy-Schwarz inequality:

W 1,K `ρε ∆x,t , ρ ε ∆x,s ˘" ż t s ˇˇpρ ε ∆x,τ q 1 ˇˇdτ ď ? t ´s d ż t s ˇˇpρ ε ∆x,τ q 1 ˇˇ2 dτ . (3.41) 
Here, the metric derivative is the one associated to the pseudo-distance W 1,K . Since we chose ρ ε ∆x to be the piecewise affine reconstruction of the ρ ε,n ∆x for n " 0, . . . N , we have, for τ P rt n , t n`1 r, ˇˇpρ ε ∆x,τ q 1 ˇˇ" 1 ∆t W 1,K pρ ε,n ∆x , ρ ε,n`1 ∆x q. Indeed, ρ ε ∆x is a constant-speed geodesic in W 1 pKq from ρ ε,n ∆x to ρ ε,n`1 ∆x , hence its length on rt n , t n`1 r equals ∆t ˇˇpρ ε ∆x,τ q 1 ˇˇby definition and W 1,K pρ ε,n ∆x , ρ ε,n`1 ∆x q by the Benamou-Brenier formula. Therefore:

ż t s ˇˇpρ ε ∆x,τ q 1 ˇˇ2 dτ ď ż T 0 ˇˇpρ ε ∆x,τ q 1 ˇˇ2 dτ " N ´1 ÿ k"0 ż t n`1 t n ˇˇpρ ε ∆x,τ q 1 ˇˇ2 dτ " N ´1 ÿ k"0 W 2 1,K pρ ε,n ∆x , ρ ε,n`1 ∆x q ∆t . (3.42) 
Now, let ϕ P Lip K such that }ϕ} Lip ď 1. We have, denoting ϕ J " ϕpx J q and using the definition of the scheme (3.19) along with discrete integrations by parts in space:

ż ϕd `ρε,n`1 ∆x ´ρε,n ∆x ˘" ÿ JPZ d ϕ J `ρn`1 J ´ρn J " ÿ JPZ d d ÿ i"1 ∆t ∆x i F n J`e i 2
´ϕJ`e i ´ϕJ ¯´ε ÿ

JPZ d d ÿ i"1 ∆t ∆x 2 i `ρn J`e i ´ρn J ˘´ϕ J`e i ´ϕJ ď 2da 8 ∆t `ε∆t ÿ JPZ d d ÿ i"1 ˇˇˇˇρ n J`e i ´ρn J ∆x i ˇˇˇˇ.
Taking the supremum over ϕ and using pa `bq 2 ď 2a 2 `2b 2 , we get:

W 2 1,K pρ ε,n ∆x , ρ ε,n`1 ∆x q ď 8d 2 a 2 8 ∆t 2 `2ε 2 ∆t 2 ˜ÿ JPZ d d ÿ i"1 ˇˇˇˇρ n J`e i ´ρn J ∆x i ˇˇˇˇ¸2 ď 8d 2 a 2 8 ∆t 2 `2ε 2 ∆t 2 dLebpKq ś d i"1 ∆x i ÿ JPZ d d ÿ i"1 ˇˇˇˇρ n J`e i ´ρn J ∆x i ˇˇˇˇ2 ,
where we used a discrete Cauchy-Schwarz inequality so as to use the discrete H 1 estimate we proved in Lemma 3.18: indeed, summing for n " 0, . . . , N ´1 and plugging into (3.42), we obtain, using the aforementioned Lemma:

ż t s ˇˇpρ ε ∆x,τ q 1 ˇˇ2 dτ ď 8d 2 a 2 8 T `2dε 2 LebpKq ś d i"1 ∆x i ∆t N ´1 ÿ n"0 ÿ JPZ d d ÿ i"1 ˇˇˇˇρ n J`e i ´ρn J ∆x i ˇˇˇˇ2 ď Cpa 8 , d, ε, T, Kq ˜1 `1 ś d i"1 ∆x i ÿ JPZ d `ρ0 J ˘2¸. (3.43) 
Now, since we assumed that ρ ini P L 2 pR d q, the term

1 ś d i"1 ∆x i ř JPZ d `ρ0
J ˘2 is bounded with respect to ∆x. Indeed, a Cauchy-Schwarz inequality along with our initialization of the scheme (3.18) yield:

ÿ JPZ d `ρ0 J ˘2 " ÿ JPZ d ˆżC J ρ ini ˙2 ď ÿ JPZ d LebpC J q ż C J `ρini ˘2 " ´d ź i"1 ∆x i ¯ÿ JPZ d ż C J `ρini ˘2 " ´d ź i"1 ∆x i ¯}ρ ini } L 2 .
Reporting into (3.43), we obtain a bound on ş t s ˇˇpρ ε ∆x,τ q 1 ˇˇ2 dτ that is uniform with respect to s, t and ∆x. Combining with (3.41), we deduce that pρ ε ∆x q ∆xą0 is equi-1 2 -Hölder and in particular, equicontinuous in Cpr0, T s, pLip K q 1 q. Lemma 3.16 ensures, in addition, that M 2 `ρε ∆x,t ˘is uniformly bounded with respect to t P r0, T s and ∆x ą 0. Using Lemma 2.6, we deduce that pρ ε ∆x,t q ∆xą0 lies in a relatively compact set for all t P r0, T s and ∆x ą 0. We can therefore apply the Ascoli-Arzelà Theorem along with a diagonal extraction to extract a subsequence, that we still denote pρ ε ∆x q ∆xą0 , converging in Cpr0, T s, M b pR d qq topology towards some ρ ε . The uniform bound on M 2 `ρε ∆x,t ˘combined with Lemma 2.6 ensures that ρ ε actually belongs to Cpr0, T s, W 1 pR d qq.

Step 2: ρ ε solves (1.1). Using discrete integrations by parts as in [START_REF] Carrillo | The Filippov characteristic flow for the aggregation equation with mildly singular potentials[END_REF][START_REF] Lagoutière | Analysis and simulation of nonlinear and nonlocal transport equations[END_REF], we can prove that ρ ε ∆x satisfies the following approximate weak form of (1.1), for any ϕ P Cpr0, T rˆR d q: ρ ε t b ρ ε t . Then, passing to the limit is done using a symmetrization argument as in equations (3.9)-(3.10)-(3.11) using the fact that W is Lipschitz and even.

