
HAL Id: hal-04024099
https://hal.science/hal-04024099v1

Submitted on 10 Mar 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

From Understanding the Population Dynamics of the
NSGA-II to the First Proven Lower Bounds

Benjamin Doerr, Zhongdi Qu

To cite this version:
Benjamin Doerr, Zhongdi Qu. From Understanding the Population Dynamics of the NSGA-II to the
First Proven Lower Bounds. 37th AAAI Conference on Artificial Intelligence (AAAI 2023), Feb 2023,
Washinghton, DC, United States. �hal-04024099�

https://hal.science/hal-04024099v1
https://hal.archives-ouvertes.fr

From Understanding the Population Dynamics of the
NSGA-II

to the First Proven Lower Bounds

Benjamin Doerr Zhongdi Qu

Abstract
Due to the more complicated population dynamics of the NSGA-II, none of

the existing runtime guarantees for this algorithm is accompanied by a non-trivial
lower bound. Via a first mathematical understanding of the population dynamics
of the NSGA-II, that is, by estimating the expected number of individuals having
a certain objective value, we prove that the NSGA-II with suitable population size
needs Ω(Nn log n) function evaluations to find the Pareto front of the OneMinMax
problem and Ω(Nnk) evaluations on the OneJumpZeroJump problem with jump
size k. These bounds are asymptotically tight (that is, they match previously shown
upper bounds) and show that the NSGA-II here does not even in terms of the par-
allel runtime (number of iterations) profit from larger population sizes. For the
OneJumpZeroJump problem and when the same sorting is used for the compu-
tation of the crowding distance contributions of the two objectives, we even obtain
a runtime estimate that is tight including the leading constant.

1 Introduction
Many real-world problems have several, often conflicting objectives. For such multi-
objective optimization problems, it is hard to compute a single solution. Instead, one
usually computes a set of incomparable, interesting solutions from which a decision maker
can select the most preferable one. Due to their population-based nature, evolutionary
algorithms (EAs) are well suited for such problems, and in fact, are intensively used in
multi-objective optimization.

The most accepted multi-objective evolutionary algorithm (MOEA) in prac-
tice [ZQL+11] is the non-dominated sorting genetic algorithm II (NSGA-II) proposed
in [DPAM02]. It uses a fixed population size N , generates N new solutions per iteration,
and selects the next population according to the non-dominated sorting of the com-
bined parent and offspring population and the crowding distance. Due to this complex
structure, for a long time no mathematical runtime analyses existed for this algorithm.
However, in 2022 four such works appeared, all greatly enhancing our understanding of
how this algorithm works, but also detecting weaknesses and proposing promising reme-
dies [ZLD22, ZD22, BQ22, DQ22].

Interestingly, and different from the previous runtime analyses of other MOEAs, none
of these works proved a non-trivial lower bound on the runtime. Such bounds are im-
portant since only by comparing upper and lower bounds for different algorithms can

1

one declare one algorithm superior to another. Such bounds are also necessary to have
tight runtime estimates, from which information about optimal parameter values can be
obtained.

The lack of lower bounds for the NSGA-II, naturally, is caused by the more com-
plicated population dynamics of this complex algorithm. While for algorithms like the
SEMO or global SEMO predominantly analyzed in MOEA theory, it follows right from
the definition of the algorithm that there can be at most one individual per objective
value, such a structural information does not exist for the NSGA-II.

In this work, we gain a first deeper understanding of the population dynamics of
the NSGA-II (more precisely, the mutation-based version regarded in almost all previous
runtime results for the NSGA-II). For the optimization of the OneMinMax and the
OneJumpZeroJump benchmark, we prove that also for relatively large population sizes,
only a constant number of individuals exists on the outer positions of the Pareto front.
This information allows us to prove upper bounds on the speed with which the Pareto
front is explored, and finally yields lower bounds on the runtime of the NSGA-II on these
two benchmarks.

More specifically, we prove the following lower bound for the OneJumpZeroJump
benchmark (we do not discuss here in detail the result for OneMinMax and refer instead
to Theorem 16). Let N denote the population size of the NSGA-II, n denote the problem
size (length of the bit-string encoding), and k the gap parameter of the OneJumpZe-
roJump problem. If N is at least 4 times the size n − 2k + 3 of the Pareto front and
N = o(n2/k2), then the time to compute the Pareto front of the OneJumpZeroJump
problem is at least (3(e−1)

8 −o(1))Nnk fitness evaluations or, equivalently, (3(e−1)
8 −o(1))nk

iterations. This result shows that the upper bound of O(Nnk) fitness evaluations or O(nk)
iterations proven in [DQ22] is asymptotically tight for broad ranges of the parameters.
In particular, this shows that there is no advantage in using a population size larger than
the smallest admissible one, not even when taking the number of iterations as the perfor-
mance measure. This is very different from the single-objective world, where, for example,
the runtime of the (1 + λ) EA on the single-objective Jump problem with jump size k is
easily seen to be Ω(nk/λ) and O(nk/λ + n log n) iterations, hence for λ = o(nk−1/ log(n))
the number of iterations reduces with growing value of λ and the number of fitness eval-
uations does not change (when ignoring lower-order terms). This comparison suggests
that the choice of the population size might be more critical for the NSGA-II than for
single-objective EAs.

For the variant of the NSGA-II which uses the same sorting to compute the crowding
distance contribution of both objectives (which is a natural choice for two objectives), we
can even determine the runtime precise apart from lower order terms. To this aim, we
also exploit our new understanding of the population dynamics to prove a tighter upper
bound on the runtime. We shall not exploit this further in this work, but we note that
such tight analyses are the prerequisite for optimizing parameters, here for example the
mutation rate. To the best of our knowledge, this is only the second runtime analysis of
a MOEA that determines the leading constant of the runtime (the other one being the
analysis of the synthetic GSEMO algorithm on the OneJumpZeroJump benchmark).

Overall, this work constitutes a first step towards understanding the population dy-
namics of the NSGA-II. We exploit this to prove the first asymptotically tight lower
bounds. In a non-trivial special case, we even determine a runtime precise apart from

2

lower-order terms. These results already give some information on the optimal parameter
values, and we are optimistic that our methods can lead to more insights about the right
parameter choices of the NSGA-II.

2 Previous Works
For a general introduction to multi-objective optimization via evolutionary algorithms,
including the most prominent algorithm NSGA-II (47000 citations on Google scholar),
we refer to [ZQL+11]. This work is concerned with the mathematical runtime analysis
of a MOEA, which is a subarea of the broader research area of runtime analyses for
randomized search heuristics [AD11].

The first runtime analyses of MOEAs date back to the early 2000s [LTZ+02, Gie03,
Thi03] and regarded the artificial SEMO and GSEMO algorithms, which are still the
most regarded algorithms in MOEA theory (see, e.g., [BQT18, QYT+19, QLZ22] for
some recent works). Some time later, the first analyses of the more realistic MOEAs
SIBEA [BFN08, NSN15, DGN16] and the MOEA/D [LZZZ16, HZCH19, HZ20, HZLL21]
followed. Very recently, the first runtime analysis of the NSGA-II appeared [ZLD22],
which was quickly followed up by further runtime analyses of this algorithm.

In [ZLD22], it was proven that the NSGA-II with population size N can efficiently
optimize the classic OneMinMax and LOTZ benchmarks if N is at least four times the
size of the Pareto front. A population size equal to the size of the Pareto front does not
suffice. In this case, the NSGA-II loses desired solutions often enough so that the NSGA-II
covers only a constant fraction of the Pareto front for at least an exponential time. How-
ever, with smaller population sizes, the NSGA-II can still compute good approximations
to the Pareto front, as proven in [ZD22] again for the OneMinMax benchmark. The
first runtime analysis on a benchmark with multimodal objectives [DQ22] showed that
the NSGA-II, again with population size N at least four times the size of the Pareto front,
computes the Pareto front of the OneJumpZeroJump benchmark with jump parameter
k ∈ [2..n/4] in expected time at most O(Nnk). These three works regard a version of
the NSGA-II without crossover. In [BQ22], besides other results, the original NSGA-II
with crossover is regarded. However, no better runtime guarantees are proven for this
algorithm.

