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ABSTRACT

Version identification (VI) has seen substantial progress
over the past few years. On the one hand, the introduc-
tion of the metric learning paradigm has favored the emer-
gence of scalable yet accurate VI systems. On the other
hand, using features focusing on specific aspects of mu-
sical pieces, such as melody, harmony, or lyrics, yielded
interpretable and promising performances. In this work,
we build upon these recent advances and propose a met-
ric learning-based system systematically leveraging four
dimensions commonly admitted to convey musical simi-
larity between versions: melodic line, harmonic structure,
rhythmic patterns, and lyrics. We describe our deliber-
ately simple model architecture, and we show in particu-
lar that an approximated representation of the lyrics is an
efficient proxy to discriminate between versions and non-
versions. We then describe how these features complement
each other and yield new state-of-the-art performances on
two publicly available datasets. We finally suggest that
a VI system using a combination of melodic, harmonic,
rhythmic and lyrics features could theoretically reach the
optimal performances obtainable on these datasets.

1. INTRODUCTION

The version identification (VI) problem has received much
attention over the last two decades. Pioneering works
showed promising accuracy on small audio datasets, but
remained difficult to scale to larger modern audio corpora.
The recent introduction of data-driven approaches based
on neural networks led to significant progress towards ac-
curate yet scalable VI systems [1].

Different paradigms are currently active: one approach
considers VI as a classification task, and intends to classify
versions into the same class [2], while another approach
formulates VI as a metric learning problem, and intends
to minimize (resp. maximize) a distance between versions
(resp. non-versions) [3, 4]. Recent works have also pro-
posed a combination of both [5]. Metric learning or classi-
fication approaches seem to yield similar performances, as
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it has been observed for other MIR applications [6]. These
systems also differ according to a perhaps more important
aspect: their input feature. Some use a generic audio rep-
resentation, such as the Constant-Q transform [7], and rely
on the expressivity of the network to disentangle relevant
musical features. Others use specialized features, such as
the melodic line, the harmonic structure and/or the lyrics,
and rely on input data to discriminate between versions and
non-versions [3, 4, 8, 9].

In this work, we pursue in the direction of a metric-
based approach using specialized features. We build upon
the system described in [8], conserving its principle and
architecture, and explore the use of new input features.
The reason is motivated by three practical considerations:
firstly, the metric learning approach yields a very com-
pact representation of audio (its embedding), which can
be conveniently stored, indexed and queried in very large
databases. Secondly, the embedding space and the musical
similarity measure that is obtained for each different spe-
cialized features is meaningful from a musical perspective,
and can be reused for other purposes, e.g. playlist gen-
eration. Thirdly, the use of specialized features requires
smaller models that are faster to train and less energy con-
suming than larger architectures [10].

It can reasonably be assumed that different versions of
the same musical work share at least one of these four fea-
tures: the melodic line, the harmonic structure, the rhyth-
mic patterns and sometimes the lyrics. The role of melody
and harmony in version similarity has been thoroughly in-
vestigated [8]. The role of the lyrics has also been studied
recently, albeit not from a metric learning perspective [9].

In this work, we present a systematic study of the con-
tribution of these four features to version similarity, and
describe a metric learning-based system combining all of
them. We show that this combination provides new state-
of-the-art performances on two publicly available datasets.
We also show that an oracle using these feature embed-
dings nearly achieves the maximum theoretical perfor-
mances on these datasets, suggesting that design of future
VI systems reaching these performances may be possible.

The rest of this paper is organized as follows: we briefly
review the previous studies inspiring our current work
(Section 2). We then describe how we extracted rhythmic
and lyrics features, and our metric learning-based architec-
ture (Section 3). We present our experiments, discuss our
results (Section 4), and illustrate them with some examples
(Section 5). We conclude this paper with our future work.



2. RELATED WORK

In this section, we present a brief overview of the main
concepts that inspired our present work.