ż T 0 ż B t ϕpt, xqρ ε ∆x,t pdxqdt `ż t 0 ż p arρ ε ∆x,t s¨∇ϕpt, xqρ ε ∆x,t pdxqdt `ż ϕp0, xqρ ini pdxq " ε ż T 0 ż ∆ϕpt, xqρ ε ∆x,t pdxq `Op∆x `∆tq. ( 3 
We deduce that ρ ε solves in the sense of distributions the aggregation-diffusion problem (1.1) with initial datum ρ ε 0 " ρ ini . Since such a solution is unique (see Theorem 2.11), we deduce that the whole initial sequence pρ ε ∆x q ∆xą0 actually converges towards ρ ε .

Step 3: passing to the limit in (3.24) and relaxing the assumption ρ ini P L 2 pR d q. Now, let t ą 0 and let n P t0, . . . , N u such that t P rt n , t n`1 r. Estimate (3.24) gives:

W 2 pρ t , ρ ε ∆x,t q ď C c 1 ´e´4λt λ ? ∆x `ε `e´2λt ∆x.
Passing to the limit ∆x Ñ 0 in the above estimate using the semicontinuity of W 2 then gives the desired estimate (3.25), hence proving Theorem 3.13 in case of L 2 pR d q initial datum.

Remark 3.19. As a byproduct of this proof, we obtain uniform in time convergence in W 1 distance in space of the numerical scheme (3.19)-(3.18) towards the Cpr0, T s, W 2 pR d qq distributional solution to the aggregation-diffusion initial value problem, in case of L 2 pR d q initial datum, and under 1{6-CFL condition. In fact, we expect this convergence result to hold for arbitrary P 2 pR d q initial datum and under the standard CFL condition:

d ÿ i"1 ˆa8 ∆t ∆x i `2ε ∆t ∆x 2 i ˙ď 1 6 .
4 Convergence for repulsive potentials such that ∆W ď 0 and ∇ 2 W P L p 0 pR d q

For any Lipschitz potential satifying assumptions (A0)-(A1)-(A2), Theorem 3.1 guarantees the convergence of ρ ε towards a solution ρ to the aggregation equation up to a subsequence if the initial data satisfies the assumptions (3.3). Then, Corollary 3.4 extended this result to arbitrary initial data by an approximation procedure, and using λ´convexity to estimate the distance between two solutions. The goal of this section is to proceed similarly in the case of repulsive potentials, typically W pxq " ´|x|, where λ´convexity will be replaced by some intergability of the Hessian. More precisely, we focus on initial data equal to ρ ini , for which we only assume finiteness of moments. The outline of the proof is the same as that of Corollary 3.4. However, we can no more use the λ´convexity of W but, using the additional assumption ∇ 2 W P L p 0 pR d q for a suitable p 0 , we still manage to estimate the distance between ρ ε t and a sequence of viscous solutions associated with smoothed out initial data. More precisely, we obtain the following result: ∆W ď 0 and ∇ 2 W P L p 0 pR d q for some p 0 ą max ´d 2 , 1 ¯, and let ρ ini be an initial datum belonging to P P 2 pR d q. Denote pρ ε q εą0 the sequence of weak solutions to (1.1) where the initial data is set to ρ ε 0 :" ρ ini for all ε ą 0. Then, for all T ą 0, the sequence pρ ε q εą0 converges in Cpr0, T s, W 1 pR d qq, up to an extraction, towards a solution ρ P Cpr0, T s, W 2 pR d qq to equation (1.2) with the velocity field arρs being replaced by p arρs as defined in (1.3).

If, in addition, ρ ini P L p 1 0 pR d qXL p 0 p 0 ´p pR d q, then there exists a unique solution in Cpr0, T s, W 2 pR d qqX L 8 pr0, T s, L p 1 0 pR d q X L p 0 p 0 ´p pR d qq to (1.2) and the whole sequence pρ ε q εą0 actually converges.

Remark 4.2.

(1) For W pxq " ´|x|, this result cannot be applied in dimension d " 1, since ∇ 2 W " ´δ0 is not integrable. When d ą 1, we have ∇ 2 W pxq " (2) In dimension d " 1, for W pxq " ´|x|, Proposition 2.13 shows that the whole sequence pρ ε q εą0 converges in Cpr0, T s, W 1 pRqq towards a solution to the aggregation equation that can be obtained as the derivative of the entropy solution to a Burgers-type equation since entropy solutions and viscosity solutions coincide for scalar conservation laws.

(3) As a byproduct of our result, one obtains existence of a solution in Cpr0, T s, W 2 pR d qq to the aggregation problem (1.2) for potentials satisfying (A0)-(A1)-(A2)-(A5).

Proof. Let T ą 0. As in the proof of Corollary 3.4, for ε ą 0, we introduce µ ε P Cpr0, T s, W 2 pR d qq solution to (1.1) with smoothed out initial data µ ε 0 , that we now assume to satisfy assumptions (3.4) for some α P p´1, 0q. In particular, pµ ε 0 q εą0 satisfies assumptions (3.3) and Theorem 3.1 applies to pµ ε q εą0 and guarantees convergence of a subsequence, in Cpr0, T s, W 1 pR d qq, towards a solution to the aggregation equation (1.2). As for Corollary 3.4, the key ingredient is now to prove that the distance W p pρ ε t , µ ε t q goes to 0 as ε Ñ 0, for some p ą 1 that will be specified later. For the sake of clarity, let us drop the superscripts ε for the remaining of this section. Denoting pφ t , ψ t q a pair of Kantorovitch potentials from ρ t to µ t for the cost 1 p |x ´y| p , we can formally write (see Theorem 5.24 in [START_REF] Santambrogio | Optimal Transport for Applied Mathematicians: Calculus of Variations, PDEs, and Modeling[END_REF] or Theorem 8.4.7. in [START_REF] Ambrosio | Gradient Flows: In Metric Spaces and in the Space of Probability Measures[END_REF]) The last term above is nonnegative thanks to the so-called five (actually four) gradients inequality proven in [START_REF] Caillet | The five gradients inequality for non quadratic costs[END_REF] for the W p case with p ą 1. Actually, [START_REF] Caillet | The five gradients inequality for non quadratic costs[END_REF] proves the inequality in a compact setting and a full treatment of this last term would require a suitable approximation procedure. Yet, the inequality we need, i.e. can also be justified in many different ways, for instance by the stochastic interpretation of ρ t and µ t as laws of the solutions of suitable SDE where the choice of a common Brownian motion would allow to get rid of the term coming from diffusion (see, for instance, [START_REF] Bolley | Convergence to equilibrium in Wasserstein distance for Fokker-Planck equations[END_REF]); since the diffusion effect of the Laplacian in the equation could also be handled using convolution with the heat kernel, another possible way to prove the same inequality would be to approximate the solutions by a splitting method, alternating convolutions (which decrease the W p distance) and transport (which lets the other term appear). We thus get, using a triangle inequality along with the fact that ∇φ t pxq " |x´T t pxq| p´1 p { x ´Tt pxqq " ´∇ψ t pxq, where T t is the optimal transport map from ρ t to µ t (which exists since ρ t ! Leb whenever ε ą 0): We recognize that the first factor equals W p´1 p pρ t , µ t q since p p 1 " p ´1. Let us deal with the second one. We consider ν s :" pp1 ´sqid `sT t q # ρ t the constant-speed geodesic from ρ t to µ t . Note that this curve implicitly depends on t. We also denote by b s P L p pν s q the velocity field associated with ν P ACpr0, 1s, W p pR d qq, as given by Theorem 2.1. We have as a consequence of the Benamou-Brenier formula B s ν s `∇¨pb s ν s q " 0 and }b s } L p pνsq " |pν s q 1 | " W p pρ t , µ t q for a.e. s P r0, 1s. Therefore, for any y P R d , one has: Applying a Hölder inequality w.r.t dy and the exponents pq, q 1 q, where we will specify q right afterwards, we get:

