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A DESCRIPTION OF THE ZETA MAP ON DYCK

PATHS AREA SEQUENCES

VIVIANE PONS

CNRS, IRL CRM Montréal – Université Paris-Saclay, CNRS,

Laboratoire Interdisciplinaire des Sciences du Numérique

Abstract. We give a simple iterative description of the well known
Zeta map on Dyck paths which sends the dinv,area statistics to
the area,bounce statistics. Our description uses Dyck paths area
sequences and can be implemented easily.

Introduction

The qt-Catalan symmetry is known to be one of the most intriguing
questions in algebraic combinatorics. Rooted in the study of diagonal
harmonic polynomials [Hag08], it leads to numerous combinatorial in-
terpretations and open questions. One of the main problems can be
stated in an elementary combinatorial way but has, to this day, no
elementary solution. Dyck paths are a well known family of combina-
torial objects counted by the Catalan numbers. The area of a Dyck
path is a natural statistic leading to common q-enumerations of Cata-
lan objects. The dinv is another statistic which appears to be more
mysterious but has the particularity of having the same distribution as
the area. Moreover, there are algebraic proofs that these two statistics
are symmetric: the number of Dyck paths with area q and dinv t is the
same as the number of Dyck paths with area t and dinv q. There is
no combinatorial proof of this symmetry, i.e., there is no bijection on
Dyck paths which exchange the two statistics. Besides, this symme-
try can be extended to more general settings such as triangular Dyck
paths [BM22] and is conjectured to be schur-positive.
The purpose of this note is to share an algorithm that I have had

for some time and which might be useful to the many mathematicians
working around this problem. I got an early interest in this question
and of course tried to find the mysterious bijection myself. I failed
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like many others and instead came up with a bijective map that did
not switch the statistics but did send the area to the dinv . As I soon
discovered, this turned out to the very well known ζ map described
by Haglund [Hag08] (page 50) and since then generalized and largely
studied [ALW14, TW18]. More precisely, this is ζ−1. As this was no
breakthrough and as I could not make much of it, I never properly
wrote it until today.
However, in recent discussions I had, I discovered that many people

with strong interest in the original problem were actually not aware of
this natural description of the ζ map. It has the advantage of being
an iterative process: it inserts letters inside the area sequence. The
image of a Dyck path of size n is obtained through a single insertion
on the image of the corresponding Dyck path of size n − 1. As a
consequence, it can be implemented easily and we hereby share the
SageMath implementation directly derived from this paper [Pon22].
Even though this description seems very natural, I have not seen

it anywhere else. There is already an implementation of the ζ map
in SageMath [The22] using a recursive approach on the area sequence.
I tend to believe that the proof that the SageMath implementation
is indeed the map described by Haglund is rather close to mine but
the only reference found in the SageMath manual is the Haglund map
and no proper proof of the implementation is offered. Besides, the
SageMath map is slightly different as it works on a reversed Dyck path
and is then not directly the ζ map. This is why I have decided to
properly write and prove the present construction of the ζ map with
no other ambition than to share this piece of knowledge.
The paper is organized in a very straight forward manner. We first

present in Section 1 the objects at stake, namely: Dyck paths, area
sequences, and the three important statistics of the ζ map area, dinv ,
and bounce. The map itself is found in Section 2.1 along with the
proof that it is bijective and sends the area of a Dyck path to the dinv .
In Section 2.2, we prove that, like the original ζ−1 map, it sends the
bounce to the area. Finally, in Section 2.3, we show that our map is
indeed ζ−1.
In an external annex [Pon22], we provide the detailed implementa-

tion of the map in SageMap and a demo SageMath Jupyter Notebook

following the same structure as the paper, implementing all examples
and providing tests for all results. This demo is hosted on a Github

repo providing a dynamic link allowing to run the code on a distant
server without any installation needed.
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1. Area sequences and statistics

1.1. Area sequence of a Dyck path. A Dyck path is a path in the
grid consisting of north steps and east steps starting at (0, 0) and such
that the path never goes below the line y = x. The size of a Dyck path
is the number of north steps. Dyck paths are a very classical family of
combinatorial objects. The number of Dyck paths of size n is given by
the Catalan numbers

1

n+ 1

(

2n

n

)

.