2.1 Metric learning

Learning a similarity metric that generalizes to unseen ex-
amples is a common objective in machine learning. The
goal is to learn how to map the data of interest into a com-
pact representation (its embedding), and to minimize (resp.
maximize) the distance between the embeddings of similar
(resp. dissimilar) examples. Various MIR applications rely
on a concept of musical similarity, e.g. music classifica-
tion [11], music recommendation [12], or VI systems [1],
among many others. Musical similarity between two tracks
is typically evaluated first deriving an intermediate feature
representation from the audio waveform and then comput-
ing a distance between feature pairs.

In the past few years, metric learning has proven its ef-
ficiency to build scalable yet accurate VI systems. These
modern architectures typically rely on a CNN-based model
trained with a triplet loss [13] to embed the musical infor-
mation contained in the input feature into a single vector
embedding that can be rapidly compared via Euclidean dis-
tance computation. However, these different systems have
made different choices regarding their input features: for
instance, Doras et al. [3] used a melodic line representa-
tion, Yesiler et al. [4] used a harmonic structure represen-
tation, and Du et al. [5] used a more generic CQT. The
choice between specialized or generic features seems to
have a non-negligible impact on the required size of the
models (the former uses a 5-layers CNN, while the latter
uses a ResNet50).

In this work, we choose the first alternative, and we pro-
pose to explore other specialized features beside melody
and harmony, in particular the rhythmic and lyrics features.

2.2 Rhythm patterns detection

Musical similarity based on rhythmic patterns has long
been investigated in MIR research, e.g. for audio re-
trieval [14] or music classification [15]. With the purpose
of analysis of musical style and recognition of musical
genres, Pampalk et al. introduced the fluctuation patterns
(FP), representing rhythmic patterns in different frequency
bands, and their evolution over time [16]. The basic as-
sumption is that similar songs exhibit similar characteristic
rhythmic patterns, and that comparing FP between tracks
shall give enough information about their similarity or dis-
similarity from a genre or mood perspective. We propose
here to extend this idea to VI context, and to use the fluctu-
ation patterns to discriminate versions from non-versions.

In practice, the FP is obtained computing the audio Mel
spectrogram, summing up the high Mel bands to high-
light the low frequencies and performing a second STFT
in each mel band along the time axis. This results in a
3-dimensional matrix with axes corresponding to the the
Mel bands, the frequency modulation and the time. The

frequency modulation axis therefore represents the period-
icity of the loudness in the corresponding Mel band: for
example, a drum kick playing at 120 bpm will be repre-
sented here with a frequency modulation at 2 Hz in the low
frequency bands. Finally, a perceptual filter is applied on
each frequency modulation band. This filter is supposed to
highlight the frequency modulations most perceived by the
human ear ; for example, a frequency modulation at 4 Hz
gives a more intense feeling of fluctuation strength. The
3-dimensional matrix is then averaged along the frequency
axis, resulting in a representation of the variations of the
frequency modulation over time.

One of the FP limitation is the use of a linear scale to
represent periodicities. This was addressed by Pohle et
al., who used a log scale to represent frequency modula-
tions [17]. The advantage is that the same onset structure
played at different tempi will have all its activations shifted
by the same amount along the frequency modulation axis.
Another way to achieve this tempo invariance is to com-
pute periodicities with a Constant-Q transform (CQT) in-
stead of a STFT [18].

2.3 Lyrics recognition

In automatic speech recognition (ASR), the traditional ap-
proach relies on a language model and an acoustic model,
typically implemented as a Hidden Markov Model, possi-
bly coupled with a neural network [19]. An alternative ap-
proach consists in implementing both language and acous-
tic models as a single neural network, trained in an end-to-
end fashion with a Connectionist Temporal Classification
(CTC) loss [20]. CTC-based models outputs the proba-
bility distribution of symbols at each time frame, which
can be decoded into the most likely sequence of symbols
via classical beam search. This approach has become very
popular since fully convolutional end-to-end architectures
have achieved performances comparable to those of the hy-
brid architectures [21].