1 p d dt W p p pρ t , µ t q ď |I 1 | `|I 2 |, (4.1a 
arρ t spyq
ż |∇ 2 W py ´zq| p dµpyq ď ˜ż |∇ 2 W py ´zq| pq 1 dy ¸1{q 1 ˜ż |µ t pyq| q dy ¸1{q " }∇ 2 W } p L pq 1 }µ t } L q .
We therefore have to take q such that pq 1 " p 0 , so that }∇ 2 W } L pq 1 remains finite. This requires that we choose p such that p ď p 0 , which imposes p 0 ą 1 since we also needed p ą 1. We also need to choose p such that ρ ini P P p , which means p ď 2. Using ş 1 0 ş |b s pzq| p ν s pdzqds " W p p pρ t , µ t q, we finally obtain:

|I 2 | ď }∇ 2 W } L p 0 }µ t } 1{p
L q W p p pρ t , µ t q, for q " p 0 p 0 ´p , where the value of q is computed so that we have q 1 " p 0 p . We therefore have the following Grönwall inequality on W p p pρ t , µ t q:

1 p d dt W p p pρ t , µ t q ď }∇ 2 W } L p 0 ´}ρ t } L p 1 0 `}µ t } 1{p L q ¯W p p pρ t , µ t q, (4.3) 
Now, we need a bound on }ρ t } L r . The following lemma implies that, if the interaction potential W satisfies ∆W ď 0, then the bound on ρ t is not worse than the one we would obtain if ρ solved the sole heat equation and does not depend on the initial datum.

Lemma 4.3. Let p P p1, `8q, ε ą 0 and let ρ solve the following Fokker-Planck equation on the whole space R d : B t ρ `∇ ¨pρ∇V q " ε∆ρ,

where the potential V might depend on ρ and satisfies ∆V ě 0. Assume that ρ t is smooth for any t ą 0, and that is has unit total mass. Then one has:

}ρ t } L p ď Cpεtq ´d{2p 1 ,
for a positive constant C " Cpp, dq depending on p only and not on the initial datum ρ 0 .

Proof. In the following, Cppq stands for any positive constant depending only on p. For t ą 0, testing equation (4.4) against ρ p´1 t and integrating by parts yields:

d dt 1 p ż ρ p t " ´p ´1 p ż ρ p t ∆V ´4ε p ´1 p 2 ż |∇ρ p{2 t | 2 ď ´4ε p ´1 p 2 ż |∇ρ p{2 t | 2 ,
since ∆V ě 0. Using the following Gagliardo-Nirenberg-Sobolev inequality [START_REF] Gagliardo | Ulteriori proprieta di alcune classi di funzioni in piu variabili -OPAC -Biblioteca nazionale di Firenze[END_REF][START_REF] Nirenberg | On elliptic partial differential equations[END_REF]:

ż ρ p`2 d ď Cppq ż |∇ρ p{2 t | 2 ,
and interpolating the L p norm between the L 1 and L p`2 d norms, we deduce that y t :" ş ρ p t verifies the following nonlinear Grönwall inequality:

y 1 ´εCppqy 1`2 dpp´1q ď 0.
Integrating this inequality on rs, ts for 0 ă s ă t, we get:

y ´2{dpp´1q t ě y ´2{dpp´1q s `εCppq ě εCppq,
and therefore }ρ t } L p " y 1{p t ď Cppqpεtq ´dpp´1q{2 " pεtq ´d{2p 1 . This is the bound one would obtain using a L p ˆL1 convolution inequality if ρ solved the sole heat equation on the whole space, that is, if we had ρ t " G εt ˚ρ0 where G t denotes the heat kernel.

One can prove that this definition is equivalent to that of stationary solutions, in the sense of distributions, to equation (1.1). Besides, if ε ą 0, one can show that a distributional solution to the elliptic problem ´∇ ¨p∇W ˚ρqρ " ε∆ρ is necessarily regular and positive on R d (see Theorem 2.11).

The following lemma justifies why we compare steady states for the aggregation equation to the Dirac mass. Lemma 5.2. Under assumptions (A0)-(A1)-(A4´p) for p ě 1, the unique steady state for the aggregation equation (1.2a) is, up to a translation, the Dirac mass δ 0 .

Proof. Let ρ be a steady state for (1.2) and assume that ρ is centered. Since z ∇W ˚ρ " 0 on the support of ρ, testing against ρx and using Lemma 2.8 with the odd vector field z ∇W yields: ij z ∇W px ´yq ¨px ´yqρpdxqρpdyq " 0.

Under assumption (A4´p), we therefore have ť |x ´y| p ρpdxqρpdyq " 0. In particular ρ b ρ is concentrated on the diagonal. Now, if ρ is not a Dirac mass, then there disjoint Borel sets A et B with ρpAq ą 0 and ρpBq ą 0. Then we have, since A ˆB is disjoint from the diagonal 0 " ρ b ρpA ˆBq " ρpAqρpBq ą 0, and this contradiction concludes the proof.