The area sequence of a Dyck path is a word on {0, 1, . . . , n− 1} such
that the letter in position i gives the number of full 1 × 1 cell in the
grid to the right of the ith north step and to the left of the y = x line.
In other words, these are the cells on the ith line between the path and
the y = x line. In Fig. 1, we show all Dyck words of size 3 with their
area sequences. An example of size 17 is given on Fig. 2.

000 001 010 011 012

Figure 1. The Dyck paths of size 3 and their area sequences.

01211123301101221

Figure 2. An example of a Dyck path of size 17 with
its area sequence.

The following characterization of area sequences is a well known fact.
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Proposition 1. A word w1 . . . wn of size n on {0, 1, . . . , n− 1} is the

area sequence of a Dyck path if and only if w1 = 0 and for all 1 ≤ i < n,

we have 0 ≤ wi+1 ≤ wi + 1.

The proof is immediate. The letter wi corresponds to the number of
cells to the right of the ith north step xi. If xi is not the last north step,
it is followed by a certain number e of east steps before the next north
step. The conditions on the Dyck path impose that 0 ≤ e ≤ wi + 1
and we see that wi+1 = wi + 1− e. Here are the 14 area sequences for
Dyck paths of size 4.

0000 0001 0010 0011 0012 0100 0101
0110 0111 0112 0120 0121 0122 0123
The area of a Dyck path is the total number of grid cells between the

path and the y = x line. In other words, this is the sum of the values
of the area sequence. For example, the area of the Dyck Path of Fig. 2
is 22.

1.2. The dinv . The dinv statistic on Dyck paths appears in the work
of Haglund [Hag08]. There are many equivalent definitions. We directly
give a description on the area sequence.

Definition 2. Let w = w1 . . . wn be an area sequence. For each letter

wi, we call di the number of letters wj with j > i and wj = wi or

wj = wi − 1. Then, the dinv of w is the sum of the di.

For example, for w = 010, we obtain d1 = 1, d2 = 1 and d3 = 0,
and so dinv(w) = 2. In the example of Fig. 2, the di are given by
2, 9, 10, 8, 7, 6, 6, 3, 2, 1, 4, 3, 0, 1, 2, 1 giving a total dinv of 65.

1.3. The bounce. Another important statistic when working on the ζ
map is the bounce of a Dyck path. The bounce can be computed by
drawing a “bounce path” under the Dyck path. The bounce path is a
Dyck path which starts at (0, 0) and goes up as much as possible by
staying under the original Dyck path, then goes straight to the y = x

line and “bounces back” again as much as possible as drawn on Fig. 3.
The area sequence of the bounce path is the bounce sequence which
can be computed directly from the area sequence of the Dyck path.

Definition 3. Let w = w1 . . . wn be an area sequence, the bounce se-

quence b1 . . . bn of w is given by

b1 = 0

bi =

{

bi−1 + 1 if bi−1 + 1 ≤ wi

0 otherwise.
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Fig. 3 shows an example of Dyck path with its bounce path and
bounce sequence in red. The “bounces” of the bounce sequence cor-
respond to all the non initial zeros, we write B(w) = {i > 1; bi = 0}.
Now the bounce statistic is obtained by the summing the reversed po-

sitions of the bounces, i.e., their distance to the end of the path which
is given by n− i+ 1. For example, in Fig. 3, we have b4 = b6 = b10 =
b12 = b13 = b16 = 0. We sum all their reversed positions and we obtain
bounce(w) = 14 + 12 + 8 + 6 + 5 + 2 = 47.

01211123301101221
01201012301001201

Figure 3. The bounce path of a Dyck path

Note that the external annex [Pon22] provides an implementation of
those statistics following the exact definitions of the paper.

2. The map

2.1. Area to dinv. In this section, we describe a map which, given
an area sequence w with

∑

w = q, creates a new area sequence w′ such
that dinv(w′) = q. Our algorithm is based on the notion of insertion.
An insertion on an area sequence w at position i is defined as follows

ins0(w) := 0w1 . . . wn;(2.1)

insi(w) := w1 . . . wi(wi + 1)wi+1 . . . wn(2.2)

for 1 ≤ i ≤ n. For example, ins0(010) = 0010, ins1(010) = 0110,
ins2(010) = 0120, and ins3(010) = 0101.
It is clear that the result of an insertion on an area sequence is also

an area sequence. We are now going to specify a certain list of possible
insertions on a given area sequence in order to control the exact dinv

added by the insertion.
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Definition 4. Let w be an area sequence whose maximum value is m.

We write M(w) = w−1(m) := {i;wi = m}, the positions of the let-

ters m in w. We now define M’(w) the set of positions i such that

wi = m− 1 and for all j > i, wj < m. And finally, let us define i0(w)
to be the position of the leftmost letter m in the rightmost block of con-

secutive m letters. Then the set M∪M’∪{i0 − 1} are the admissible
insertion positions of w. The admissible order on this set is a total

order given by the elements of M in decreasing order followed by the

elements of M’ in decreasing order followed by i0 − 1.
If w is the empty word, the admissible insertion positions of w are

the set of size 1 {0}.

For example, if w = 0122210122011, then M(w) = {3, 4, 5, 9, 10},
M’(w) = {12, 13}, and i0(w) = 9. The admissible insertion position in
admissible order are 10, 9, 5, 4, 3, 13, 12, 8. The annex [Pon22] provides
the code to compute more examples.

Proposition 5. Let w be an area sequence and C = c0, . . . , ck its

admissible insertion positions taken in admissible order, then

(2.3) dinv(insci(w)) = dinv(w) + i,

and the new word insci(w) has i + 2 admissible insertion positions.

Besides, the inserted value, at position ci + 1, is always of maximal

value in insci(w) and it is the leftmost element of the rightmost block

of consecutive maximal values.

Proof. If i < |M(w)|, then we have wci = m. For convenience, we
write w̃ := insci(w). When inserting, we obtain w̃ci+1 = m + 1. As m
was the maximal value of w, there are no other letters equal to m+ 1
in w̃ and because we take the positions of M(w) in decreasing order,
there are i letters equal tom to the right of w̃ci so dci+1 = i in w̃ and the
rest of the dinv is left unchanged. Besides, we have M(w̃) = {ci + 1}
and M’(w̃) = {ci−1 + 1, ci−2 + 1, . . . , c0 + 1}, i.e., the shifted positions
of the letters m in w which were to the right of the position ci, and
i0(w̃) = ci − 1. The number of admissible insertion positions in w̃ is
then given by i+2. Finally, the inserted letter is of maximal value and
as it is the only letter with such value, it has the desired properties.
If |M(w)| ≤ i < |M(w)| + |M’(w)|, then we have wci = m − 1.

When inserting, we obtain w̃ci+1 = m. Note that in this case, i =
|M(w)|+ j with j ≥ 0. Besides, by definition of the admissible order,
ci is greater than all the elements of M(w). This means that for all
k ∈ M, dk is increased by one in w̃ and there are no elements equal
to m to the right of w̃ci+1. On top of that, as we take the values of
M’(w) in decreasing order, there are j elements in w̃ with value m− 1
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to the right of w̃ci+1. So dci+1 = j and in total, the dinv is increased by
|M(w)|+ j = i. Besides, |M(w̃)| = |M(w)|+1 whereas |M’(w̃)| = j

and so w̃ has |M(w)|+1+ j+1 = i+2 admissible insertion positions.
Finally, the inserted letter is of value m, which is still the maximal
value in w̃, it is to the right of all the other letters m and forms by
itself a block of a single element.
Now, the last case is when the insertion occurs at i0 − 1. Remember

that i0 is the leftmost letter m in the rightmost block of consecutive
letters m in w. It is possible that i0 = 1 is the first letter of w. In this
case, wi0 as well as all letters of w are actually equal to 0, and after
the insertion, we obtain w̃i0 = w̃0 = 0 = m. Otherwise, as wi0 = m, we
have wi0−1 ≥ m−1. By definition of i0, wi0−1 cannot be equal tom and
because m is maximal among the letters of w, we obtain wi0−1 = m−1.
After the insertion, we have w̃i0 = m. For all j ∈ M(w) such that
j < i0, the value dj increases by 1 whereas di0 = |{j ∈ M(w); j >
i0}| + M’(w) so the dinv is indeed increased by |M(w)| + |M’(w)|.
Besides, |M(w̃)| = |M(w)| + 1 whereas M’(w̃) = M’(w) and so w̃
has |M(w)|+ |M’(w)|+2 admissible insertion positions. Finally, the
inserted letter is of maximal value and by definition of i0, it is the
leftmost of the rightmost block of consecutive maximal letters. �

To illustrate this proof, we show all admissible insertions on the area
sequence 0122210122011 on Fig. 4. The dinv of the sequence is 44. We
have marked the admissible insertion positions with ·i where i is the
index in the admissible order. You can check that an insertion at ci
corresponds to an increase of i in the dinv and that the new sequence
has i+ 2 insertion positions.

insertion position area sequence dinv

0 1 2 ·4 2 ·3 2 ·2 1 0 1 ·7 2 ·1 2 ·0 0 1 ·6 1·5 44
c0 = 10 0 1 2 2 2 1 0 1 2 2 ·1 3 ·0 0 1 1 44
c1 = 9 0 1 2 2 2 1 0 1 2 ·2 3 ·0 2 ·1 0 1 1 45
c2 = 5 0 1 2 2 2 ·3 3 ·0 1 0 1 2 ·2 2·1 46
c3 = 4 0 1 2 2 ·4 3 ·0 2 ·3 1 0 1 2 ·2 2 ·1 0 1 1 47
c4 = 3 0 1 2 ·5 3 ·0 2 ·4 2 ·3 1 0 1 2 ·2 2 ·1 0 1 1 48
c5 = 13 0 1 2 ·5 2 ·4 2 ·3 1 0 1 2 ·2 2 ·1 0 1 1 ·6 2·0 49
c6 = 12 0 1 2 ·5 2 ·4 2 ·3 1 0 1 2 ·2 2 ·1 0 1 ·7 2 ·0 1·6 50
c7 = 8 0 1 2 ·5 2 ·4 2 ·3 1 0 1 ·8 2 ·2 2 ·1 2 ·0 0 1 ·7 1·6 51

Figure 4. All admissible insertions on a given area sequence.
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Theorem 6. Let w be an area sequence, we define ψ(w) recursively as

follows. If w = ε, then ψ(w) := ε. Otherwise, w = ua where u is a

word and a is a letter, and ψ(w) := insca(ψ(u)) where c0, c1, . . . , ck are

the admissible insertion positions of ψ(u) taken in admissible order.

Then ψ defines a bijection on area sequences such that dinv(ψ(w)) =
area(w).

In other words, you read the area sequence from left to right and
each letter is giving you an insertion to perform on the image using the
admissible insertion positions.

Proof. This is immediate by induction using Proposition 5. Indeed,
you first need to check that the map is well defined, i.e. that a ≤ k,
k + 1 being the number of admissible insertion positions of ψ(u). It
is true on the initial case: the first of letter of w is 0 and there is 1
admissible insertion position on the empty word. Then Proposition 5
ensures that after inserting at ca, you obtain a+2 admissible insertion
positions corresponding to the a + 2 possible letters that could follow
a (from 0 to a + 1). Then (2.3) gives you the expected result for the
dinv . Besides, it is indeed a bijection as the operation is reversible:
by Proposition 5, the last inserted letter is the leftmost letter in the
rightmost block of maximal values. By removing this letter from a
word w′, the difference in dinv tells you by which letter a the preimage
w of w′ ends. �

Fig. 5 shows the step by step computation of the word of Fig. 2. At
each step, the admissible insertion positions are indicated with their
order on the image ψ.

2.2. Bounce to area. In this section, we explain how the bounce

statistic can be understood through the ψ map. This will also be
key to prove that this map is actually ζ−1.

Proposition 7. Let w be an area sequence of size n and ψ the map

defined in Theorem 6. We write b1, . . . bn the bounce sequence of w and

B(w) the bounces of w, i.e. the non initial 0 of the bounce sequence.

Remember that the bounce of w is given by the sum of the reversed

position n− i+ 1 for all i in B(w). We have

• bn = 0 if and only if max(ψ(w)) = max(ψ(u)) + 1, where u is

the prefix of w of size n− 1;
• | B(w)| = max(ψ(w))
• |M(ψ(w))| = bn + 1;
• |M’(ψ(w))| = wn − bn;
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0 ·10·0
0
01 ·20 ·1 0·0
01
012 ·30 ·2 0 ·1 0·0
012
0121 0 0 ·2 1 ·0 0·1
0120
01211 0 0 1 ·1 0 ·2 1·0
01201
012111 0 0 1 ·2 2 ·0 0 1·1
012010
0121112 0 0 1 ·3 2 ·1 2 ·0 0 1·2
0120101
01211123 0 0 1 ·4 2 ·2 2 ·1 2 ·0 0 1·3
01201012
012111233 0 0 1 2 ·3 2 ·2 2 ·1 0 1 ·4 2·0
012010123
0121112330 0 0 1 2 2 2 0 1 2 ·1 3·0
0120101230
01211123301 0 0 1 2 2 2 0 1 2 ·2 3 ·1 3·0
01201012301
012111233011 0 0 1 2 2 2 0 1 2 3 ·2 4 ·0 3·1
012010123010
0121112330110 0 0 1 2 2 2 0 1 2 3 4 ·1 5 ·0 3
0120101230100
01211123301101 0 0 1 2 2 2 0 1 2 3 4 ·2 5 ·1 5 ·0 3
01201012301001
012111233011012 0 0 1 2 2 2 0 1 2 3 4 ·3 5 ·2 5 ·1 5 ·0 3
012010123010012
0121112330110122 0 0 1 2 2 2 0 1 2 3 4 5 ·3 6 ·0 5 ·2 5 ·1 3
0120101230100120
01211123301101221 0 0 1 2 2 2 0 1 2 3 4 5 6 ·1 5 5 ·2 6 ·0 3
01201012301001201

Figure 5. The step by step ψ map on an example. On
the left, an area sequence w with its bouncing path un-
derneath. On the right, ψ(w) with its admissible inser-
tion positions.
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where M’ and M are taken from Definition 4. Besides, for each 1 ≤
k ≤ max(ψ(w)), the number of values greater than or equal to k in

ψ(w) is given by the reversed position of the kth bounce of the the

bounce sequence of w.

For example, look at the image of w = 01211123301101221 which
can be found on the last line of Fig. 5. As before, we write b1 . . . bn
its bounce sequence given in red underneath w. We have that bn > 0
and the last inserted value is a 6 which is equal to max(ψ(u)). We
have | B(w)| = 6 because the bounce sequence has 6 non initial zeros.
|M(ψ(w))| corresponds to the number of letters equal to 6 in ψ(w),
there are indeed 2 = bn + 1 of them. And |M’(ψ(w)| is the number
of letters equal to 5 to the right of the last 6, there are none of them
and indeed wn − bn = 0. Besides, the first bounce of w is b4 = 0, with
reversed position 14, and there are 14 values greater than or equal to 1
in ψ(w). The second bounce is b6 = 0 with reversed position 12 which
is the number of values greater than or equal to 2 in ψ(w). This can
be checked for all the other bounces of w.

