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Abstract. In constraint satisfaction, pairwise consistency (PWC) is a
well-known local consistency improving generalized arc consistency in
theory but not often in practice. A popular approach to enforcing PWC
enforces arc consistency on the dual encoding of the problem, allowing
to reuse existing AC algorithms. In this paper, we explore the bene-
fit of this simple approach in the optimization context of cost function
networks and soft local consistencies. Using a dual encoding, we obtain
an equivalent binary cost function network where enforcing virtual arc
consistency achieves virtual PWC on the original problem. We exper-
imentally observed that adding extra non-binary cost functions before
the dual encoding results in even stronger bounds. Such supplemen-
tary cost functions may be produced by bounded variable elimination
or by adding ternary zero-cost functions. Experiments on (probabilistic)
graphical models, from the UAI 2022 competition benchmark, show a
clear improvement when using our approach inside a branch-and-bound
solver compared to the state-of-the-art.

Keywords: dual encoding · non-binary cost function network · soft local
consistency · branch-and-bound · graphical model · discrete optimization.

1 Introduction

Cost Function Networks (CFNs) can represent many combinatorial problems in
a compact way as a sum of local functions over discrete variables. They have
been used in bioinformatics [27,1], resource allocation [2,5], and elsewhere [9].
They can model probabilistic graphical models such as Bayesian networks and
Markov random fields [8], which find many applications in artificial intelligence
[32,17,28]. We focus here on the minimization task, a.k.a. Weighted Constraint
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Satisfaction Problem (WCSP), where exact methods mostly rely on a branch-
and-bound procedure. Its efficiency depends on the compromise between the
quality of its lower bound and the time to construct it. Several directions have
been studied, inspired by Arc Consistency (AC) in CSP [6]. Stronger soft local
consistencies were rarely considered, except in [7,22,13]. Pairwise Consistency
(PWC) is known as the strongest consistency that can be enforced without
introducing new cost functions when computing the lower bound [35]. It was
never implemented nor tested in a branch-and-bound WCSP solver. In constraint
programming, PWC was compared to generalized AC for solving non-binary
CSPs given in extension [26,29,33,34]. These approaches rely on a dual encoding
into a binary CSP. We explore a similar idea in the CFN framework.

2 Background

2.1 Weighted Constraint Satisfaction Problem

A Cost Function Network (CFN) is a quadruplet (V,D, S, f) where V is a set of
variable indices (or variables in short), D = (Di)i∈V is the list of finite domains
for all the variables, S is a set of subsets of V , and f = (fA)A∈S is the list of
all the cost functions (defined below). A value of variable i ∈ V is denoted by
xi ∈ Di. By DA =

∏
i∈ADi we denote the Cartesian product of the domains of

variables A ⊆ V , and by x = (xi)i∈A ∈ DA an assignment to variables A. For
B ⊆ A ⊆ V , x|B = (xi)i∈B denotes the projection of x ∈ DA to variables B. A
cost function fA is a function of a set of variables A taking non-negative values
or possibly infinity (representing forbidden assignments), i.e., it is a function
DA → R+ ∪ {∞}, where A ⊆ V is the scope of the function and |A| its arity.
A nullary cost function f∅ with an empty scope is just a constant. We assume
that the network is normalized (with one cost function per scope), ∅ ∈ S (f∅
will be used as a problem lower bound) and {i} ∈ S ∀i ∈ V (the network
contains all unary functions). Given a CFN (V,D, S, f), the Weighted Constraint
Satisfaction Problem (WCSP) is to find a complete non-forbidden assignment
x ∈ DV minimizing the function

∑
A∈S fA(x|A). This problem is NP-hard.

Example 1. Let V = {1, 2, 3, 4, 5}, S = {∅, {1}, {1, 2, 3}, {1, 4}, {2}, {2, 3, 4}, {2, 3, 5},
{3}, {4}, {5}}, D2 = D3 = D5 = {a, b}, and D1 = D4 = {a, b, c}. The WCSP aims to
minimize the objective function f∅ + f1(x1) + f123(x1, x2, x3) + f14(x1, x4) + f2(x2) +
f234(x2, x3, x4)+f235(x2, x3, x5)+f3(x3)+f4(x4)+f5(x5) (where we abbreviated f{1,2,3}
by f123, etc.) over all assignments (x1, x2, x3, x4, x5) ∈ DV .