Note that the Dirac mass is actually the only minimizer of the interaction energy W under these assumptions. Conversely, Proposition 7.20 in [START_REF] Santambrogio | Optimal Transport for Applied Mathematicians: Calculus of Variations, PDEs, and Modeling[END_REF] ensures that minimizers of the energy F ε are actually steady states. This provides a way to prove existence of steady states for (1.1a) when ε ą 0.

5.1 Existence of minimizers of F ε for ε ą 0 Proposition 5.3. Assume that W satisfies assumptions (A0)-(A1)-(A4-p) for some p ě 1 and let ε ě 0 be fixed. The functional F ε " W `εU admits a minimizer over PpR d q that actually has finite p-th order moment. Remark 5.4. We were not able to prove uniqueness of the minimizer under such assumptions on W but it is likely to hold. Moreover, numerical illustrations will show that, if we remove assumption (A4-p), multiple steady states can coexist even though ε ą 0 (in case ε " 0, it is easy to build explicit counterexamples).

To prove this proposition, we will use that under assumptions (A0) and (A4-p), controlling Wpρq gives control on ť |x ´y| p ρpdxqρpdyq, and this latter quantity is equivalent to M p pρq whenever ρ is centered, thanks to the following lemma: Lemma 5.5. Let p P r1, 8q and ρ P P p pR d q. Assume that the center of mass of ρ is 0. Then:

M p pρq ď ij |x ´y| p ρpdxqρpdyq ď 2 p´1 M p pρq.
Proof. Let upxq " ş |x ´y| p ρpdyq. Since p ě 1, u is a convex function and therefore, using a Jensen inequality, we get:

M p pρq " up0q " u ´ż xρpdxq ¯ď ż upxqρpdxq.
In other terms, M p pρq ď ť |x´y| p ρpdxqρpdyq. The upper bound comes from the inequality |x´y| p ď 2 p´1 p|x| p `|y| p q.

Proof. Let pρ n q nPN be a sequence of probability measures that minimize F ε . We can assume that these measures are centered because F ε is invariant under translation. Up to an extraction, we can assume that pρ n q nPN converges weakly towards some ρ P M b pR d q. To ensure that ρ P PpR d q, we need to prove tightness of pρ n q nPN . To do so, let us find a bound on M p pρ n q.

Since pρ n q nPN is a sequence, F ε pρ n q " Wpρ n q`εUpρ n q is bounded from above by some constant that we still denote C ą 0. Moreover, using assumption (A0) and (A4-p) and Lemma 5.5, since ρ n is centered, we have:

Wpρ n q ě C 2p ij |x ´y| p ρ n pdxqρ n pdyq ě C 2p M p pρ n q.
In order to get a lower bound involving M p pρ n q on the entropy term, recall that, using a Legendre transform, y ln y `ez´1 ě yz for all y ě 0 and z P R. Setting, for x P R d , y " ρ n pxq and z " ´|x| αp for some exponent α ą 0 to be specified later, and integrating over x P R d , we get:

ż ρ n ln ρ n ě ´ż p|x| p q α ρ n pdxq `ż e ´|x| αp ´1dx
Choosing α P p0, 1q so that x Þ ÝÑ |x| α is concave, and using a Jensen inequality, we deduce Upρ n q ě ´Mp pρ n q α `Cpp, αq, where Cpp, αq depends on α and p only. Finally, we obtain:

C 2p M p pρ n q ´εM p pρ n q α `εCpp, αq ď C,
which implies, since α ă 1, that M p pρ n q is uniformly bounded with respect to n.

On the one hand, this implies that pρ n q nPN is tight, hence ρ P PpR d q. Since M p is l.s.c on PpR d q and ρ n á nÑ`8 ρ, we also get ρ P P p pR d q. On the other hand, the uniform bound on M p pρ n q along with Lemma 2.5 ensures that M q pρ n q ÝÑ nÑ`8 M q pρq for any q P p0, pq. Lemma 2.4 then gives Upρq ď lim inf nÑ`8

Upρ n q, and, since W is l.s.c for the weak convergence, we get F ε pρq ď lim inf nÑ`8

F ε pρ n q.
This proves that ρ minimizes F ε since pρ n q nPN is a minimizing sequence.

Opεq convergence rate in W p for potentials such that ∇W pxq ¨x ě C|x|

In this section, we focus on assumption (A4-1) under which the potential is "really pointy" and the aggregation compensates the diffusion so that convergence occurs at rate Opεq: Theorem 5.6. Assume that W satifies assumptions (A0)-(A1)-(A4-1). There exists a constant C ą 0 depending on d, such that for any ε ą 0 and ρ ε steady state for (1.1a) which center of mass is 0, the following estimate holds: W 1 pρ ε , δ 0 q ď Cε.

(5.1)

Proof of Theorem 5.6. Let ε ą 0 and let ρ ε be a steady state for (1.1), that is:

∇W ˚ρε `ε ∇ρ ε ρ ε " 0. (5.2)
Testing the above equation against ρ ε x we obtain:

ż ρ ε x ¨∇W ˚ρε dx `ε ż x ¨∇ρ ε dx " 0
Integrating by parts and using Lemma 2.8 with the odd vector field ∇W yields:

1 2 ij ∇W px ´yq ¨px ´yqρ ε pdxqρ ε pdyq " εd.

The desired result then follows from assumption (A4-1) and Lemma 5.5 with p " 1, since W 1 pρ ε , δ 0 q " M 1 pρ ε q.

Note that, from equation (5.2), one has ρ ε " Cpεqe ´W ˚ρε {ε . The value of the constant Cpεq can be computed by imposing a total mass 1, so that we get ρ ε " e ´W ˚ρε {ε ş e ´W ˚ρε {ε . Using this equality along with estimate (5.1), we obtain a bound in W p distance for p P r1, 8q provided W is also Lipschitz continuous:

Theorem 5.7. Assume that W satisfies assumptions (A0)-(A1)-(A2)-(A4-1). There exists a constant C ą 0 depending on d and a 8 , such that for any p P r1, 8q, ε ą 0 and ρ ε steady state for (1.1a) which center of mass is 0, the following estimate holds: W p pρ ε , δ 0 q ď Cε.

(5.3)

Remark 5.8. At least in dimension one, this result is optimal. Indeed, we can take for W the Newtonian potential W pxq " |x|, for which, using the correspondence with Burgers' equation, ρ ε can be written as ρ ε pxq " 1 ε ρ ´x ε ¯, where ρpxq "

1´tanh 2 p x 2 q 4
, and a scaling argument then gives W p p pρ ε , δ 0 q " ε p M p pρq.