Although singing voice has many obvious differences
with speech, automatic lyrics recognition (ALR) or align-
ment (ALA) systems are usually directly inspired by ASR
applications. Moreover, the recent introduction of large
lyrics annotated audio datasets, such as Dali [22], has fos-
tered the development of new ALR systems, whether they
are based on the traditional [23] or end-to-end [24] archi-
tectures. While the former seems to yield better results
[25], the latter has the advantage of its simplicity, both at
training and inference time.

However, very few attempts have been made to use
lyrics to assess audio track similarity. It was proposed to
improve a query-by-humming system [26], but to the best
of our knowlege, only Vaglio et al. proposed the use of
lyrics for version identification [9]. They used an existing
ALR system to extract lyrics from the audio, and estimate
track similarity via a string matching algorithm. However,
the comparison cost of such algorithm quickly becomes
prohibitive when querying large modern corpora, and lim-
its the scalability of this approach.
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Figure 1: Examples of the Constant Q Fluctuation Patterns (CQFP).

3. PROPOSED METHOD

In this section, we describe and motivate our design
choices. We first present how we extracted our rhythmic
and lyrics features, and publicly release our datasets 1 . We
then present our metric learning-based VI model.

3.1 Rhythmic features

Our assumption is that the FP representation described in
Section 2.2 displays both the local rhythmic patterns along
the frequency modulation axis, as well the global rhythmic
evolution of the piece over time. We therefore propose to
use this representation as our rhythmic feature for version
identification. However, we introduce a CQT to compute
the periodicities, and to achieve tempo invariance along the
frequency modulation dimension. We choose as minimum
frequency for the CQT 0.5 Hz (i.e. 30 bpm which we as-
sume would be the tempo of the slowest tracks), and to
cover up to 5 octaves i.e. 16Hz (960 bpm) with 10 bins per
octave to get all the rhythmic subtleties. We kept the same
other parameters as in the original implementation [16].

As an illustration, Figure 1 represents the CQ-FP ob-
tained for different tracks with characteristic time signa-
ture. The first example has a 4/4 time signature, and clearly
displays a rhythmic pattern present around 2 Hz (~120
bpm), as well as another periodicity around 4 Hz, which
corresponds to a clear binary rhythm. The second example
has a 3/4 time signature, and the rhythm of a waltz appears
clearly: one beat at 1 Hz (60 bpm) and another at about 3
Hz. Finally, the third example has a 5/4 time signature (ir-
regular), and we find this characteristic by observing bands
at 1, 2 and 3 Hz. It can also be observed on each example
that our rhythmic feature also represents the global struc-
ture of the piece over time, which is probably another rel-
evant aspect in a VI context. Finally, as the modulation
frequency dimension has a constant Q-factor, a change in
tempo would not change the spacing between activations.

3.2 Lyrics features

We argue that accurate lyrics recognition is not required for
version identification, and that identifying only a few com-
mon words, or even a few common character sequences,
between tracks shall be sufficient to determine whether
they are versions or not. We thus implemented a delib-
erately simple fully convolutional ALR system inspired by
recent ASR system [21, 27].

1 https://ircam-anasynth.github.io/papers/2022/abrassart

Model It is an 8-layers 2D-CNN with 3x3 kernels. Max-
pooling 2x2 is applied on the first 2 layers to decrease time
and frequency dimensions, and max-pooling 1x2 is applied
on the next 6 layers only for frequency dimension. The
first layer has 64 filters, doubled at each layer up to 512. A
dropout with rate 0.3 is applied.
Inputs/outputs We use no pre-processing on the audio (no
data augmentation, no voice separation). As classically
done in ASR, we use 40 band Mel-spectrogram with 10ms
timeframes as input feature. The model outputs a posteri-
orgram corresponding to the log-probabilities of the ’a...z’
letters, the space symbol and the CTC blank symbol, i.e.
28 bins in total. An output example is shown Figure 2.
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Figure 2: A posteriorgram obtained for 20 sec. of audio.