Proof. Again, the proof can be made by induction. First note that
the area sequence 0 of size 1 satisfies all the conditions. In this case,
the bounce sequence is also 0 as well as ψ(w). We have B(w) = ∅,
M(ψ(w)) = {1} and M’(ψ(w)) = ∅.
Now take w an area sequence of size n > 0 and suppose that it

satisfies the conditions. We prove that the area sequence wa with
0 ≤ a ≤ wn + 1 also satisfies it. We use all the previous notations and
write m := max(ψ(w)) for convenience.
Let us look at the case where a < |M(ψ(w))|. In particular, this

means that bn + 1 > a. By definition of the bounce sequence, this
implies bn+1 = 0. Remember from the proof of Proposition 5 that if we
take a < |M(ψ(w))|, the inserted letter in ψ(w) is going to be m+ 1.
So we have indeed that bn+1 = 0 and max(ψ(wa)) = m + 1. Besides
B(wa) = B(w) ∪ {n + 1} and so | B(wa)| = max(ψ(wa)). Now as we
added a letter m+1, for all k ≤ m we have increased by 1 the number
of letters in the image with a value greater than or equal to k. As the
length of the bounce sequence has increased, the reversed positions of
all the elements of B(w) has also been increased by one. And there is a
unique valuem+1 which corresponds to the reversed position 1 of bn+1.
This ensures that the proposition is satisfied. We still need to check
that the conditions on M and M’ are still satisfied on wa. We have
indeed that |M(wa)| = 1 = bn+1 + 1. By definition of the map and of
the admissible insertion order, the value of a indicates the number of
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letters equal to m which will end up to the right of the inserted m+ 1
in ψ(wa). So we have |M’(ψ(wa)| = a = a− bn+1, because bn+1 = 0.
In the case where a > |M(ψ(w))|, the letter inserted in ψ(w) is m.

On the bounce sequence, we have a > bn +1 and so bn+1 = bn + 1 > 0,
and | B(wa)| = | B(w)| = m = max(ψ(wa)). As before, for all k ≤ m

we have increased by 1 the number of letters in the image with a value
greater than or equal to k. As the length of the bounce sequence has
increased, the reversed positions of all the elements of B(wa) = B(w)
has also been increased by one and the proposition is satisfied. Now
|M(ψ(wa)| = |M(ψ(w))| + 1 = bn + 1 + 1 = bn+1 + 1 as we have
added one letter of maximal value m. Finally, by definition of the
map, we have a = |M(w)|+ j where j is the number of letters equal to
m− 1 to the right of the newly inserted value m in ψ(wa). We obtain
|M’(ψ(wa))| = j = a− |M(ψ(w))| = a− (bn + 1) = a− bn+1. �

Corollary 8. Let w be an area sequence and ψ the map defined in

Theorem 6. Then

(2.4) bounce(w) = area(ψ(w)).

Proof. This is immediate: the proposition ensures that the sum of the
area sequence ψ(w) is the sum of the reversed positions of the bounce
sequence of w. �

2.3. The ζ map. Haglund describes the ζ map in [Hag08], page 50.
In particular, it has the property that for a Dyck path w, dinv(w) =
area(ζ(w)) and area(w) = bounce(ζ(w)). We have seen that this is
also the case for ψ−1 and we can prove that these are the same maps.

Proposition 9. The ψ map is the inverse of the classical ζ map defined

by Haglund.

Proof. This is a direct consequence of Proposition 7. Indeed, in his
book Haglund describes the image of a path π though ζ by first con-
structing the bounce path of π. He gives the bounce steps α1, . . . , αk.
The bounces of the pre-image of π through ψ as described in Proposi-
tion 7 are just a reformulation of those and follow the same rule.
Now the path ζ(π) between two peaks of the bounce path is entirely

determined by the relative positions of the occurrences of two consec-
utive values in the area sequence of π (first the 0 and 1, then the 1
and 2, etc.). Similarly, each new 0 in the bounce path of an area se-
quence w creates a new maximum m in ψ(w), the values of w before
the next bounce will determine the relative placements of the m and
m− 1 values in a way that is similar to Haglund’s construction. �
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