Proof. Since Integrating with respect to ρ ε pdxq, we deduce W ˚ρε p0q ď a 8 W 1 pρ ε , δ 0 q. Besides, W ˚ρε is also a 8 ´Lipschitz continuous. Hence, W ˚ρε pxq ď W ˚ρε p0q `a8 |x| ď a 8 W 1 pρ ε , δ 0 q `a8 |x| ď Cε `a8 |x|, thanks again to estimate (5.1). After another rescaling, we deduce: ż e ´W ˚ρε {ε ě Cε d , thus getting W p p pρ ε , δ 0 q ď C ε p`d ε d " Cε p , which concludes the proof.

5.3

Opε 1{p q convergence rate in W p for potentials such that ∇W pxq ¨x ě C|x| p Assume W satisfies assumptions (A0), (A1) and (A4-p) for some p P r1, 8q. Under this assumption, a straightforward adaptation of the proof of Theorem 5.6 provides an estimate on W p pρ ε , δ 0 q: Theorem 5.9. Assume that W satifies assumptions (A0)-(A1)-(A4-p) for some p P r1, 8q. There exists a constant C ą 0 depending on d, such that for any ε ą 0 and ρ ε steady state for (1.1a) which is centered, the following estimate holds:

W p pρ ε , δ 0 q ď Cε 1{p .

(5.4)

Remark 5.10. It is possible to prove optimality of this rate for p " 2. Let us consider the quadratic potential W pxq " |x| 2 , that satisfies assumption (A4-2). Recall that ρ ε " e ´W ˚ρε {ε ş e ´W ˚ρε {ε . Expanding W px ´yq " |x ´y| 2 and using both facts that the total mass of ρ is 1 and that ρ ε is centered, one has: A change of variables in both integrals then gives W 2 2 pρ ε , δ 0 q " Cε.

e ´W ˚ρε

Numerical illustrations

This sections aims to illustrate our convergence results both in the evolutive case and in the stationary case. The implementation of the schemes has been done in Python and the code is available at github.com/strantien/aggregation. Tests are conducted on r´1, 1s, with 2J `1 cells, and the velocity field is always discretized by (3.20). Wasserstein distances between two arbitrary probability measures are computed using the POT package.

Evolutive solutions

We begin with the convergence rate in Wasserstein distance of the viscous solutions ρ ε associated with a fixed initial datum ρ ini (not depending on ε). In this subsection ρ ε ∆x is computed using the implicit discretization (3.21), for which the CFL condition is less restrictive than the parabolic CFL condition of the explicit scheme. We also implemented no-flux boundary conditions so as to preserve total mass. In the absence of a reference solution, the convergence rate w.r.t ε is estimated taking ∆x small enough so that ρ ε ∆x approximates ρ ε , and computing W p pρ ε i`1 ∆x,T , ρ ε i ∆x,T q. In Theorems 3.8 and 3.13, when W satisfies assumptions (A0)-(A1)-(A2)-(A3), we proved convergence at rate Opε 1{2 q in W 2 distance, which is what we recover when W is smooth, as shows Figure 1. In practice, for this test case, we observe Opε 1{2 q convergence rate in W p distance for any p P r1, `8r. However, in case W has a Lipschitz discontinuity at the origin (Figure 2) we observe convergence at order 1 in W 1 distance. This is the superconvergence phenomenon investigated by Tang, Teng and Zhang [START_REF] Tang | Viscosity Methods for Piecewise Smooth Solutions to Scalar Conservation Laws[END_REF][START_REF] Teng | Optimal L1-Rate of Convergence for The Viscosity Method and Monotone Scheme to Piecewise Constant Solutions with Shocks[END_REF] in the framework of scalar conservation laws. In terms of aggregation, the interpretation is that, when W is singular, the concentration is strong enough to compensate part of the diffusion. In other W p distances, converges seems to occur at order 1 when ε is not too small, and then degenerates quite clearly towards order 1{p for any p P r1, `8r (see Figure 3 for p " 3). Note that, in every case, the convergence order is robust with respect to the test case (be it for smooth or singular initial data, e.g. Dirac masses). 

Steady states

In order to simulate the steady states for ε ą 0, recall that they are characterized, over the whole space, by the following equation:

ρ ε "
e ´W ˚ρε {ε ş e ´W ˚ρε {ε . (6.1)

We therefore use a fixed-point method on equation (6.1), which stops as soon as the W p distance between two iterations exceeds some tolerance. Numerically, we observe that this method turns two symmetric Gaussian bumps almost immediately (after the first iteration) into a centered Gaussian whenever W is attractive and Lipschitz.

We first investigate the convergence rate towards the Dirac mass, for centered steady states. The error is estimated computing the integral ş |x| p ρpdxq " W p p pρ, δ 0 q. When W satisfies assumptions (A0)-(A1)-(A4-1), we proved Opεq convergence rate in W 1 distance, which we do recover in Table 1 for W pxq " |x|. We also explore the case when W verifies (A0)-(A1)-(A4-1) but is not Lipschitz continuous, which is the case of W pxq " a |x| `|x|. For this potential, we obtain, in Figure 4 convergence at order 1.82264413 which is slightly less than 2, in W 1 distance. This can be linked to the fact that W satisfies a sort of assumption (A4- 1 2 ) when |x| ď 1. Under assumptions (A0)-(A1)-(A2)-(A4-3), we observe convergence at rate 1{3 in W 3 distance as we proved in (5.4), as shows Figure 5. More generally, under assumptions (A0)-(A1)-(A2)-(A4-p), convergence at rate 1{p seems to occur in any W q distance, q P r1, `8r, which is what we proved in for p " 1 or for p " q. To illustrate this latter case, we compute the convergence order in W p distance for W pxq " |x| p , which seems indeed to be 1{p, see Table 1 (when p " 1, since the potential is pointy, one has to refine the mesh so as to observe proper convergence at order 1). 

ijij

  ∇W px ´yq ¨pξps, xq ´ξps, yqq ρ ε s pdxqρ ε s pdyqds. (3.9) Now, since W is Lipschitz, ∇W is bounded, therefore the map ps, x, yq Þ ÝÑ ∇W px ´yq ¨`ξps, xq ´ξps, yq ȋs continuous and the weak convergence ρ ε b ρ ε á εÑ0 ρ b ρ (which is equivalent to narrow convergencesince we deal with probability measures) allows to pass to the limit ε Ñ 0 in the above quantity to obtain: ∇W px´yq¨pξps, xq ´ξps, yqq ρ s pdxqρ s pdyqds.