Training and inference The model is trained on the Dali
dataset, which provide 12k+ polyphonic audio with lyrics
annotations at the word level. We used audio chunks of
10 seconds, and used a CTC loss with Adam optimizer to
train the model to align between audio and text. We evalu-
ated its performances on a distinct Dali test subset using a
greedy beam search decoding with no language model, and
achieved a modest Character Error Rate (CER) of 0.496.

3.3 Convolutional architecture

The same simple architecture (with different configura-
tions) has shown its ability to capture relevant melodic or
harmonic similarity between versions [3,4]. It consists in a
plain 5-layers Convolutional Neural Network (CNN), en-
coding each input feature using time and frequency max-
pooling, while increasing the number of filters at each
layer. The CNN output feeds a gated temporal attention
mechanism [28], which was found to help the model to fo-
cus on relevant portions of the input features. We refer the
reader to our previous work [8] for implementation details.

In this work, we keep the exact same generic architec-
ture, and propose two new configurations to process also
the rhythmic and lyrics features. We summarize the con-
figuration used for each of the four features in Table 1.



Features Melodic [3] Harmonic [4] Rhythmic Lyrics
Layers n k ks p ps d n k ks p ps d n k ks p ps d n k ks p ps d

1 64 3x3 1x1 2x2 2x2 0.0 256 180x12 1x1 1x12 1x1 0.0 64 3x20 1x1 1x2 1x2 0.4 64 10 1 5 2 0.3
2 128 3x3 1x1 2x2 2x2 0.1 256 5x1 1x1 1x1 1x1 0.0 128 3x3 1x1 1x2 1x2 0.3 128 10 1 5 2 0.2
3 256 3x3 1x1 2x2 2x2 0.1 256 5x1 1x1 1x1 1x1* 0.0 256 3x3 1x1 1x2 1x2 0.2 256 10 1 5 2 0.1
4 512 3x3 1x1 2x2 2x2 0.2 512 5x1 1x1 1x1 1x1 0.0 512 3x3 1x1 1x2 1x2 0.1 512 10 1 5 2 0.1
5 1024 3x3 1x1 2x2 2x2 0.3 512 5x1 1x1 1x1 1x1* 0.0 1024 3x3 1x1 1x2 1x2 0.0 1024 10 1 5 2 0.0

Table 1: Configuration of the 5-layers CNN used for the features. n : number of filters, k : kernel size, ks : kernel stride, p :
pool size, ps : pool stride, d : dropout. 1st dimension is time, 2d dimension is frequency. Convolutions are "same" for Me,
Rh and Ly, and "valid" for Ha. *Ha uses dilation rate of 20 and 13 along time dimension on 3rd and 5th layers respectively.

Rhythmic features Given the tempo invariance on the pe-
riodicity dimension explained in Section 3.1, the first layer
has a 20 bins kernel on this axis to capture all patterns
within 2 octaves (for instance quarter, eight and sixteenth
notes). All other layers have 3x3 kernel with max-pooling
of size 2 on the periodicity axis.
Lyrics features We conducted various experiments to find
the best kernel size to apply to the lyrics. It appeared that a
rather short receptive field of 10 bins yield the best results.
We kept it for all layers, with a mean-pooling of size 5.

Finally, a dense layer applied after the temporal atten-
tion block outputs a 512 bins embeddings, L2-normalized
so that each track becomes a point on the surface of the
unit hypersphere, bounding the distance between 2 points
within the [0,2] interval.

3.4 Embedding concatenation

In this work, we investigated only a late embedding fusion
scheme, which simply consists in concatenating each fea-
ture embedding, and to L2-normalize the concatenated re-
sult. It is straightforward to show that the distance between
a pair of normalized concatenation of n feature embed-
dings is the quadratic mean of the n distances between each
feature embedding pair. All feature combination scores in
Section 4 have been obtained using this method.