2.2 Constraint Satisfaction Problem and Local Consistencies

If all cost functions in a CFN take only values 0 or ∞, the cost functions are
called constraints and the WCSP reduces to the Constraint Satisfaction Problem
(CSP). In this case, we denote the cost functions by rA rather than fA, so the
Constraint Network (CN) is defined by (V,D, S, r). The values 0 and ∞ act as
the logical values true and false, respectively. For u, v ∈ {0,∞}, we will denote
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logical conjuction by u∧ v = u+ v and the disjunction by u∨ v = min{u, v}. As
in CFN, we assume a CN contains all unary constraints, i.e., {i} ∈ S ∀i ∈ V .

For any B ⊆ A ⊆ V , we define the projection of a constraint rA: DA →
{0,∞} onto variables B to be the constraint rA|B : DB → {0,∞} given by

rA|B(x) =
∨

x′∈DA: x′|B=x

rA(x′) ∀x ∈ DB . (1)

We say that a pair of constraints {rA, rB} is Pairwise Consistent (PWC) if they
admit the same set of assignments to their shared variables, i.e.,

rA|A∩B = rB |A∩B (2)

where ‘=’ denotes here equality of functions. A CN is PWC if all possible pairs
of its constraints are PWC.4 If we restrict PWC to pairs of constraints where
one constraint is unary, we get (generalized) arc consistency (GAC, AC for bi-
nary CNs). PWC or GAC can be enforced on a CN P by iteratively forbidding
assignments that violate (2). The minimal set of changes required to do this is
unique and the resulting CN is called the PWC (or GAC) closure of P .

We say that a local consistency ψ′ is not weaker than a local consistency ψ
if for every CN instance for which the ψ-consistency closure is empty, the ψ′-
consistency closure is also empty. We say that ψ and ψ′ are equally strong if ψ′

is not weaker than ψ and vice versa. We say that ψ′ is strictly stronger than ψ
if ψ′ is not weaker than ψ but they are not equally strong. It can be shown that:
(i) for binary CNs, AC is equally strong as PWC; (ii) for non-binary CNs, PWC
is strictly stronger than GAC.

The PWC relation of constraints is clearly reflexive and symmetric. It is in
general not transitive but it satisfies the following weaker condition:

Theorem 1. [16] Let C1, . . . , Cn ∈ S be such that for every i = 1, . . . , n, we
have C1 ∩ Cn ⊆ Ci. Let for every i = 1, . . . , n − 1, constraint rCi be PWC with
rCi+1

. Then rC1
is PWC with rCn

.

Thus, enforcing PWC for some constraint pairs implies that the PWC con-
dition holds also for some other pairs, which can simplify algorithms [16,30].

2.3 Soft Local Consistencies

To solve a WCSP to optimality, most methods rely on a branch-and-bound al-
gorithm. At each node, the solver computes a bound using either static memory-
intensive bounds [11] or memory-light ones [6] better suited to dynamic variable
orderings. We focus on the latter, called Soft Arc Consistencies (SAC), because
they reason on each non-unary cost function one by one, in a generalization of

4 This corresponds to full PWC because unary constraints may appear in these pairs.
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propagation in CSPs. In particular, Virtual Arc Consistency (VAC) is charac-
terized by AC of a CN derived from the CFN. To any CFN P = (V,D, S, f) we
associate the CN Bool(P ) = (V,D, S, r) where r∅ = 0 and

rA(x) =

{
0 if fA(x) = 0

∞ if fA(x) > 0
∀A ∈ S \ {∅}, x ∈ DA. (3)

Definition 1. [6] A CFN P is VAC if the GAC closure of Bool(P ) is non-
empty.

Algorithms enforcing SACs apply a sequence of Equivalence-Preserving Trans-
formations (EPTs) to the CFN. An EPT moves finite costs between two cost
functions. That is, for some A,B ∈ S we add a function ϕAB : DA∩B → R with
scope A ∩B to cost function fA and subtract it from function fB :

fA(x) := fA(x) + ϕAB(x|A∩B) ∀x ∈ DA, (4a)
fB(x) := fB(x)− ϕAB(x|A∩B) ∀x ∈ DB . (4b)

This operation can be seen as moving a set of costs (stored as the values of
the ϕAB) from fB to fA. The values of ϕAB cannot be arbitrary because we
require the resulting cost functions to have non-negative values. EPTs preserve
the WCSP objective function because the terms ϕAB and −ϕAB cancel out in
the sum

∑
A∈S fA(x|A). CFNs (V,D, S, f) and (V,D, S, f ′) are equivalent if one

can be obtained from the other by a sequence of EPTs. SAC algorithms aim to
derive an equivalent CFN where f ′∅ > f∅.