  .44) Passing to the limit ∆x Ñ 0 in (3.44) is straightforward for the linear terms since ρ ε ∆x,t á ∆xÑ0 ρ ε t uniformly in time. For the nonlinear term, this convergence also ensures that ρ ε ∆x,t b ρ ε ∆x,t á ∆xÑ0

Theorem 4 . 1 .

 41 Let W be an interaction potential satisfying assumptions (A0)-(A1)-(A2) along with the additional assumption: pA5q :

  ρ ε "e ´W ˚ρε {ε ş e ´W ˚ρε {ε , we have:W p p pρ ε , δ 0 q " ş |x| p e ´W ˚ρεpxq{ε dx ş e ´W ˚ρε {ε , Now, since W is Lipschitz continuous, one has |W ˚ρε ´W ˚δ0 | ď a 8 sup Lippφqď1 ż φdpρ ε ´δ0 q " a 8 W 1 pρ ε , δ 0 q ď Cε, because of Theorem 5.6. Thus, ´W ˚ρε ď Cε ´W and therefore: ż |x| p e ´W ˚ρε pxq{ε dx ď C ż |x| p e ´W pxq{ε dx ď Cε p`d ż |y| p e ´W pεyq{ε dy, using the change of variables x " εy. Recall that Assumption (A4-1) ensures W pxq ě C|x| for all x P R d . This allows us to bound ş |y| p e ´W pεyq{ε dy uniformly with respect to ε. On the other hand, since W is a 8 ´Lipschitz continuous, we have W pxq ď a 8 |x| `W p0q " a 8 |x|.

Figure 1 : 5 π e ´20x 2 ,

 152 Figure 1: Order 1{2 convergence in W 2 distance of ρ ε T towards ρ T for ρ ini pxq " 2 b

Figure 2 : 5 π e ´20x 2 ,

 252 Figure 2: Order 1 convergence in W 1 distance of ρ ε T towards ρ T for ρ ini pxq " 2 b

Figure 3 : 5 π e ´20x 2 ,

 352 Figure 3: Order 1{3 convergence in W 3 distance, for small ε, of ρ ε T towards ρ T for ρ ini pxq " 2 b

Figure 4 : 5 π e ´20x 2 .

 452 Figure 4: Order of convergence in W 1 distance of ρ ε towards δ 0 , for the non-Lipschitz potential W pxq " a |x| `|x|. The initial density is the centered Gaussian 2 b

  

can bound the integrand on the right-hand side writing |∇W δ px ´yq ¨vs pxq| ď a 8 |v s |. Noting that we have

  

				ij						ż t	ij
				t pdxqρ t pdyq´1 2	W δ px´yqρ 0 pdxqρ 0 pdyq "		0	∇W δ px´yq¨v s pxqρ s pdxqρ s pdyqds. (2.8)
	Now, we ż t 0	ij	|v s pxq|ρ s pdxqρ s pdyqds "	ż t 0	}v s } L 1 pρsq ds ď	?	T	´ż T 0	¯1{2 L 2 pρsq ds }v s } 2	ă `8,
	we can then use Lebesgue's dominated convergence theorem w.r.t ρ s pdxqρ s pdyqds to get that the ż t ij
	right-hand side in equation (2.8) converges to	z ∇W px ´yq ¨vs pxqρ s pdxqρ s pdyqds, which is equal
	ż t	ż					0			
	to	p z ∇W ˚ρs q ¨vs dρ s . The uniform convergence of W δ towards W ensures convergence of the
	0 left-hand side, which concludes the proof.				

  ´yq ¨pξps, xq ´ξps, yqq ρ s pdxqρ s pdyqds(3.11) 

	"	1 2	0 ˜ż t	ij	z ∇W px ´yq ¨ξps, xqρ s pdxqρ s pdyqds	0 ´ż t	ij	z ∇W px ´yq ¨ξps, yqρ s pdxqρ s pdyqds "
		1	˜ż t					
		2						

0 ij z ∇W px ´yq ¨ξps, xqρ s pdxqρ s pdyqds `ż t 0 ij z ∇W px ´yq ¨ξps, xqρ s pdxqρ s pdyqds " ż t 0 ij z ∇W px ´yq ¨ξps, xqρ s pdxqρ s pdyqds,

  We now define the product kernel K on `Rd ˆRd ˘ˆB `Rd ˆRd ˘by: K `px, yq, A ˆB˘" µpx, Aqνpy, Bq " δ Zpt n`1 ,t n ,xq pAq Equivalently, for any θ P C b pR d ˆRd q, Zpt n`1 ; t n , xq, x L ˘αL `y `∆ta n ∆x pyq ˘ȷ γpdx, dyq.

			ÿ	α L `y `∆ta n ∆x pyq ˘δx L pBq
			LPZ d
	ij		
	and then set γ 1 pA ˆBq " ˆB˘γ pdx, dyq. we have: R d ˆRd K `px, yq, A
	ij	żżżż	
	θpx, yqγ 1 pdx, dyq "	θpx 1 , y 1 qµpx, dx 1 qνpy, dy 1 qγpdx, dyq
		ij "	
	"	ÿ	θ `
		LPZ d	

1 , t n , xqqρ t n pdxq " ż δ Zpt n`1 ,t n ,xq pAqρ t n pdxq " ż µpx, Aqρ t n pdxq.

  Using the fact that W is even to symmetrize the last term as in Lemma 2.8, we obtain: , xq ´Zps; t n , ξq ´y `ζ¯z ∇W `Zps; t n , xq ´Zps; t n , ξq ˘´z ∇W py ´ζq ¯γpdξ, dζqγpdx, dyq.