For none of the runtime guarantees proven in these works, a matching (or at least
non-trivial) lower bound was shown. The apparent reason, spelled out explicitly in the
conclusion of [DQ22], is the lack of understanding of the population dynamics for this
algorithm. We note that this problem is very present even for the simpler SEMO/GSEMO
algorithm despite the fact that here the population is much more restricted. In particular,
the strict selection mechanism of these algorithms ensures that for each objective value
there is at most one individual in the population. Nevertheless, also a decent number
of runtime results for these algorithms do not have a matching lower bound. For the
SEMO algorithm, which uses one-bit mutation, a lower bound matching the O(n2 log n)
upper bound on OneMinMax of [GL10] was shown ten years later in [OGNS20]. For the
GSEMO, using bit-wise mutation instead, no lower bound is known for the OneMinMax
benchmark. Similarly, for the LOTZ benchmark a tight Θ(n3) runtime of the SEMO
was proven in [LTZ+02] already. The same upper bound was proven in that work for

3

the GSEMO, but the only lower bound [DKV13] for this problem is valid only for an
unrealistically small mutation rate. Only for the OneJumpZeroJump benchmark, a
tight bound of Θ(nk) was proven also for the GSEMO [DZ21], clearly profiting from the
fact that the population can contain at most one individual on the local optimum of the
objectives.

3 Preliminaries

3.1 The NSGA-II Algorithm
In the interest of brevity, we only give a brief overview of the algorithm here and refer
to [DPAM02] for a more detailed description of the general algorithm and to [ZLD22] for
more details on the particular version of the NSGA-II we regard.

The NSGA-II uses two metrics, rank and crowding distance, to completely order any
population. The ranks are defined recursively based on the dominance relation. All non-
dominated individuals have rank 1. Then, given that the individuals of ranks 1, . . . , k
are defined, the individuals of rank k + 1 are those not dominated except by individuals
of rank k or smaller. This defines a partition of the population into sets F1, F2,. . . such
that Fi contains all individuals with rank i. Clearly, individuals with lower ranks are
preferred. The crowding distance, denoted by cDis(x) for an individual x, is used to
compare individuals of the same rank. To compute the crowding distances of individuals
of rank i with respect to a given objective function fj, we first sort the individuals in
ascending order according to their fj objective values. The first and last individuals in
the sorted list have infinite crowding distance. For the other individuals, their crowding
distance is the difference between the objective values of its left and right neighbors in
the sorted list, normalized by the difference of the minimum and maximum values. The
final crowding distance of an individual is the sum of its crowding distances with respect
to each objective function. Among individuals of the same rank, the ones with higher
crowding distances are preferred.

The algorithm starts with a random initialization of a parent population of size N . In
each iteration, N children are generated from the parent population via a variation oper-
ator, and N best individuals among the combined parent and children population survive
to the next generation based on their ranks and, as a tie-breaker, the crowding distance.
At each iteration, the critical rank i∗ is the rank such that if we take all individuals of
ranks smaller than i∗, the total number of individuals will be less than or equal to N ,
but if we also take all individuals of rank i∗, the total number of individuals will be more
than N . Thus, all individuals of rank smaller than i∗ survive to the next generation, and
for individuals of rank i∗, we take the individuals with the highest crowding distance,
breaking ties randomly, so that in total exactly N individuals are kept. In practice, the
algorithm is run until some stopping criterion is met. In our mathematical analysis, we
are interested in how long it takes until the full Pareto front is covered by the population
if the algorithm is not stopped earlier. For that reason, we do not specify a termination
criterion.

In our analysis, for simplicity we assume that in each iteration every parent produces
one child through bit-wise mutation, i.e., mutating each bit independently with proba-
bility 1

n
. Our analysis also holds for uniform selection, where N times a parent is selected

4

independently at random, since also here each individual is selected as parent once in ex-
pectation, and our proofs only rely on the expected number of times a parent is selected.
When selecting parents via binary tournaments the expected number of times a parent
is selected is at most two (which is the expected number of times it participates in a
tournament). This estimate would change the population dynamics by constant factors.
For that reason, we are optimistic that our methods apply also to this type of selection,
but we do not discuss this question in more detail.

For any generation t of a run of the algorithm, we use Pt to denote the parent popu-
lation and Rt to denote the combined parent and offspring population.

3.2 The OneJumpZeroJump Benchmark
Let n ∈ N and k = [2..n/4]. The function OneJumpZeroJumpn,k = (f1, f2) : {0, 1}n →
R2, proposed by [DZ21], is defined by

f1(x) =
k + |x|1, if |x|1 ≤ n − k or x = 1n,

n − |x|1, else;

f2(x) =
k + |x|0, if |x|0 ≤ n − k or x = 0n,

n − |x|0, else,

where |x|1 denotes the number of bits of x that are 1 and |x|0 denotes the number of
bits of x that are 0. The aim is to maximize both f1 and f2, two multimodal objectives.
The first objective is the classical Jumpn,k function. It has a valley of low fitness around
its optimum, which can be crossed only by flipping the k correct bits, if no solutions of
lower fitness are accepted. The second objective is isomorphic to the first, with the roles
of zeroes and ones exchanged.

According to Theorem 2 of [DZ21], the Pareto set of this benchmark is S∗ = {x ∈
{0, 1}n | |x|1 = [k..n − k] ∪ {0, n}}, and the Pareto front F ∗ = f(S∗) is {(a, 2k + n − a) |
a ∈ [2k..n] ∪ {k, n + k}}, making the size of the front n − 2k + 3. We define the inner
part of the Pareto set by S∗

I = {x | |x|1 ∈ [k..n − k]}, and the inner part of the Pareto
front by F ∗

I = f(S∗
I) = {(a, 2k + n − a) | a ∈ [2k..n]}. [DQ22] showed that when using a

population of size N ≥ 4(n−2k +3) to optimize this benchmark, the NSGA-II algorithm
never loses a Pareto-optimal solution once found. Moreover, O(nk) iterations are needed
in expectation.

3.3 The OneMinMax Benchmark
Let n ∈ N. The function OneMinMax = (f1, f2) : {0, 1}n → R, proposed by [GL10], is
defined by

f(x) = (f1(x), f2(x)) =
(

n −
n∑
i

xi,
n∑
i

xi

)
.

The aim is to maximize both objectives.
For this benchmark, any solution is Pareto-optimal and the Pareto front F ∗ =

{(0, n), (1, n − 1), . . . , (n, 0)}. Hence |F ∗| = n + 1. [ZLD22] showed that when using a
population of size N ≥ 4(n + 1) to optimize the benchmark, the NSGA-II algorithm

5

never loses a Pareto-optimal solution once found. Moreover, in expectation O(n log n)
iterations are needed.

4 Lower Bound on the Runtime of the NSGA-II on
OneJumpZeroJump

In this section, we give a lower bound on the runtime of the NSGA-II algorithm on the
OneJumpZeroJump benchmark. We use X i

Pt
to denote the number of individuals with

n − k − i 1-bits in Pt and X i
Rt

to denote that in Rt.
We first show that with probability arbitrarily close to 1, we have that Pt ⊆ S∗ for

any t so that the analyses that follow do not need to consider gap individuals (those with
between 1 and k − 1 zeroes or ones) as parents.

Lemma 1. Consider the NSGA-II algorithm optimizing the OneJumpZeroJumpn,k

benchmark for 2 ≤ k ≤ n
4 with population size N = c(n − 2k + 3) for c = o(n). The

probability that P0 ⊆ S∗
I is 1 − o(1). Moreover, if P0 ⊆ S∗

I , then for any generation t, we
have Pt ⊆ S∗.

Proof. For a randomly initialized individual in P0, we have E[|x|1] = n
2 . Since k ≤ n

4 ,
by the additive Chernoff bound, with probability at most 2e− 2

n
(n

4)2 = 2e− n
8 , the initial

individual x has |x|1 < k or |x|1 > n − k. Then by the union bound, P0 ⊆ S∗
I with

probability at least 1 − 2Ne− n
8 , which is 1 − o(1) since c = o(n).

Consider a run of the algorithm where P0 ⊆ S∗
I . We show by induction that Pt ⊆ S∗.

The base case is obviously P0 ⊆ S∗
I ⊆ S∗. Suppose Pt ⊆ S∗ by the induction hypothesis.

Since any individual in S∗ dominates any individual not in S∗, the rank-1 individuals in
Rt are exactly those in S∗. Since there are at least |Pt| = N individuals in S∗ in Rt, no
individuals not in S∗ can survive. Therefore Pt+1 ⊆ S∗.

Now we give an upper bound on the probability for any individual to obtain more
1-bits through bit-wise mutation.

Lemma 2. Let n, u, v ∈ N with n ≥ 2, u, v ≥ 1, and u + v ≤ n. Suppose x ∈ {0, 1}n and
|x|1 ≤ v. Denote the result of applying bit-wise mutation to x by x′. Then

Pr[|x′|1 = u + v] ≤
(

n − v

n

)u

.

Proof. Suppose an individual y has v bits of 1 and the result of applying bit-wise mutation
to y is y′. Then Pr[|y′|1 = u + v] ≤

(
n−v

u

)
(1

n
)u ≤ (n−v

n
)u since u of the n − v 0-bits of

y have to be flipped. Therefore, to prove the claim, we show that Pr[|x′|1 = u + v] ≤
Pr[|y′|1 = u + v].

The case for |x|1 = |y|1 is obvious. Then suppose |x|1 = v − 1. We have Pr[|y′|1 =
u + v] =

min{u+v,n−v}∑
i=u

(
n − v

i

)(
v

i − u

)(1
n

)2i−u(
1 − 1

n

)n−2i+u

(1)

6

and Pr[|x′|1 = u + v] =

min{u+v−1,n−v}∑
i=u

(
(

n − v + 1
i + 1

)(
v − 1
i − u

)
(1

n

)2i−u+1(
1 − 1

n

)n−2i+u−1
)

(2)

Dividing the summands of equation (1) by those of (2) one by one, we have the quotient
(n−v

i)(v
i−u)(1

n
)2i−u(1− 1

n
)n−2i+u

(n−v+1
i+1)(v−1

i−u)(1
n

)2i−u+1(1− 1
n

)n−2i+u−1 = v(i+1)(n−1)
(v−i+u)(n−v+1) , which increases in i. So the quotient is

minimized when i = u, making it (u+1)(n−1)
n−v+1 , which in turn is minimized when v = u = 1,

making it 2(n−1)
n

≥ 1 for n ≥ 2. Since the summands in equations (1) and (2) both
start at i = u and there are at least as many summands in (1) as in (2), we have
Pr[|x′|1 = u + v] ≤ Pr[|y′|1 = u + v]. The cases for |x|1 < u − 1 follow by induction based
on the case for |x|1 = u − 1.

Corollary 3. Let n ∈ N with n ≥ 2 and let v ∈ [1..n]. Suppose x ∈ {0, 1}n and |x|1 ≤ v.
Denote the result of applying bit-wise mutation to x by x′. Then Pr[|x′|1 = v ∧ x′ ̸= x] ≤
n−v+1

n
.

Proof. Consider the case where |x|1 = v. Since x′ ̸= x, at least one of the n − v 0-bits of
x has to be flipped, and the probability that happens is at most n−v

n
< n−v+1

n
.

Consider the case where |x|1 ≤ v − 1. By Lemma 2, Pr[|x|′1 = v] ≤ n−v+1
n

.

Since we already know from [DQ22] that, for any objective value on the Pareto front,
there are at most 4 individuals with that objective value and positive crowding distance,
and they all survive to the generation that follows, to further understand the population
dynamics on the front, it is crucial to analyze what happens to the individuals with zero
crowding distance. In the following lemma, we show that their survival probability is less
than 1

2 + o(1).

Lemma 4. Consider the NSGA-II algorithm optimizing the OneJumpZeroJumpn,k

benchmark with the population size N = c(n−2k+3) for some c ≥ 4 such that ck2 = o(n).
Consider a generation t of a run of the algorithm where P0 ⊆ S∗

I . Suppose E[X0
Pt

] = O(ck)
and E[Xn−2k

Pt
] = O(ck). For a rank-1 individual x ∈ Rt that has zero crowding distance,

the probability that x ∈ Pt+1 is less than 1
2 + o(1).

Proof. Let F>1 denote the individuals in Rt with ranks greater than 1. Since P0 ⊆ S∗
I ,

by Lemma 1, Pt ⊆ S∗. Then all the individuals in F>1 are created through mutation
of individuals in Pt. By Lemma 2, for an individual with less than n − k bits of 1 to
create an individual with more than n − k bits of 1, the probability is at most (k+1

n
)2,

and for an individual with n − k bits of 1 to create an individual with more than n − k
bits of 1, the probability is at most k

n
. Symmetrically, for an individual with less than

n − k bits of 0 to create an individual with more than n − k bits of 0, the probability
is at most (k+1

n
)2, and for an individual with n − k bits of 0 to create an individual

with more than n − k bits of 0, the probability is at most k
n
. Therefore E[|F>1|] ≤

(k+1
n

)2c(n − 2k + 3) + k
n
E[X0

Pt
] + k

n
E[Xn−2k

Pt
] = o(1) for ck2 = o(n), E[X0

Pt
] = O(ck) and

E[Xn−2k
Pt

] = O(ck). By Markov’s inequality, Pr(|F>1| ≥ 1) ≤ E[|F>1|]
1 = o(1).

7

Let F ∗
1 the rank-1 individuals in Rt with positive crowding distances. So |Rt| = 2N

and there are 2N −|F ∗
1 |− |F>1| individuals in Rt with rank 1 and zero crowding distance.

Since N = c(n−2k +3), for some c ≥ 4, by Lemma 1 of [DQ22], all individuals in F ∗
1 will

survive. So among the rank-1 individuals with zero crowding distance, N − |F ∗
1 | survive

to the next generation if |F ∗
1 | ≤ N . Hence the probability that a rank-1 individual x with

zero crowding distance survives is

N − |F ∗
1 |

2N − |F ∗
1 |

Pr[|F>1| = 0]

+ Pr[x survives||F>1| ≥ 1]] Pr[|F>1| ≥ 1].

Since Pr[|F>1| = 0] ≤ 1 and Pr[x survives||F>1| ≥ 1]] ≤ 1, we have that the probability
that x survives is at most 1

2 + o(1).

Corollary 5. Consider the NSGA-II algorithm optimizing the OneJumpZeroJumpn,k

benchmark with the population size N = c(n−2k+3) for some c ≥ 4 such that ck2 = o(n).
Consider a generation t of a run of the algorithm where P0 ⊆ S∗

I . Suppose E[X0
Pt

] = O(ck)
and E[Xn−2k

Pt
] = O(ck). Then for any i ∈ [0..n−2k], we have E[X i

Pt+1] ≤ (1
2+o(1))E[X i

Rt
]+

2.

Proof. Among the individuals with i 1-bits in Rt, let X>0 denote the number of individuals
with positive crowding distance, X=0 denote the number of individuals with zero crowding
distance, and X∗

=0 denote the number of individuals with zero crowding distance that
survive to the next generation. Then E[X i

Pt+1] ≤ E[X>0]+E[X∗
=0]. By Lemma 4, E[X∗

=0] ≤
(1

2 + o(1))E[X=0], so

E[X i
Pt+1] ≤ E[X>0] + (1

2 + o(1))E[X=0]

= (1
2 + o(1))E[X i

Rt
] + (1

2 − o(1))E[X>0].

By Lemma 1 of [DQ22], E[X>0] ≤ 4, so E[XP i
t+1

] ≤ (1
2 + o(1))E[XRi

t
] + 2.

Now, we can start to estimate E[X i
Pt

] for i ∈ [0..n − 2k].

Lemma 6. Consider the NSGA-II algorithm optimizing the OneJumpZeroJumpn,k

benchmark with the population size N = c(n − 2k + 3) for some c ≥ 4 such that
ck2 = o(n). Suppose P0 ⊆ S∗

I and i ∈ [0..n − 2k]. Then if 1n /∈ Pt, we have E[X i
Pt

] ≤ ci

for ci = e
e−1(c(k + i + 1) + ∑i−1

j=0 cj + 4) + o(ck). Similarly, if 0n /∈ Pt, we have
E[Xn−2k−i

Pt
] ≤ cn−2k−i for cn−2k−i = e

e−1(c(k + i + 1) +∑i−1
j=0 cn−2k−j + 4) + o(ck).

Proof. We prove the result for the case where the all-ones string has not been found since
the other case is symmetrical.

Let Y i denote the number of individuals with n − k − i 1-bits in Pt for which no bits
are flipped during mutation, and let Zi denote the number of individuals in Pt for which
a positive number of bits are flipped and the resulting children have n − k − i 1-bits. We
first prove by induction that E[X0

Pt
] ≤ c0 for c0 = e

e−1(c(k + 1) + 4) + o(ck) = O(ck).
For the base case, consider the random initialization of P0. The probability that

exactly k among n bits are 0 is less than the probability that at most k < n
4 bits are 0,

which is at most e− n
8 . Hence, E[X0

P0] < c(n − 2k + 3)e− n
8 < cne− n

8 < 3c < c0.

8

For the induction, assume by the induction hypothesis that E[X0
Pt

] ≤ c0 and we will
show that E[X0

Pt+1] ≤ c0. Clearly, E[X0
Rt

] = E[X0
Pt

] + E[Y 0] + E[Z0]. By the induction
hypothesis E[X0

Pt
] ≤ c0. By definition, E[Y 0] = E[(1 − 1

n
)nX0

Pt
] ≤ 1

e
E[X0

Pt
] = c0

e
. Since

1n /∈ Pt and P0 ⊆ S∗
I , by Lemma 1, there is no individual with more than n − k 1-bits.

Then by Corollary 3, for any individual to have a positive number of bits flipped and
produce an individual with n − k 1-bits, the probability is at most k+1

n
. So E[Z0] ≤

c(n−2k +3)k+1
n

≤ c(k +1). Together, E[X0
Rt

] ≤ (1+ 1
e
)c0 +c(k +1). Then by Corollary 5,

E[X0
Pt+1] ≤ (1

2 + o(1))((1 + 1
e
)c0 + c(k + 1)) + 2 = e

e−1(c(k + 1) + 4) + o(ck) = c0.
The same arguments can be applied to estimate the expected number of individuals

with n − k − 1 1-bits. We have E[X1
Rt

] = E[X1
Pt

] + E[Y 1] + E[Z1]. We assume by the
induction hypothesis E[X1

Pt
] ≤ c1 for c1 = e

e−1(c(k + 2) + c0 + 4) + o(ck). Similarly as
before, E[Y 1] ≤ c1

e
. Moreover, there are no individuals with more than n − k bits of 1

by Lemma 1. So to bound E[Z1], consider separately the cases where i) the parent has
at most n − k − 1 1-bits and ii) the parent has n − k 1-bits. By Corollary 3, for case i),
the probability that the child has n − k − 1 1-bits is at most k+2

n
. We trivially bound the

probability for case ii) by 1. Therefore, E[Z1] ≤ c(n − 2k + 3)k+2
n

+ c0 ≤ c(k + 2) + c0.
Then E[X1

Rt
] ≤ (1 + 1

e
)c1 + c(k + 2) + c0. Hence, by Corollary 5,

E[X1
Pt+1] ≤ (1

2 + o(1))((1 + 1
e
)c1 + c(k + 2) + c0) + 2

= e
e−1(c(k + 2) + c0 + 4) + o(ck) = c1.

Continuing this way and letting ci denote the upper bound on the expected number
of individuals with n − k − i number of 1-bits for 0 ≤ i ≤ n − 2k, we have

ci = e

e − 1(c(k + i + 1) +
i−1∑
j=0

cj + 4) + o(ck).

With the bound on E[X1
Pt

] found in Lemma 6, we can now prove a sharper bound on
E[X0

Pt
].

Corollary 7. Consider a generation t of the NSGA-II algorithm optimizing the
OneJumpZeroJumpn,k benchmark with the population size N = c(n − 2k + 3) for some
c ≥ 4 such that ck2 = o(n). Suppose P0 ⊆ S∗

I . If 1n /∈ Pt, then E[X0
t] ≤ 4e

e−1 + o(1).
Similarly, if 0n /∈ Pt, then E[Xn−2k

t] ≤ 4e
e−1 + o(1).

Proof. We prove the result for E[X0
t] since the other case is symmetrical.

Using the same notations as in the proof of Lemma 6, with the bound on E[X1
Pt

] found
in Lemma 6, we can prove a sharper bound on E[X0

Pt
]. To estimate E[Z0], consider three

cases separately: i) the parent has n − k 1-bits, ii) the parent has n − k − 1 1-bits, iii) the
parent has less that n − k − 1 1-bits. For case i) and ii), the probability that the child
has n − k 1-bits is at most k+1

n
by Corollary 3. For case iii), the probability is at most(

k+2
2

)
(1

n
)2 ≤ (k+2

n
)2 according to Lemma 2. Therefore E[Z0] ≤ k+1

n
(c0 + c1) + (k+2

n
)2c(n −

2k + 3) = o(1). So by Corollary 5,

E[X0
Pt+1] ≤ (1

2 + o(1))((1 + 1
e
)E[X0

Pt
] + 4 + o(1)).

As a result, E[X0
Pt

] ≤ 4e
e−1 + o(1) for any generation t.

9

Now with the upper bounds on E[X0
Pt

], E[X1
Pt

], E[Xn−2k
Pt

], and E[Xn−2k−1
Pt

], we can
prove a lower bound on the runtime.
Theorem 8. Consider the NSGA-II algorithm optimizing the OneJumpZeroJumpn,k

benchmark with the population size N = c(n − 2k + 3), for some c ≥ 4 such that ck2 =
o(n). Then the number of fitness evaluations needed in expectation is at least 3

2(4
e−1 +

o(1))−1Nnk.
Proof. Consider the waiting time to find the all-ones string when P0 ⊆ S∗

I . For an in-
dividual of i 0-bits, the probability that its child through bit-wise mutation is the all-
ones string is (1

n
)i(1 − 1

n
)n−i ≤ (1

n
)i. Since by Corollary 7, before the all-ones string is

found, the expected number of individuals with n − k bits of 1 is at most 4e
e−1 + o(1)

in any parent population, and that for individuals with n − k − 1 bits of 1 is at most
e

e−1(c(k +2)+ 4e
e−1 +4)+o(ck), the probability that the all-ones string is generated at any

iteration is at most (4e
e−1 + o(1))(1

n
)k(1 − 1

n
)n−k + e

e−1(c(k + 2) + 4e
e−1 + 4 + o(ck))(1

n
)k+1 +

c(n − 2k + 3)(1
n
)k+2 ≤ (4e

e−1(1 − 1
n
)n−k + o(1))(1

n
)k. Then the waiting time to find the

all-ones string is at least (4e
e−1(1 − 1

n
)n−k + o(1))−1nk. Therefore, the expected num-

ber of iterations needed to find one of the all-zeroes string and the all-ones string is
at least 1

2(4e
e−1(1 − 1

n
)n−k + o(1))−1nk and the expected number of iterations needed to

find both is at least 3
2(4e

e−1(1 − 1
n
)n−k + o(1))−1nk. Since by Lemma 1, the probabil-

ity that P0 ⊆ S∗
I is at least 1 − o(1), we have that the expected number of iterations

needed under any case is at least (1 − o(1))(3
2(4e

e−1(1 − 1
n
)n−k + o(1))−1nk), correspond-

ing to 3
2(4e

e−1(1 − 1
n
)n−k + o(1))−1Nnk fitness evaluations. Noting that k = o(n), we have

(1 − 1
n
)n−k = 1

e
+ o(1), and this completes the proof.

5 Precise Runtime of the NSGA-II with Fixed Sort-
ing on OneJumpZeroJump

In the version of the NSGA-II considered in [DQ22] and the previous section, when
the crowding distance is being calculated with respect to each objective, we sort the
individuals such that the ones with the same objective value are positioned randomly.
A variant of the algorithm, considered in [BQ22], is to fix the relative positions of the
individuals that have the same objective value. We call this variant of the algorithm the
NSGA-II with fixed sorting, and show a precise bound on the runtime of this variant
optimizing the OneJumpZeroJump benchmark.

First we observe in the following Lemma that for this variant of the algorithm, after
O(n log n) iterations, for each objective value on F ∗

I there are exactly two individuals
with positive crowding distances.
Lemma 9. Consider the NSGA-II algorithm with fixed sorting optimizing the
OneJumpZeroJumpn,k benchmark with population size N = c(n − 2k + 3) for some
c ≥ 2. After O(n log n) iterations, for any generation t, for every objective value v ∈ F ∗

I ,
there are exactly two individuals x, y ∈ Rt such that f(x) = f(y) = v, cDis(x) > 0 and
cDis(y) > 0.
Proof. We first prove that for any objective value v = (v1, v2) ∈ F ∗, there are at most two
individuals x, y ∈ Rt such that f(x) = f(y) = v, cDis(x) > 0 and cDis(y) > 0. Suppose

10

the individuals whose objective value is v belong to rank F of Rt. Let S1.1, . . . , S1.|F | be
the list of individuals in F sorted by ascending f1 values and S2.1, . . . , S2.|F | be the list
of individuals sorted by ascending f2 values, which were used to compute the crowding
distances. Then there exist a ≤ b and a′ ≤ b′ such that [a..b] = {i | f1(S1.i) = v1} and
[a′..b′] = {i | f2(S2.i) = v2}. For i ∈ [a+1..b−1] and S1.i = S2.j for some j ∈ [a′ +1..b′ −1],
we have that f1(S1.i−1) = v1 = f1(S1.i+1) and f2(S2.j−1) = v2 = f2(S2.j+1). So cDis(S1.i) =
0. Hence the only individuals that could have positive crowding distance are S1.a, S2.a′ ,
S1.b, S2.b′ . Since the relative positions of the individuals whose objective value is v are the
same in S1.1, . . . , S1.|F | and S2.1, . . . , S2.|F |, we have S1.a is the same individual as S2.a′ and
S1.b is the same individual as S2.b′ . So there are at most two individuals whose crowding
distances are positive.

Next, we prove that if there are at least two individuals in Rt whose objective val-
ues are v, then for any generation s ≥ t, there are exactly two individuals x, y ∈ Rs

such that f(x) = f(y) = v, cDis(x) > 0 and cDis(y) > 0. By the definition of the
crowding distance, we have that cDis(S1.a) ≥ f1(S1.a+1)−f1(S1.a−1)

f1(S1.|F1|)−f1(S1.1) ≥ f1(S1.a)−f1(S1.a−1)
f1(S1.|F1|)−f1(S1.1) . Since

f1(S1.a) − f1(S1.a−1) > 0 by the definition of a, we have cDis(S1.a) > 0. Similarly,
we have cDis(S1.b) > 0. Since there are at least two individuals x, y ∈ Rt such that
f(x) = f(y) = v, we have a ̸= b, meaning S1.a and S1.b are not the same individual.
Since v ∈ F ∗, we have that S1.a and S1.b belong to the first rank. Consequently, these two
will survive to the next generation and appear in Rt+1. Then again there will be exactly
two individuals in Rt+1 whose objective values are v and who have positive crowding
distances. Inductively, in any generation s ≥ t, there will always be exactly two such
individuals.

By Lemma 3 of [DQ22], in at most e(4k
3)k iterations, there will be an individual x in

the parent population such that f(x) ∈ F ∗
I . Lemma 4 of [DQ22] then states that once such

x appears, in O(n log n) iterations in expectation, every objective value v ∈ F ∗
I will have

been generated at least once. Then, in O(n log n) iterations in expectation, every objective
value in F ∗

I will have been generated at least twice. So for any generation t starting
from there, there will be exactly two individuals x, y ∈ Rt such that f(x) = f(y) = v,
cDis(x) > 0 and cDis(y) > 0.

We call the phase where, for every objective value v ∈ F ∗
I , there are exactly two

individuals x, y in the combined population such that f(x) = f(y) = v, cDis(x) > 0 and
cDis(y) > 0, the tightening phase. In the following analyses, we define s∗ = O(n log n) to
be the generation where the algorithm first enters the tightening phase. Then by Lemma 9,
for any generation t ≥ s∗, the algorithm stays in the tightening phase. In the following
Lemma, we estimate similarly to Lemma 4 the probability that a rank-1 individual with
zero crowding distance survives. What is different now is that for the tightening phase,
we can calculate the probability precisely (apart from lower order terms).
Lemma 10. Consider a generation t ≥ s∗ of the NSGA-II algorithm with fixed sorting
optimizing the OneJumpZeroJumpn,k benchmark with population size N = c(n−2k+3)
for some c ≥ 2 such that ck2 = o(n). Suppose P0 ⊆ S∗

I , E[X0
Pt

] = O(ck), and E[Xn−2k
Pt

] =
O(ck). For a rank-1 individual x ∈ Rt that has zero crowding distance, the probability
that x ∈ Pt+1 is c−2

2c−2 ± o(1).
Proof. Since now, for every objective value v ∈ F ∗

I , there are exactly two individuals x, y
such that f(x) = f(y) = v, cDis(x) > 0 and cDis(y) > 0, using the same notations as in

11

Lemma 4, we have |F ∗
1 | = 2(n−2k+3)−Θ(1). So the probability that a rank-1 individual

x with zero crowding distance survives is

N − |F ∗
1 |

2N − |F ∗
1 |

Pr[|F>1| = 0]+

Pr[x survives||F>1| ≥ 1]] Pr[|F>1| ≥ 1].

As proved in Lemma 4, Pr[|F>1| = 0] ≥ 1−o(1). So Pr[x survives] = (c−2)(n−2k+3)+Θ(1)
(2c−2)(n−2k+3)+Θ(1)(1−

o(1)) + o(1) = c−2
2c−2 ± o(1).

Corollary 11. Consider a generation t ≥ s∗ of the NSGA-II algorithm with fixed sorting
optimizing the OneJumpZeroJumpn,k benchmark with population size N = c(n−2k+3)
for some c ≥ 2 such that ck2 = o(n). Suppose P0 ⊆ S∗

I , E[X0
Pt

] = O(ck), and E[Xn−2k
Pt

] =
O(ck). Then for any i ∈ [0..n − 2k], we have E[X i

Pt+1] = (c−2
2c−2 + o(1))E[X i

Rt
] + c

c−1 ± o(1).

Proof. Since N = c(n−2k +3) for c ≥ 2, any individual with n−k − i 1-bits and positive
crowding distance survives to the next generation. Then, using the same notations as in
Corollary 5, we have E[X i

Pt+1] = E[X>0] + E[X∗
=0]. Then by Lemma 10,

E[X i
Pt+1] = E[X>0] + (c − 2

2c − 2 ± o(1))E[X=0]

= (c − 2
2c − 2 ± o(1))E[X i

Rt
]

+ (c

2c − 2 ± o(1))E[X>0].

Since E[X>0] = 2 by Lemma 9, we have E[X i
Pt+1] = (c−2

2c−2 ± o(1))E[X i
Rt

] + c
c−1 ± o(1).

Consequently, we can calculate E[X0
Pt

] and E[Xn−2k
Pt

] precisely apart from lower order
terms.

Lemma 12. Consider the NSGA-II algorithm with fixed sorting optimizing the
OneJumpZeroJumpn,k benchmark with the population size N = c(n − 2k + 3) for some
c ≥ 2 such that ck2 = o(n). Suppose P0 ⊆ S∗

I . We have for any t ≥ s∗ + log n, if 1n /∈ Pt,
then E[X0

Pt
] = 2ec

ec−c+2 ± o(1). Similarly, if 0n /∈ Pt, then E[Xn−2k
Pt

] = 2ec
ec−c+2 ± o(1).

Proof. Since the NSGA-II with fixed sorting is a special case of the general algorithm
considered in section 4, the bounds proven there still apply. So using the same notations
as in Lemma 6, the proof of Corollary 7 shows that E[Z0] ≤ o(1). Also, since there are
at least two individuals with n − k − 1 1-bits, E[Z0] ≥ 2k+1

n
= o(1). So E[Z0] = o(1).

Moreover, E[Y 0] = (1 − 1
n
)nE[X0

Pt
] = (1

e
− o(1))E[X0

Pt
]. So for any generation t′ ≥ s∗, we

have
E[X0

Pt′+1
] = (c − 2

2c − 2 ± o(1))((e + 1
e

− o(1))E[X0
P ′

t
] + o(1))

+ c

c − 1 ± o(1).

Hence the sequence of E[X0
P ′

t
] converges to C = 2ec

ec−c+2 ± o(1). Since
|C−E[X0

Pt′+1
]|

|C−E[X0
P ′

t
]| =

(e+1)(c−2)
2e(c−1) ±o(1) < 1, we have that in ω(1) iterations, E[X0

P ′
t
] reaches 2ec

ec−c+2 ±o(1). Since the
sequence starts from iteration s∗, for any t ≥ n2, we have that E[X0

Pt
] = 2ec

ec−c+2 ±o(1).

12

Theorem 13. Consider the NSGA-II algorithm with fixed sorting optimizing the
OneJumpZeroJumpn,k benchmark, for k ≥ 3, with the population size N = c(n−2k+3),
for some c ≥ 2 such that ck2 = o(n). Then the number of fitness evaluations needed in
expectation is 3

2N(2c
ec−c+2 ± o(1))−1nk.

Proof. For the upper bound, if the all-ones string is not found in O(n log n) iterations,
then by Lemma 12, we have E[X0

Pt
] = 2ec

ec−c+2 ± o(1) for any iteration t afterwards. Then
the probability of generating the all-ones string in an iteration is at least (2ec

ec−c+2 −
o(1))(1

n
)k(1 − 1

n
)n−k and in expectation at most (2ec

ec−c+2(1 − 1
n
)n−k − o(1))−1nk iterations

are needed to find the all-ones string. Then at most 3
2(2ec

ec−c+2(1 − 1
n
)n−k − o(1))−1nk ≤

3
2(2c

ec−c+2 − o(1))−1nk iterations are needed to find both the all-ones and the all-zeroes
string.

For the lower bound, suppose P0 ⊆ S∗
I . Then by Lemma 1, for any generation t there

is no individual with less than k 0-bits or 1-bits in the parent population. Then for an
individual x ∈ Pt to generate the all-ones or the all-zeroes string, the probability is at
most (1

n
)|x|1(1 − 1

n
)|x|0 + (1

n
)|x|0(1 − 1

n
)|x|1 ≤ 2

nk . Then for any iteration to generate the all-
ones or the all-zeroes string, the probability is at most 2N

nk . Therefore, the probability that
neither the all-ones nor the all-zeroes string has been generated in O(n log n) iterations
is (1 − 2N

nk)O(n log n) ≥ 1 − O(cn2 log n)
nk = 1 − o(1) since k ≥ 3 and c = o(n). Then for any

iteration t afterwards, we have that, E[X0
Pt

] = 2ec
ec−c+2 ± o(1). Moreover, by Lemma 6, we

have that E[X1
Pt

] = O(ck) for any generation t. Then the probability that the all-ones
string is generated in an iteration is at most (2ec

ec−c+2 +o(1))(1
n
)k(1− 1

n
)n−k +O(ck)(1

n
)k+1 +

c(n−2k+3)(1
n
)k+2 ≤ (2ec

ec−c+2(1− 1
n
)n−k+o(1))(1

n
)k. So the waiting time to find the all-ones

string is at least (2ec
ec−c+2(1 − 1

n
)n−k + o(1))−1nk. Then the waiting time to find both the

all-ones string and the all-zeroes strings is at least 3
2(2ec

ec−c+2(1 − 1
n
)n−k + o(1))−1nk. Since

the probability that i) neither the all-ones string nor the all-zeroes string is found in n2

generations, given that ii) P0 ⊆ S∗
I , and the probability that event ii) happens are both

1 − o(1). The probability that both happen is (1 − o(1))2. Then the waiting time to find
the two extremal points in any case is at least (1−o(1))2 3

2(2ec
ec−c+2(1− 1

n
)n−k +o(1))−1nk =

3
2(2ec

ec−c+2(1 − 1
n
)n−k + o(1))−1nk = 3

2(2c
ec−c+2 + o(1))−1nk for k = o(n).

6 Lower Bound on the Runtime of the NSGA-II on
OneMinMax

[ZLD22] gave an O(Nn log n) upper bound on the runtime of the NSGA-II optimizing
the OneMinMax benchmark. In this section, we prove a matching lower bound using
the techniques we have developed so far.

In this section, for any i ∈ [0..n] and any generation t, we let X i
Pt

denote the number
of individuals with i 0-bits in Pt and let X i

Rt
denote that in Rt.

Suppose in an iteration t the individual with the least number of 0-bits in Pt has it

0-bits. Then we can think of the algorithm making progress as it tries to decrease it till
it becomes 0, at which point the algorithm has found 1n. In the following lemma, we give
upper bounds on E[X it

Pt
] when it is close to 0, which will help us estimate the waiting

time needed for the algorithm to make progress there.

13

Lemma 14. Consider the NSGA-II algorithm optimizing the OneMinMax benchmark
for n > 16, with N = c(n + 1) for c ≥ 4, where for all x ∈ P0, |x|0 ≥ n

4 . Suppose
v ∈ [0..n] such that cv2 = o(n) and for a generation t there is no individual x ∈ Pt such
that |x|0 < v. Then E[Xv

Pt
] ≤ c0 = 4e

e−1 + o(1) and E[Xv+1
Pt

] ≤ e−1
e

(c(v + 2) + c0 + 4) + o(c).

Proof. First we show that, similarly to Lemma 4, the probability that an x ∈ Rt with zero
crowding distance survives to Pt+1 is less than 1

2 . Unlike Lemma 4, for the OneMinMax
benchmark, since any solution lies on the Pareto front, we have that |F>1| = 0. So the
probability that x survives is N−|F ∗

1 |
2N−|F ∗

1 | < 1
2 without additional lower-order terms.

Then, similarly to Corollary 5 and using the same notations, E[XPt+1] ≤ 1
2(E[XRt] +

E[X>0]). Since by Lemma 1 of [ZLD22], X>0 ≤ 4, we have E[XPt+1] ≤ 1
2E[XRt] + 2.

Similarly to Lemma 6, we now prove by induction that E[Xv
Pt

] ≤ c0 = e−1
e

(c(v + 1) +
4) + o(c). For the base case, since for all x ∈ P0, we have |x|0 ≥ 1

4n > v, because n > 16
and v = o(

√
n). So E[Xv

P0] = 0. For the induction, E[Xv
Rt

] ≤ e+1
e
E[Xv

Pt
] + v+1

n
c(n + 1) =

e+1
e
E[Xv

Pt
] + c(v + 1) + o(1) and in turn E[Xv

Pt+1] ≤ 1
2(e+1

e
E[Xv

Pt
] + c(v + 1) + o(1)) + 2.

Consequently, E[Xv
Pt

] ≤ e−1
e

(c(v + 1) + 4) + o(c) = c0 for any generation t. Moreover,
E[Xv+1

Pt+1] ≤ 1
2(e+1

e
E[Xv+1

Pt
]+ v+2

n
c(n+1)+c0)+2 = 1

2(e+1
e
E[Xv+1

Pt
]+c(v+2)+o(1)+c0)+2.

So E[Xv+1
Pt

] ≤ e−1
e

(c(v + 2) + c0 + 4) + o(c).
Similarly to Corollary 7, we can now prove a sharper bound on E[Xv

Pt
]. Now E[Xv

Pt+1] ≤
1
2(e+1

e
E[Xv

Pt
] + o(1)) + 2, and consequently E[Xv

Pt
] ≤ 4e

e−1 + o(1).

Then, we show that only with very small probability, o(n− 4
3), the algorithm can make

a progress of a size larger than 1 in an iteration.

Lemma 15. Consider the NSGA-II algorithm optimizing the OneMinMax benchmark
for n > 16, with N = c(n + 1) for c ≥ 4, where for all x ∈ P0, |x|0 ≥ n

4 . Suppose
v ∈ [0..n] such that cv3 = o(n) and for a generation t, there is no individual x ∈ Pt such
that |x|0 < v. Suppose in Rt the individual with the least number of 0-bits is y. Then
Pr[|y|0 ≤ v − 2] = o(n− 4

3).

Proof. By Lemma 2, to generate an individual with at most v − 2 bits of 0 through bit-
wise mutation, for an individual with v bits of 0, the probability is at most (v

n
)2, for an

individual with v + 1 bits of 0, it is at most (v+1
n

)3, and for an individual with at least
v + 2 bits of 0, it is at most (v+2

n
)4. Let X denote the number of individuals with at

most v − 2 0-bits in Rt, c0 = 4e
e−1 + o(1), and c1 = e−1

e
(c(v + 2) + c0 + 4) + o(c). Then by

Lemma 14, E[X] ≤ c0(v
n
)2 + c1(v+1

n
)3 + c(n + 1)(v+2

n
)4 = o(n− 4

3). So, Pr[|y|0 ≤ v − 2] =
Pr[X ≥ 1] ≤ E[X]

1 = o(n− 4
3).

Finally, we combine everything to obtain a lower bound on the runtime.

Theorem 16. Consider the NSGA-II algorithm optimizing the OneMinMax benchmark
for n > 16, with N = c(n + 1) for c ≥ 4 and c = o(nµ) for µ < 1. Then the number of
fitness evaluations needed is at least N(n(4e

e−1 + o(1))−1 1−µ
3 ln n).

Proof. Let v = n
1−µ

3 (cv3 = o(n)). For any generation t, suppose xt is the individual with
the least number of 0-bits in Pt, and we denote |xt|0 by Mt. Suppose we have M0 ≥ v,
which happens with probability at least 1 − Ne− n

8 = 1 − o(1) as proven in Lemma 1,

14

since v < n
4 . Then suppose at generation r, we have Mr = v. Then for any generation

s ≥ r, we have c(Ms)3 = o(n) and by Corollary 15, the probability that Ms −Ms+1 ≥ 2 is
o(n− 4

3). Since by Theorem 6 of [ZLD22], the expected iterations needed to optimize the
OneMinMax benchmark is O(n log n), we have that the expected times that the event
Ms − Ms+1 ≥ 2 happens for any s ≥ r is o(n− 4

3)O(n log n) = o(n− 1
3 log n) = o(1). Then

the probability that the event Ms − Ms+1 ≥ 2 does not happen for any s ≥ r is 1 − o(1).
When that happens, after generation r, the algorithm makes progress by decreasing Ms

one by one until Ms′ = 0 for some s′.
By Lemma 2, to generate an individual with Ms−1 bits of 0 through bit-wise mutation,

for an individual with Ms bits of 0, the probability is at most Ms

n
, for an individual with

Ms + 1 bits of 0, the probability is at most (Ms+1
n

)2, and for an individual with less than
Ms+1 bits of 0, the probability is at most (Ms+2

n
)3. Let X denote the number of individuals

with Ms − 1 bits of 0 in Rs, c0 = 4e
e−1 + o(1), and c1 = e−1

e
(c(v + 2) + c0 + 4) + o(c).

Then by Lemma 14, E[X] ≤ c0
Ms

n
+ c1(Ms+1

n
)2 + c(n + 1)(Ms+2

n
)3 = (4e

e−1 + o(1))Ms

n
.

So the probability that X ≥ 1 is at most (4e
e−1 + o(1))Ms

n
and the waiting time for the

event Ms − Ms+1 = 1 to happen is at least (4e
e−1 + o(1))−1 n

Ms
iterations. So, for Ms

to decrease from v to 0 one by one, the total waiting time is ∑v
i=1(4e

e−1 + o(1))−1 n
i

>

n(4e
e−1 + o(1))−1 ln v = n(4e

e−1 + o(1))−1 1−µ
3 ln n.

Since the probability that event i) once Ms reaches v, it decreases by at most one
in an iteration happen given that event ii) M0 ≥ v happen, and the probability that
event ii) happens, are both at least 1 − o(1), and when both i) and ii) happen, the
number of iterations needed is at least n(4e

e−1 + o(1))−1 1−µ
3 ln n, we have that in any

case, the number of iterations needed is at least (1 − o(1))2(n(4e
e−1 + o(1))−1 1−µ

3 ln n) =
(1 − o(1))(n(4e

e−1 + o(1))−1 1−µ
3 ln n), corresponding to N(n(4e

e−1 + o(1))−1 1−µ
3 ln n) fitness

evaluations.

7 Experiments
To complement our theoretical results, we also experimentally evaluate some runs of the
NSGA-II on the OneJumpZeroJump benchmark, both with respect to the runtime
and the population dynamics. We note that [DQ22] already presented some results on
the runtime (for k = 3, N/(2n − k + 3) = 2, 4, 8, and n = 20, 30). We therefore mostly
concentrate on the population dynamics, i.e., the number of individuals in the population
for each objective value on the Pareto front, which our theoretical analyses have shown
to be crucial for determining the lower bound and the leading coefficient of the runtime.

7.1 Settings
We implemented the algorithm as described in the Preliminaries section in Python, and
tested the following settings.

• Problem size n: 50 and 100.

• Jump size k: 2. This small number was necessary to admit the problem sizes above.
Problem sizes of a certain magnitude are needed to see a behavior not dominated
by lower-order effects.

15

n = 50 n = 100
N = 2(n − 2k + 3) 247,617 2,411,383
N = 4(n − 2k + 3) 416,284 3,858,084
N = 8(n − 2k + 3) 714,812 6,792,456

Table 1: Average runtime of the NSGA-II with bit-wise mutation on the OneJumpZe-
roJump benchmark with k = 2.

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

N=2(n-2k+3)

N=4(n-2k+3)

N=8(n-2k+3)

Figure 1: Average number of individuals with i ∈ [k..n − k] 1-bits for n = 50 and k = 2.

• Population size N : 2(n−2k +3), 4(n−2k +3), and 8(n−2k +3). [DQ22] suggested
that, even though their mathematical analysis applies only for N ≥ 4(n − 2k + 3),
already for N = 2(n − 2k + 3) the algorithm still succeeds empirically. Therefore,
we have also experimented with N = 2(n − 2k + 3) to confirm that our arguments
for the population dynamics still apply for the smaller population size.

• Selection for variation: fair selection.

• Mutation method: bit-wise mutation with rate 1
n
.

• Number of independent repetitions per setting: 10.

7.2 Results on the Runtime
Table 1 contains the average runtime (number of fitness evaluations done until the full
Pareto front is covered) of the algorithm. For all of the settings, we have observed a
standard deviation that is between 50% to 80% of the mean, which supports our reasoning
that the runtime is dominated by the waiting time needed to find the two extremal
points of the front, which is the maximum of two geometric random variables. An obvious
observation from the data is that increasing N does not help with the runtime, supporting
our theoretical results that the lower bound on the runtime increases when N increases.
Moreover, for all the settings that we have experimented with, the average runtime is well
above our theoretically proven lower bound made tighter by discarding the lower order
terms, namely 3

2(4
e−1)−1Nnk.

16

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98

N=4(n-2k+3)

N=8(n-2k+3)

Figure 2: Average number of individuals with i ∈ [k..n − k] 1-bits for n = 100 and k = 2.

7.3 Results on the Population Dynamics
For most of the experiments conducted, we have also recorded the population dynamics
throughout the executions of the algorithm (mistakenly, we did not do so for n = 100
and N = 2(n − 2k + 3); however, from the very even distribution seen for n = 50 for
this population size, we would be very surprised to see a different pattern for n = 100; of
course, we will fix this omission for the final version of this paper). Specifically, for each
run, for every nk/50 iterations, we record for each i ∈ [k..n − k] how many individuals
there are in the parent population with i bits of 1. Since as shown in our theoretical
analyses and [DQ22], the greatest contributor to the runtime is the waiting time to find
the all-ones and the all-zeroes strings after the inner part of the Pareto front has been
discovered, we are mostly interested in how the population dynamics develop in that
phase. To this end, we discard data points recorded when the inner part of the Pareto
front has not been fully covered, and those recorded after one of the extremal points has
already been discovered. The final numbers reported for a run is the average of the data
points kept. In the end we report the average of the means across 10 repetitions. In all of
the runs, we have never observed an initial population not contained in the inner part of
the Pareto front, supporting our theoretical arguments and also making the experiments
fall into the scenario that we have studied theoretically.

Figure 1 contains the average number of individuals throughout a run of the algorithm
for each point on the inner part of the Pareto front for n = 50, averaged by the 10
repetitions, and Figure 2 contains that for n = 100. An obvious observation is that for
all experiment settings, we have that the average number of individuals with k or n − k
1-bits is less than the proven upper bound 4e

e−1 ≈ 6.33. When doubling the population
size, the number of individuals with k or n−k 1-bits grows. This does not contradict with
our upper bound (which is independent of the population size), but it only suggests that
the precise average occupation of these objective values contains a dependence on the
population size that is small enough for this number to be bounded by 4e

e−1 ≈ 6.33. We
note that for the setting with fixed sorting the precise occupation number 2ec

2ec−c+2 ± o(1)
we proved displayed exactly such a behavior.

Our experimental data also give the occupation numbers for the other objective values.
We did not discuss these in much detail in our theoretical analysis since all we needed to
know was the occupation number for the outermost points of the inner part of the Pareto
front and a relatively generous upper bound for the points one step closer to the middle.

17

A closer look into our mathematical analysis shows that it does give good estimates only
for objective values close to the outermost points of the Pareto front. For that reason, it
is interesting to observe that our experimental data show that the population is, apart
from few positions close to the outermost positions, very evenly distributed on the Pareto
front (that is, a typical position is occupied by c individuals, where c is such that the
population size is N = c(n − 2k + 3)). Given the mostly random selection of most of the
next population (apart from the up to 4 individuals with positive crowding distance per
position) and the drift towards the middle in the offspring generation (e.g., a parent with
3
4n ones is much more likely to generate an offspring with fewer than more ones), this
balanced distribution was a surprise to us. While it has no influence on the time to find
the Pareto front of OneJumpZeroJump, we suspect that such balanced distributions
are preferable for many other problems.

8 Conclusions and Future Works
In this work, we gave the first lower bounds matching previously proven upper bounds
for the runtime of the NSGA-II. We proved that the runtime of the NSGA-II with popu-
lation size at least four times the Pareto front size computes the full Pareto front of the
OneMinMax problem in expected time (number of function evaluations) Ω(Nn log n)
and the one of the OneJumpZeroJump problem with jump size k in expected time
Ω(Nnk). These bounds match the corresponding O(Nn log n) and O(Nnk) upper bounds
shown respectively in [ZLD22] and [DQ22]. These asymptotically tight runtimes show
that, different from many other population-based search heuristics, the NSGA-II does
not profit from larger population sizes, even in an implementation where the expected
numbers Θ(n log n) and Θ(nk) of iterations is the more appropriate performance criterion.
Together with the previous result [ZLD22] that a population size below a certain value
leads to a detrimental performance of the NSGA-II, our results show that the right choice
of the population size of the NSGA-II is important for an optimal performance, much
more than for many single-objective population-based algorithms, where larger popula-
tion sizes at least for certain parameter ranges have little influence on the number of
fitness evaluations needed.