The practical advantage of this simple concatenated em-
bedding is twofold: it remains easy to store and to query
in an large index, and the lookup can be done for some
specific feature combinations only (zero masking the un-
wanted feature embeddings).

4. EXPERIMENT AND RESULTS

In this section, we present our experimental setup and
results. For brevity, we will denote melodic, harmonic,
rhythmic and lyrics features by their abbreviations Me, Ha,
Rh, and Ly, respectively.

4.1 Experimental setup

We use the exact same protocol as in our previous work [8].
Training We trained our four models on the publicly avail-
able dataset SHS5+

1 , which contains ~62k covers of ~7.5k
works. We used the provided features for Me and Ha, and
extracted Rh and Ly from the audio, as described in sec-
tions 3.1 and 3.2. We used a semi-hard triplet loss, using
an Adam optimizer, an initial learning rate of 1e−4 and a
batch size of 64. All other details are replicated from [8].

Test We tested our four models on SHS4-
1 , containing

~50k covers of ~20k works. We also retrained models on
SHS5+/4-and tested on Da-Tacos 2 , containing 13k covers
of 1k works and 2k confusing tracks [29]. As some sam-
ples overlap between Da-Tacos, SHS4-and Dali, we made
sure that none of these samples were used for scoring the
models, as done in [5].

For each feature, we used the corresponding trained
model to compute each track embedding, and computed
their pairwise distance matrix. For feature combinations,
distance matrix is computed using the quadratic mean of
each feature distance matrix, as described in Section 3.4.

4.2 Results

We summarize in Table 2 the performances obtained on
SHS4-and Da-Tacos by our models, reporting the metrics
classically used for VI: Mean Average Precison (MAP),
mean number of correct answers in the first 10 (MT@10)
and mean rank of first correct answer (MR1).

Train set SHS5+ Pruned SHS5+/4-

Test set Pruned SHS4- Pruned Da-Tacos
Input feature MAP MT@10 MR1 MAP MT@10 MR1
Me 0.427 0.822 1131 0.363 4.064 97
Ha 0.538 1.003 982 0.488 5.256 63
Rh 0.099 0.231 2921 0.055 0.689 244
Ly 0.672 1.190 968 0.393 4.596 199
Me+Ha 0.693 1.256 453 0.626 6.668 32
Me+Ha+Ly 0.800 1.396 291 0.602 6.480 33
Me+Ha+Rh 0.688 1.250 413 0.557 5.994 33
Me+Ha+Rh+Ly 0.785 1.378 286 0.560 6.054 33
Me+Ha (O) 0.879 1.521 97 0.837 8.709 4
Me+Ha+Rh (O) 0.939 1.607 21 0.905 9.303 1
Me+Ha+Ly (O) 0.963 1.637 14 0.918 9.398 1
Me+Ha+Rh+Ly (O) 0.978 1.658 4 0.951 9.657 1

Table 2: Performance metrics obtained on SHS4-and Da-
Tacos for input features and their combinations. O=oracle

We first examine the performances of each single feature.
Me and Ha results are in line with our previous work [8].
Rhythmic features The performances obtained using Rh
are clearly lower, which suggests that our rhythm feature is
not providing relevant VI information, or that the rhythm
patterns themselves are not specific enough to discriminate
between versions and non-versions. As a consequence,
adding Rh degrades our Me+Ha baseline. This is not en-
tirely surprising, as many non-versions might exhibit sim-
ilar rhythmic patterns (we will however see in Section 4.3
and Section 5 that Rh can be relevant in some cases).

2 https://github.com/MTG/da-tacos



Lyrics features In contrast, the use of lyrics clearly out-
performs the other features on SHS4-. This confirms that
versions often share the same lyrics, and that even a very
inaccurate ALR system can be beneficial to VI. The combi-
nation Me+Ha+Ly improves by more than 10% the Me+Ha
performances, which will be explained in Section 5.1.

On Da-Tacos, we observe much less clear-cut results.
As already noticed by Vaglio et al. [30], Da-Tacos has
about 20% of instrumental songs. A closer look to our
results shows that these songs typically produce false pos-
itives. Following Vaglio et al., we pruned the instrumen-
tal songs from Da-Tacos, and recomputed the results for
Ly, obtaining MAP=0.674, MT@10=5.931 and MR1=59,
which is consistent with the values obtained for SHS4-.

4.3 Oracle results

We also present in Table 2 the results obtained by an ora-
cle. This oracle only considers the best performing feature
to compute each pairwise distance: for each pair of tracks,
it only uses the feature embeddings yielding the lowest
(resp. highest) distance for versions (resp. non-versions).

Interestingly, it appears that the performances of an or-
acle using three or four features approaches the theoretical
optimal values on our two datasets. This is particularly
clear with the Me+Ha+Ly and Me+Ha+Rh+Ly combina-
tions: the MAP tends to 1.0, i.e. most versions have been
ranked in the first answers for each query. The MR1 also
tends to 1, i.e. first answer is correct for most queries.
The MT@10 also tends to the theoretical optimal values
(in SHS4-, each track has 2, 3 or 4 versions, and its optimal
MT@10=1.695, while in Da-Tacos, each track has 0 or 12
versions, and its optimal MT@10=10).

The Figure 3 displays the contribution of each feature
to the oracle score, i.e. which feature is the most relevant
to determine if two tracks are versions ("Positive pairs") or
non-versions ("Negative pairs").
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Figure 3: Most relevant feature proportions to identify
positive and negative pairs on SHS4-.

It appears that Ha is usually the most efficient feature
to discriminate between versions or non-versions. How-
ever, both Me and Ly contribute importantly to identifica-
tion (e.g. resp. 25% and 21% of the positive pairs, 33%
and 28% of the negative pairs in the Me+Ha+Ly combi-
nation). Finally, and even though Rh alone yields poor
results, its contribution is not negligible when combined
with other features (e.g. 14% of the negative pairs in the
Me+Ha+Rh+Ly combination).

4.4 Comparison with state-of-the-art

Performances obtained by recent VI systems are summa-
rized in Table 3 (second column indicates the embedding
size used by each system).

Our system using Me+Ha+Ly improves the state-of-the-
art on SHS4-and on Da-Tacos (without instrumentals).

Test set SHS4- Da-Tacos
Model Emb. MAP MT@10 MR1 MAP MT@10 MR1
Doras et al. [8] 512 0.660 1.080 657 0.635 6.744 30
Vaglio et al. [30] n/a n/a n/a n/a 0.804* n/a n/a
Du et al. [5] 1536 n/a n/a n/a 0.791 n/a 19.2

Me+Ha+Ly (ours) 1536 0.800 1.396 291 0.818* 7.205* 16*
0.602 6.480 33

Table 3: Sota comparison on SHS4-and Da-Tacos. ∗results
obtained on Da-Tacos-Vocals (w/o instrumental tracks).

5. QUALITATIVE ANALYSIS

In this section, we illustrate qualitatively the previous
quantitative results. We encourage readers to listen to the
audio samples available on the paper companion website 1

as part of reading the paper.

5.1 Ly vs. Me+Ha examples

We intend here to illustrate how Ly improves the Me+Ha
system. Figure 4 plots the distance obtained for Me+Ha
and Ly between randomly sampled positive (green) and
negative (red) pairs.
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Figure 4: Pairwise distances for Me+Ha vs. Ly (500 pairs
from SHS4-).

This plot confirms that Me+Ha and Ly are complementary,
as already seen in Section 4.3. The dots situated away from
the diagonal correspond to track pairs scored correctly by
Me+Ha and incorrectly by Ly (or vice-versa). As certain
features yield better results for certain songs, their combi-
nation will statistically improve the results, as we will now
illustrate with some contrasted examples.
Ly > Me+Ha There are many versions whose musical
style, melody and harmony differ greatly from the original,
and where only the lyrics can help to identify them. This
is illustrated on Figure 5(a), which shows that the Jimmy
Noone’s and John Fogerty’s versions of "You Rascal You"
are very different musically while the lyrics exhibit enough
similarity to be correctly identified.
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Nightshift

(b) Ly worse than Me+Ha- dMe+Ha=0.597, dLy=1.282
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(c) Rh better than Me+Ha - dMe+Ha=1.084, dRh=0.459
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Kenties, kenties, kenties

(d) Rh worse than Me+Ha - dMe+Ha=0.498, dRh=1.380

Figure 5: Examples for rhythm and lyrics : Rh > Me+Ha 5(c), Rh < Me+Ha 5(d), Ly > Me+Ha 5(a) and Ly < Me+Ha 5(b)

It also appears that our approximated ALR system is
efficient for different languages. For instance, the ver-
sions of Asta Kask and of The Hep Stars of the song
"I natt jag drömde", are very different in melody and
harmony (dMe+Ha=1.448) while the lyrics remain similar
(dLy=0.342), despite the fact that the lyrics are in Swedish.
Ly < Me+Ha As already mentioned, using Ly will yield
wrong results in presence of instrumental version (i.e. no
lyrics). In the example shown in Figure 5(b), the version
of "Nightshift" by the Commodores has lyrics while the
one of Jim Horn’s does not. We noticed that the system
sometimes considers lead instruments as voices. However,
this Ly false negative is correctly caught by the Me+Ha.

5.2 Rh vs. Me+Ha examples

Although less obvious than for Ly, combining Rh and
Me+Ha also appears to be complementary in some cases.
Rh > Me+Ha Even though Rh yields poor performances
in general, there are cases where it is the only feature avail-
able to identify versions. This is illustrated on Figure 5(c),
which shows the Rh, Me and Ha features for two versions
of "Pimpf". In this song, the melody is almost non-existent,
and the harmony is very different between both versions.
Only a few bass notes in the middle are salient enough to
identify the song, and this short bassline appears similarly
on the two FP features.

Rh might also be a good discriminating feature in other
cases, e.g. for live concert versions. One version of
"Mama’s Little Baby" is recorded in studio while the other
is a concert filmed from the audience. The Me+Ha distance
between these versions is high (dMe+Ha=1.329) because of
the bad live recording quality. But, the drums are distin-
guishable enough to find similarity (dRh=0.714).

Rh < Me+Ha But Rh often yields wrong results. This is
illustrated on Figure 5(d), which shows the features of two
versions of "Kenties kenties kenties". Although melody
and harmony are similar, the rhythm is very different, and
the use of Rh produces a false negative.

6. CONCLUSION

It was shown previously that VI systems combining
melody and harmony yields promising performances. In
this paper, we proposed to consider also rhythmic and
lyrics features to improve these results further. We showed
that an existing rhythmic feature commonly used for genre
classification is only helpful in a few cases, such as live
version identification. But we also showed that an approx-
imate lyrics representation can improve the performances
of existing melody and harmony-based systems. We ex-
plained these results by the fact that detecting correctly
only a few character sequences appears to be enough to
distinguish versions and non-versions. We showed that
our system combining these features establishes new state-
of-the-art on two public datasets. More importantly, we
indicated that these feature combinations provide enough
information to approach the theoretical optimal perfor-
mances obtainable on these datasets.

In our future work, we will investigate a more elabo-
rated fusion scheme in order to train our model to behave
as an oracle: our objective is to teach the system how to
choose between available features to pick only the most
relevant one for each pair of tracks. This might answer
the question of whether the concept of musical version can
be reduced to its melodic, harmonic, rhythmic, and lyrics
dimensions.
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