	Injecting into (3.35), we get: D 2 n`1 ď D 2 n `C∆tp∆t `∆x `εq ´2 ż t n`1 żżżż ´x ´y¯¨´z n`1 ď D 2 n `C∆tp∆t `∆x `εq ´ż t n`1 t n żżżż ´Zps; t n The λ-convexity of W then yields: D 2 n`1 ď D 2 n `C∆tp∆t `∆x `εq ´λ ż t n`1 t n żżżż ˇˇZps; t n , xq ´y ´Zps; t n , ξq Expanding the last term gives: D 2 n`1 ď D 2 n `C∆tp∆t `∆x `εq ´2λ ż t n`1 t n ij ˇˇZps; t n , xq ´yˇˇ2 γpdx, dyq `ζˇˇ2 γpdξ, dζqγpdx, dyq. `2λ ż t n`1 t n ˇˇˇij `Zps; t n , xq ´y˘γ pdx, dyq ˇˇˇ2 . (3.36) ż t n`1 ij ∇W `Zps; t D 2 ´2λ t n ˇˇZps; t n , xq ´yˇˇ2 γpdx, dyq ď ´4λa 2 8 ∆t 3 ´4λ∆tD 2 n .
	t n

´x ´y¯¨´z ∇W `Zps; t n , xq ´Zps; t n , ξq ˘´z ∇W py ´ζq ¯ρt n pdξqρ ε,n ∆x pdζq " ij ´x ´y¯¨´z ∇W `Zps; t n , xq ´Zps; t n , ξq ˘´z ∇W py ´ζq ¯γpdξ, dζq. n , xq ´Zps; t n , ξq ˘´z ∇W py ´ζq ¯γpdξ, dζqγpdx, dyq. Decomposing x ´y " x ´Zps; t n , xq `Zps; t n , xq ´y and using the fact that |Zps; t n , xq ´x| ď a 8 |s ´tn |, we get: D 2 n`1 ď D 2 n `C∆tp∆t `∆x `εq ´2 ż t n`1 t n żżżż ´Zps; t n , xq ´y¯¨´z ∇W `Zps; t n , xq ´Zps; t n , ξq ˘´z ∇W py ´ζq ¯γpdξ, dζqγpdx, dyq. Now, since λ ď 0, the last term above is nonpositive. It remains to estimate the penultimate term. Writing: ˇˇZps; t n , xq ´yˇˇď ˇˇZps; t n , xq ´xˇˇ`ˇˇx ´yˇˇď a 8 ˇˇs ´tn ˇˇ`ˇˇx ´yˇˇ, we deduce: ˇˇZps; t n , xq ´yˇˇ2 ď 2 ´a2 8 ˇˇs ´tn ˇˇ2 `ˇx ´yˇˇ2 ¯ď 2a 2 8 ∆t 2 `2ˇˇx ´yˇˇ2 , whenever s P rt n , t n`1 s. Integrating in space with respect to γpdx, dyq and integrating over s P rt n , t n`1 s, we obtain:

  W P L p 0 if and only if p 0 ă d (up to cutting off the potential at infinity) and therefore we can find p 0 P ´d 2 , d

	x |x| b x |x| ´Id |x|	"	1 |x|	, hence ∇ 2 so
	as to apply our result.			

  ¨arρ t sdρ t `ż ∇ψ t ¨arµ t sdµ t ´ε ż ´∇φ t ¨∇ρ t `∇ψ t ¨∇µ t ¯dx.

	1 p	d dt	W p p pρ t , µ t q "	ż	∇φ t

  ¨arρ t sdρ t `ż ∇ψ t ¨arµ t sdµ t

	1 p	d dt	W p p pρ t , µ t q ď	ż	∇φ t

  )To estimate I 1 , we use the following bound on the Lipschitz constant of arρ t s:Lipparρ t sq " }∇ 2 W ˚ρt } L 8 ď }∇ 2 W } L p 0 }ρ t } |I 1 | ď Lipparρ t sq ż |x ´Tt pxq| p ρ t pdxq ď }∇ 2 W } L p 0 }ρ t }To estimate I 2 , we first apply a Hölder inequality w.r.t the measure ρ t pdxq and with the exponents pp 1 , pq. We get, since p 1 pp ´1q " p:|I 2 | ď˜ż |x ´Tt pxq| p ρ t pdxq ¸1{p 1 ˜ż ˇˇarρ t s ˝Tt pxq ´arµ t s ˝Tt pxq ˇˇpρ t pdxq

		L p 1 0 .	
	We deduce:		
		L p 1 0 W p p pρ t , µ t q.	
		¸1{p	
		.	(4.2)
	ż		
	I 1 "	|x ´Tt pxq| p´1 p { x ´Tt pxqq ¨parρ t spxq ´arρ t s ˝Tt pxqqρ t pdxq,	(4.1b)
	ż		
	I 2 "	|x ´Tt pxq| p´1 p { x ´Tt pxqq ¨parρ t s ˝Tt pxq ´arµ t s ˝Tt pxqqρ t pdxq.	(4.1c)

  ´arµ t spyq " ´ż ∇W py ´zqpρ t pzq ´µt pzqqdz W pT t pxq ´zqb s pzqν s pdzqds ˇˇˇˇp ρ t pdxq ¸1{p .Besides, using a Jensen inequality w.r.t the measure ν s pdzqds for the convex function | ¨|p , we have: W pT t pxq ´zq| p |b s pzq| p ν s pdzqdsρ t pdxq

		"	´ż 1	ż	∇W py ´zqB s ν s pzqdzds
				0
			ż 1	ż
		"			∇W py ´zq∇ ¨pb s pzqν s pzqqdzds
			0	
			ż 1	ż
		"			∇ 2 W py ´zqb s pzqν s pdzqds,
			0	
	so that the inequality (4.2) rewrites:			
	˜ż ˇˇˇˇż	1	ż	
	|I 2 | ď W p´1 p ∇ 2 ż ˇˇˇˇż pρ t , µ t q 0 ds 1 0 ds ż ∇ 2 W pT t pxq ´zqb s pzqν s pdzqds ˇˇˇˇp ρ t pdxq ď |∇ 2 ď ż ż 1 ż 0 ż 1 ż |b s pzq| p	ż	|∇ 2 W pT
					0

t pxq ´zq| p ρ t pdxqν s pdzqds Now, since µ t " T t# ρ t , we have ş |∇ 2 W pT t pxq ´zq| p ρ t pdxq " ş |∇ 2 W py ´zq| p µ t pyqdy.

  {ε " exp " ´1 ε ˆż |x| 2 ρ ε pyqdy ´2x ¨ż yρ ε pyqdy `ż |y| 2 ρ ε pyqdy ˙* " e ´|x| 2 {ε e ´W 2 2 pρ ε ,δ 0 q{ε . Hence, ρ ε pxq " e ´|x| 2 {ε ş e ´|x| 2 {ε dx , which in turn yields: W 2 2 pρ ε , δ 0 q " ş |x| 2 e ´|x| 2 {ε dx ş e ´|x| 2 {ε dx .