The main obstacle we had to overcome in our analysis was to understand sufficiently
well the population dynamics of the NSGA-II, that is, the expected number of individuals
having a particular objective value at a particular time. While we have not completely
understood this question, our estimates are strong enough to obtain, for the OneJumpZe-
roJump benchmark and the NSGA-II using a fixed sorting to determine the crowding
distance, a runtime guarantee that is also tight including the leading constant.

From this work, a number of possible continuations exist. For example, runtime analy-
ses which are tight including the leading constant allow one to distinguish constant-factor
performance differences. This can be used to optimize parameters or decide between dif-
ferent operators. For example, we have used the mutation rate 1

n
, which is the most

accepted choice for bit-wise mutation. By conducting our analysis for a general mutation
rate α

n
, one would learn how the mutation rate influences the runtime and one would be

able to determine an optimal value for this parameter. We note that a different mutation
rate not only changes the probability to reach the global optimum from the local one

18

(which is well-understood [DLMN17]), but also changes the population dynamics. We
are nevertheless optimistic that our methods can be extended in such directions.

References
[AD11] Anne Auger and Benjamin Doerr, editors. Theory of Randomized Search

Heuristics. World Scientific Publishing, 2011.

[BFN08] Dimo Brockhoff, Tobias Friedrich, and Frank Neumann. Analyzing hypervol-
ume indicator based algorithms. In Parallel Problem Solving from Nature,
PPSN 2008, pages 651–660. Springer, 2008.

[BQ22] Chao Bian and Chao Qian. Running time analysis of the non-dominated
sorting genetic algorithm II (NSGA-II) using binary or stochastic tournament
selection. In Parallel Problem Solving From Nature, PPSN 2022. Springer,
2022. Also available at https://arxiv.org/abs/2203.11550.

[BQT18] Chao Bian, Chao Qian, and Ke Tang. A general approach to running time
analysis of multi-objective evolutionary algorithms. In International Joint
Conference on Artificial Intelligence, IJCAI 2018, pages 1405–1411. IJCAI,
2018.

[DGN16] Benjamin Doerr, Wanru Gao, and Frank Neumann. Runtime analysis of evolu-
tionary diversity maximization for OneMinMax. In Genetic and Evolutionary
Computation Conference, GECCO 2016, pages 557–564. ACM, 2016.

[DKV13] Benjamin Doerr, Bojana Kodric, and Marco Voigt. Lower bounds for the
runtime of a global multi-objective evolutionary algorithm. In Congress on
Evolutionary Computation, CEC 2013, pages 432–439. IEEE, 2013.

[DLMN17] Benjamin Doerr, Huu Phuoc Le, Régis Makhmara, and Ta Duy Nguyen. Fast
genetic algorithms. In Genetic and Evolutionary Computation Conference,
GECCO 2017, pages 777–784. ACM, 2017.

[DPAM02] Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and T. Meyarivan. A fast
and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on
Evolutionary Computation, 6:182–197, 2002.

[DQ22] Benjamin Doerr and Zhongdi Qu. A first runtime analysis of the NSGA-II
on a multimodal problem. In Parallel Problem Solving From Nature, PPSN
2022. Springer, 2022. Also available at https://arxiv.org/abs/2204.13750.

[DZ21] Benjamin Doerr and Weijie Zheng. Theoretical analyses of multi-objective
evolutionary algorithms on multi-modal objectives. In Conference on Artifi-
cial Intelligence, AAAI 2021, pages 12293–12301. AAAI Press, 2021.

[Gie03] Oliver Giel. Expected runtimes of a simple multi-objective evolutionary al-
gorithm. In Congress on Evolutionary Computation, CEC 2003, pages 1918–
1925. IEEE, 2003.

19

https://arxiv.org/abs/2203.11550
https://arxiv.org/abs/2204.13750

[GL10] Oliver Giel and Per Kristian Lehre. On the effect of populations in evolu-
tionary multi-objective optimisation. Evolutionary Computation, 18:335–356,
2010.

[HZ20] Zhengxin Huang and Yuren Zhou. Runtime analysis of somatic contiguous
hypermutation operators in MOEA/D framework. In Conference on Artificial
Intelligence, AAAI 2020, pages 2359–2366. AAAI Press, 2020.

[HZCH19] Zhengxin Huang, Yuren Zhou, Zefeng Chen, and Xiaoyu He. Running time
analysis of MOEA/D with crossover on discrete optimization problem. In
Conference on Artificial Intelligence, AAAI 2019, pages 2296–2303. AAAI
Press, 2019.

[HZLL21] Zhengxin Huang, Yuren Zhou, Chuan Luo, and Qingwei Lin. A runtime
analysis of typical decomposition approaches in MOEA/D framework for
many-objective optimization problems. In International Joint Conference on
Artificial Intelligence, IJCAI 2021, pages 1682–1688, 2021.

[LTZ+02] Marco Laumanns, Lothar Thiele, Eckart Zitzler, Emo Welzl, and Kalyanmoy
Deb. Running time analysis of multi-objective evolutionary algorithms on
a simple discrete optimization problem. In Parallel Problem Solving from
Nature, PPSN 2002, pages 44–53. Springer, 2002.

[LZZZ16] Yuan-Long Li, Yu-Ren Zhou, Zhi-Hui Zhan, and Jun Zhang. A primary theo-
retical study on decomposition-based multiobjective evolutionary algorithms.
IEEE Transactions on Evolutionary Computation, 20:563–576, 2016.

[NSN15] Anh Quang Nguyen, Andrew M. Sutton, and Frank Neumann. Population size
matters: rigorous runtime results for maximizing the hypervolume indicator.
Theoretical Computer Science, 561:24–36, 2015.

[OGNS20] Edgar Covantes Osuna, Wanru Gao, Frank Neumann, and Dirk Sudholt. De-
sign and analysis of diversity-based parent selection schemes for speeding
up evolutionary multi-objective optimisation. Theoretical Computer Science,
832:123–142, 2020.

[QLZ22] Chao Qian, Dan-Xuan Liu, and Zhi-Hua Zhou. Result diversification by
multi-objective evolutionary algorithms with theoretical guarantees. Artificial
Intelligence, 309:103737, 2022.

[QYT+19] Chao Qian, Yang Yu, Ke Tang, Xin Yao, and Zhi-Hua Zhou. Maximizing sub-
modular or monotone approximately submodular functions by multi-objective
evolutionary algorithms. Artificial Intelligence, 275:279–294, 2019.

[Thi03] Dirk Thierens. Convergence time analysis for the multi-objective counting
ones problem. In Evolutionary Multi-Criterion Optimization, EMO 2003,
pages 355–364. Springer, 2003.

20

[ZD22] Weijie Zheng and Benjamin Doerr. Better approximation guarantees for the
NSGA-II by using the current crowding distance. In Genetic and Evolutionary
Computation Conference, GECCO 2022, pages 611–619. ACM, 2022.

[ZLD22] Weijie Zheng, Yufei Liu, and Benjamin Doerr. A first mathematical runtime
analysis of the Non-Dominated Sorting Genetic Algorithm II (NSGA-II). In
Conference on Artificial Intelligence, AAAI 2022, pages 10408–10416. AAAI
Press, 2022.

[ZQL+11] Aimin Zhou, Bo-Yang Qu, Hui Li, Shi-Zheng Zhao, Ponnuthurai Nagaratnam
Suganthan, and Qingfu Zhang. Multiobjective evolutionary algorithms: A
survey of the state of the art. Swarm and Evolutionary Computation, 1:32–
49, 2011.

21

	Introduction
	Previous Works
	Preliminaries
	The NSGA-II Algorithm
	The OneJumpZeroJump Benchmark
	The OneMinMax Benchmark

	Lower Bound on the Runtime of the NSGA-II on OneJumpZeroJump
	Precise Runtime of the NSGA-II with Fixed Sorting on OneJumpZeroJump
	Lower Bound on the Runtime of the NSGA-II on OneMinMax
	Experiments
	Settings
	Results on the Runtime
	Results on the Population Dynamics

	Conclusions and Future Works