2.4 Dual Encoding of a Cost Function Network

An encoding into a binary CFN is a way to get better bounds. The dual encoding
of a CFN P = (V,D, S, f) is a CFN Dual(P ) = (S \ {∅}, D̄, S̄, f̄) where:

– The variables of the dual problem are the scopes S \ {∅} of P .
– The domain of variable A ∈ S \ {∅} of the dual problem is D̄A = DA.
– The scopes are S̄ = {∅}∪{ {A} | A ∈ S }∪{ {A,B} | A,B ∈ S, A∩B 6= ∅ }.
– The dual nullary cost function is unchanged: f̄∅ = f∅.
– The dual unary cost function with scope {A} ∈ S̄ is the function f̄A = fA.
– The dual binary cost function with scope {A,B} ∈ S̄ is the channeling

constraint f̄AB : DA ×DB → {0,∞} with values:

f̄AB(y, y′) =

{
0 if yi = y′i ∀i ∈ A ∩B
∞ otherwise

∀y = (yi)i∈A ∈ DA, y
′ = (y′i)i∈B ∈ DB .

Example 2. Let P be the CFN described in Example 1, represented by the hypergraph
in Fig. 1(a). Then, Dual(P ) has 9 dual variables, y1, y123, y14, . . . , y5, and 16 binary
channeling constraints, as shown by the constraint graph in Fig. 1(b). Using Theorem 1,
a minimal dual graph can be produced with only 9 binary constraints (Fig. 1(c)).



Virtual Pairwise Consistency 5

x1

x2 x3

x4

x5

(a)

y1

y123

y14 y4

y234

y2 y3

y235

y5

(b)

y1

y123

y14 y4

y234

y2 y3

y235

y5

(c)

x1

y123

f14

x4

y234

x2 x3

y235

x5

(d)

y234 y235
aaa
aab
aac
aba
abb
abc
baa
bab
bac
bba
bbb
bbc

aaa
aab

aba
abb

baa
bab

bba
bbb

(e)

Fig. 1. (a) Hypergraph of a CFN, (b) its dual graph, (c) a minimal dual graph, (d) the
partial dual graph used in the experiments, (e) a binary channeling constraint created
by the dual encoding (an edge depicts a 0-cost assignment).

(a) f123 x1 x2 x3 Cost f234 x2 x3 x4 Cost f14 x1 x4 Cost (b) y123 Cost y234 Cost y14 Cost
a a a 0 a a a 1 a a 2 aaa 0 aaa 1 aa 2
a a b 1 a a b 1 a b 2 aab 1 aab 1 ab 2
b a a 1 a a c 1 a c 2 baa 1 aac 1 ac 2
b a b 1 f1 x1 f2 x2 bab 1 y1 y2
c a a 1 b 2 a 0 caa 1 b 2 a 0
c a b 1 c 2 b 2 cab 1 c 2 b 1

Table 1. (a) Original CFN. (b) dual unary cost functions (missing tuples have 0 cost).

3 Virtual Pairwise Consistency

Following the idea of VAC, we introduce Virtual Pairwise Consistency (VPWC),
a stronger soft local consistency than VAC.

Definition 2. A CFN P is VPWC if the PWC closure of Bool(P ) is non-empty.

Combining Definition 2 and previous results [16], we get that enforcing
VPWC is possible using existing algorithms.

Theorem 2. Let P be a CFN. P is VPWC if and only if Dual(P ) is VAC.

Proof. It is known that a CN has a non-empty PWC closure if and only if
its dual has a non-empty AC closure [16]. Clearly, for any CFN P we have
Dual(Bool(P )) = Bool(Dual(P )). Therefore, P is VPWC iff Dual(Bool(P )) =
Bool(Dual(P )) has a non-empty AC closure, which means Dual(P ) is VAC. ut

Example 3. Following Ex.2, we give the costs for each cost function in Table 1(a). VAC
on this problem derives a lower bound of 2, since x1 = a is not consistent with r14.
VAC on the dual (Table 1(b)) derives a lower bound of 3, because (a) all values in y14
compatible with y1 = a (i.e., aa, ab, ac) have cost 2, and (b) all values compatible with
y123 = aaa in y234 (i.e., aaa, aab, aac) have a cost of 1, therefore they do not support
y2 = a, making it inconsistent in y123. This leads to a lower bound of 3.

The dual can help derive better lower bounds, as we show in the next section,
but introduces a possibly large number of variables with large domains which
may slow down search. We propose to first dualize the problem and get a first
strong lower bound, then return to the primal. The following shows that this is
always possible without introducing higher order cost functions5.
5 This is unsurprising because the strongest bound that can be derived using EPTs is
obtained using a linear program which includes pairwise consistency constraints [35].
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Theorem 3. Let P be a CFN and let Q be a CFN equivalent to Dual(P ). Then
there exists a CFN Q′ equivalent to Q such that all binary constraints of Q′ are
hard and Q′ has the same lower bound as Q.

Proof (Sketch). The main observation is that every dual binary cost function
(the channeling constraint) rij has a block structure (see Fig. 1(e)): there exists
a partition Hi = {s1, ..., sm} of the domain Di and a partition Hj = {s′1, ..., s′m}
of Dj such that for each xi ∈ sk and xj ∈ s′l we have rij(xi, xj) = 0 whenever
k = l and rij(xi, xj) = ∞ whenever k 6= l. This implies that every EPT that
moves cost into rij can be matched with another EPT that moves cost out of it
without affecting the lower bound. ut

We can now summarize the base version of our approach. Given a CFN P ,
we apply EPTs to its dual encoding Dual(P ) (using a VAC algorithm) to obtain
a CFN Q with an increased lower bound. Theorem 3 lets us obtain from Q
another CFN Q′ in which all channeling cost functions are constraints. We can
thus undo the dual encoding, i.e., obtain a CFN P ′, equivalent to P , such that
Q′ = Dual(P ′). If Q was VAC then, by Theorem 2, P ′ is VPWC.

4 Experimental Results on UAI 2022 Competition

We won a recent competition on probabilistic graphical models. 6 We present
results on a set of 120 tuning instances where 63 have maximum arity of 3.

We evaluate three solvers: daoopt (version from UAI 2012 competition with
1-hour settings as given in [23]), cplex (version 20.1.0.0, forcing completeness
with zero absolute and relative gaps, translating CFN to 0-1 LP by the tuple
encoding [15]), and toulbar2 (version 1.2.0) using two state-of-the-art methods,
Variable Neighborhood Search (VNS) [24] winner of UAI 2014 competition, 7

and Hybrid Best-First Search with VAC in preprocessing (VACpre-HBFS), in-
cluding VAC integrality heuristics [31]. 8 We implemented VPWC in the latest
version of toulbar2. It is either enforced in preprocessing (and then converted back
to the primal, see Theorem 3) (VPWCpre-HBFS) or maintained during search
(HBFS-VPWC). EDAC is always enforced [19,27], providing a default value or-
dering heuristic when no solution is found for solution-based heuristics [12]. The
branching heuristic is dom/wdeg [4] combined with last conflict [20].

We use a slightly different binary encoding, a hybrid between the dual and
hidden variable encoding [25].9 We keep the original variables and the original
binary cost functions unchanged, and only dualize the original non-binary cost
functions. We add channeling constraints between those pairs of dual variables
that are not redundant by Theorem 1 and with intersecting scopes strictly greater

6 https://uaicompetition.github.io/uci-2022, see MPE and MMAP entries.
7 http://auai.org/uai2014/competition.shtml, http://miat.inrae.fr/toulbar2
8 Options -A -P=1000 -T=1000 -vacint -vacthr -rasps -raspsini in toulbar2-vacint.
9 Called double encoding in [26], it allows more flexibility to enforce various levels of
consistency from GAC to PWC depending on the selected channeling constraints.

https://uaicompetition.github.io/uci-2022
http://auai.org/uai2014/competition.shtml
http://miat.inrae.fr/toulbar2
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VACpre-HBFS VPWCpre-HBFS HBFS-VPWC
instance (n, d, e, a) (n′, e′, a′) (n′′, d′′, e′′) time (gap) time (gap) time (gap)
Grids21 (1600,2,4800,2) (799,2810,4) (1628,16,4675) - (42.4%) - (3%) 1216.83
Promedas12 (1766,2,1766,3) (826,1884,4) (1373,16,2223) 5.17 6.34 7.7
ProteinFold11 (400,2,1160,2) (190,604,4) (381,16,1005) - (16.1%) 8.48 12.43
wcsp12 (311,4,5732,3) (305,5887,3) (12708,64,70959) - (49.9%) - (19.3%) - (54.8%)
Table 2. UAI 2022 detailed results on a selection of four instances for HBFS methods.
’-’ means the instance is unsolved in 1h. (in parentheses, remaining optimality gap).

than 1. We also add channeling constraints between dual and primal variables.10
Note that Theorem 2 and 3 remain valid. Moreover, we apply this encoding
only partially, indeed for high-arity constraints, a full dual encoding might mean
prohibitive amount of memory to store the dual domains. Hence, only non-binary
cost functions of arity less than 10 and fewer than 215 non-forbidden tuples are
dualized. Those remaining are lazily propagated by VAC/EDAC when they have
less than three unassigned variables in their scope. The memory used by each
channeling constraint between a pair of dual variables is restricted to at most
1MB (arbitrarily chosen). Larger channeling constraints are ignored.

Additional preprocessing is performed beforehand for all the HBFS meth-
ods in order to find better bounds. An initial upper bound is found by local
search [21,3] and VAC-based heuristics [31]. To reduce the problem size and
improve lower bounds, we apply bounded variable elimination with a min-fill
ordering [10,18,14]11 and add ternary zero-cost functions on the most-preferred
triangles (total memory space of extra ternary functions limited to 1MB).12 It
results in at most 6-ary (resp. zero-cost ternary) cost functions for 84 (resp.
81) instances, making our encoding applicable to 85 instances rather than 63.
Finding a (quasi-)minimal dual graph (see Theorem 1) yielded 700.3 channeling
constraints on average, a 4.5% savings compared to the complete dual graph.

The experiments were run on a single core of Intel Xeon E5-2683 2.1GHz
processors with 1-hour CPU-time and 8GB memory limit. toulbar2 was able
to solve optimally 86 instances using VACpre-HBFS or VNS. daoopt solved 92
instances and cplex 95 instances. Using our partial dual encoding with VPWC
applied in preprocessing, VPWCpre-HBFS solved 95 instances, and when applied
during search, HBFS-VPWC solved 99 instances, 15% above VACpre-HBFS,
being the best exact method for this benchmark.

Table 2 shows for a selection of UAI 2022 instances their size in terms of
number of variables n, maximum domain size d, number of cost functions e,
maximum arity a of the original problem, after preprocessing it with bounded

10 The resulting non-minimal graph for Example 2 is shown in Fig. 1(d).
11 It is done only if the median degree in the original problem is less than 8, eliminating

variables with a current degree less than or equal to the original median degree.
12 With additional options -i -pils -p=-8 -O=-3 -t=1. A triangle is defined by three

variables involved in three binary cost functions. The score of a triangle is given by
the average cost in the three functions. Triangles with the largest score are selected
first. This approach allows to simulate soft path inverse consistency [22].
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Fig. 2. Normalized lower and upper bounds (y-axis) as time passes (x-axis in hour,
zoomed on the right fig.) for cplex, daoopt, and toulbar2 on UAI 2022 tuning benchmark.

variable elimination and adding triangles (n′, d′, e′, a′ with d′ = d), and after
applying our partial dual encoding (n′′, d′′, e′′, a′′ with a′′ = 2). It gives also the
CPU-time in seconds to solve an instance using HBFS methods or the remaining
optimality gap if unsolved after 1 hour. On Grids21, only HBFS-VPWC solves
the instance. Notice the large improvement on the optimality gap by VPWCpre
compared to VACpre. On Promedas12 and ProteinFolding11, VPWCpre-HBFS
develops 13 and 32250 nodes, respectively, and takes about the same time as
HBFS-VPWC which develops 4 and 992 nodes, respectively. For wcsp12, the
size of the encoding slows down the search too much, suggesting harder limits
for our partial dual encoding.

We report in Fig. 2 the average normalized lower and upper bounds as time
passes (computed as in [31]). Here VNS provides the best upper bounds in limited
time whereas HBFS-VPWC is slightly slower than VPWCpre-HBFS, VACpre-
HBFS, and VNS, but still faster than daoopt and cplex. Both VPWCpre-HBFS
and HBFS-VPWC offer the best average lower bounds in less than 1 hour. HBFS-
VPWC found 117 best solutions, VPWCpre-HBFS 112, VACpre-HBFS 106, VNS
105, daoopt 99, and cplex 95. VNS found 2 single-best solutions (wcsp11, wcsp12).
For the competition, we combined VNS and HBFS-VPWC sequentially.13

5 Conclusion

We have defined virtual pairwise consistency and shown how it can efficiently be
used in preprocessing or during search by applying the existing VAC algorithm to
a dual encoding of the problem. In the future we will explore the benefit of other
binary encodings [34] and adapt the VAC algorithm to the specific constraints
of the encoding as it is done in CSPs [29,33]. Finding good heuristics to exploit
a partial dual encoding in conjunction with bounded variable elimination and
zero-cost function addition is also an interesting question.
13 See toulbar2-ipr results on the UAI 2022 Tuning Leader Board. Multiple runs of VNS

with increasing floating-point precision were done with a total amount of time of 1
2
h.

The remaining time is allocated to HBFS-VPWC. Each search procedure gives its
best solution found to the next search procedure. On UAI 2022 tuning instances,
this approach found 119 best solutions, ranking first among our 7 tested methods.
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