Table 1 :

 1 Convergence order » 1 p of ρ ε towards δ 0 for W pxq " |x| p , tol " 10 ´6, ε i " 2 ´i, i " 4, . . . , 16, initial density 2

		p	Order	J
		1 1.00205259 50000
		2 0.49999997 2000
		3 0.33333333 2000
		4 0.25000000 2000
		5 0.20000000 2000
	b	5 π e ´20x 2	

Note that, for the sake of simplicity, we drop, in this section, the superscripts ε when it comes to the discrete unknowns pρ n J q JPZ d ,nPN but these unknowns always solve numerical schemes for the aggregation equation with viscosity ε ą 0.

Since W is even, we also have D i W K J " ´Di W J K for all J, K P Z d and i " 1, . . . , d. Using a symmetrization argument as in the continuous setting, we deduce the discrete equivalent of Lemma 2.8: Lemma 3.10. Denote, for J, K P Z d , DW K J " pD 1 W K j , . . . , D d W K J q and whenever pv J q JPZ d is a discrete vector field on the mesh, v J " pv 1J , . . . , v dJ q P R d . For any pv J q JPZ d , we have:

and therefore: ÿ

Proof. Using the definition of the macroscopic velocity and the fact that D i W K J " ´Di W J K , we have:

thanks to exchanging K and J in the latter sum. Taking the half sum of the first sum and the latter, we obtain:

Summing over i " 1, . . . , d concludes the proof.

It is also natural to consider, instead of the explicit discretization of the Laplacian, an implicit discretization:

However, for the sake of simplicity, we only provide the proof of our convergence estimate for the explicit scheme (3.19), although our method would also works for the implicit discretization (3.21) but the computations are a bit more involved. Naturally, both schemes are asymptotic-preserving since they degenerate towards the upwind-type scheme of [START_REF] Delarue | Convergence analysis of upwind type schemes for the aggregation equation with pointy potential[END_REF] when ε goes to 0. One could also consider the θ´scheme, for θ P r0, 1s, defined by: (2) positivity of the density and the bound on the velocity field:

@pn, Jq P N ˆZd , @i " 1, . . . , d, ρ n J ě 0,

under the CFL condition:

(3) the center of mass:

Proof. The first item comes from summing equation (3.19) over J P Z d . Moreover, using the following rewriting of ρ n`1 J as a positive combination of ρ J and ρ J˘e i , i " 1, . . . , d:

´`ε∆t

it is classical to prove the second item by induction on n P N, under the CFL condition (3.27).

Using the discretization (3.19) together with a discrete integration by parts, we have:

By definition of x J , we have x J´e i ´xJ " ´∆x i . Hence, we deduce:

Applying the symmetrization Lemma 3.10 to the constant vector field given by v J " p1, . . . , 1q P R d for all J P Z d , we have ÿ

The following lemma ensures that M 2 pρ ε,n ∆x q remains bounded over finite time. It turns out necessary for the proof of convergence of the scheme by compactness, in order to extract a converging subsequence. Lemma 3.16 (Bound on the second moment). For all n P N ˚, the following estimate holds:

Proof. Using (3.19) and a discrete integration by parts, one can write:

. Therefore, we get:

As a consequence of Lemma 3.15, we have |a i n J | ď a 8 . Using, in addition, the mass conservation, we deduce that the penultimate term is bounded by a 8 ∆t ř d i"1 ∆x i . As for the last term, another integration by parts shows that the last term equals 2dε∆t. Finally, Lemma 3.10 applied to the discrete vector field given by v J " x J yields:

where we used the λ´convexity of W and the inequality

along with the fact that λ is nonpositive. We obtain

We conclude the proof using a discrete version of Grönwall's lemma.

Proof of Proposition 3.11

Before going through the proof of Proposition 3.11, let us introduce, for J P Z d and y P R d the following coefficients: 

so that we have the key identity:

Lemma 3.17. For any y P R d , we have

x L α L pyq " y.

Proof. Let J P Z d such that y P C J . To prove the first claim, we just use the definition of α L pyq:

`αJ`e i pyq `αJ´e i pyq "

Step 1: bound on

For the sake of compactness, let us note F n J`e i 2 " pa i n J q `ρn J ´pa i n J`e i q ´ρn J`e i . Using twice the definition of the explicit scheme (3.19), we have:

Performing discrete integrations by parts and using Young's inequality |ab| ď a 2 2ε `εb 2 2 with a " F n J`e i 2 and b "

, we can estimate S n 1 as follows:

As for S n 2 , straightforward computations and the repeated use of pa ˘bq 2 ď 2a 2 `2b 2 lead to:

Using the fact that: where C is a positive constant that depends on p, p 0 and }∇ 2 W } L p 0 only. We deduce:

W p p pρ t , µ t q ď W p p pρ 0 , µ 0 qe ş t 0 Cpετ q ´d{2p 0 dτ , provided p 0 ą d 2 so that τ ´d{2p 0 is integrable on p0, ts. Under this assumption, using Lemma 3.3 along with the fact that ρ 0 " ρ ini , we get, for some constant C ą 0 depending on d, p, p 0 and }∇ 2 W } L p 0 only:

which goes to 0 uniformly in t P r0, T s, as ε Ñ 0, provided α ă ´d{2p 0 . Since ´d{2p 0 ą ´1, it is possible make such a choice while guaranteeing α P p´1, 0q. To finish, we conclude the proof as in that of Corollary 3.4. Now, note that ∆W ď 0 ensures that any L p norm of solutions to (1.2) is nonincreasing in time.

Therefore, when the initial datum belong to L p 1 0 pR d q X L p 0 p 0 ´p pR d q, estimate (4.3) still holds for ε " 0 between any two solutions to (1.2) and gives uniqueness of the solution among the class of

5 Higher convergence rate for steady states under assumptions (A0)-(A1)-(A4-p)

In this section, we compare stationary solutions to the aggregation-diffusion equation (1.1a) for a given ε ą 0 with stationary solutions to the aggregation equation (1.2). We discard, in this section, the assumptions of λ´convexity and Lipschitz continuity on W but still assume that assumptions (A0) and (A1) hold. In addition, we require the potential to satisfy assumption (A4´p), that is, to be at least as attractive as |x| p , for some p P r1, 8q.

Note that this assumption along with (A0) implies W pxq ě C |x| p p for all x P R d . If, in addition, W satisfies assumption (A1) then W is l.s.c on R d and this implies that W is l.s.c for the weak convergence thanks to Lemma 2.3.

Also, without loss of generality, we only consider measures with 0 center of mass, that is, measures ρ P PpR d q verifying: ż xρpdxq " 0.

We define steady states for the aggregation-diffusion equation in the spirit of [START_REF] Kang | Uniqueness and characterization of local minimizers for the interaction energy with mildly potentials[END_REF]: