
HAL Id: hal-04023824
https://hal.science/hal-04023824

Submitted on 10 Mar 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Model Order Selection for Collision Multiplicity
Estimation
Benoît Escrig

To cite this version:
Benoît Escrig. Model Order Selection for Collision Multiplicity Estimation. Wireless
Telecommunications Symposium (WTS 2012), Apr 2012, Londres, United Kingdom. pp.1-5,
�10.1109/WTS.2012.6266100�. �hal-04023824�

https://hal.science/hal-04023824
https://hal.archives-ouvertes.fr


 

To cite this document:  

Escrig, Benoît Model Order Selection for Collision Multiplicity Estimation. (2012) In: 

Wireless Telecommunications Symposium (WTS), 2012, 18-20 Apr 2012, London, 

UK. 

Open Archive Toulouse Archive Ouverte (OATAO)  
OATAO is an open access repository that collects the work of Toulouse researchers and 

makes it freely available over the web where possible.  

This is an author-deposited version published in: http://oatao.univ-toulouse.fr/  

Eprints ID: 5900 

 

 

 

Official URL: http://dx.doi.org/10.1109/WTS.2012.6266100 

Any correspondence concerning this service should be sent to the repository 

administrator: staff-oatao@inp-toulouse.fr 

 

http://oatao.univ-toulouse.fr/
http://dx.doi.org/10.1109/WTS.2012.6266100
mailto:staff-oatao@inp-toulouse.fr


Model Order Selection for Collision Multiplicity
Estimation
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Université de Toulouse

E-mail: escrig@enseeiht.fr

Abstract—The collision multiplicity (CM) is the number of users
involved in a collision. The CM estimation is an essential step
in multi-packet reception (MPR) techniques and in collision
resolution (CR) methods. We propose two techniques to estimate
collision multiplicities in the context of IEEE 802.11 networks.
These two techniques have been initially designed in the context
of source separation. The first estimation technique is based
on eigenvalue statistics. The second technique is based on the
exponentially embedded family (EEF). These two techniques
outperform current estimation techniques in terms of underes-
timation rate (UNDER). The reason for this is twofold. First,
current techniques are based on a uniform distribution of signal
samples whereas the proposed methods rely on a Gaussian
distribution. Second, current techniques use a small number of
observations whereas the proposed methods use a number of
observations much greater than the number of signals to be
separated. This is in accordance with typical source separation
techniques.

I. INTRODUCTION

We investigate the way collisions are resolved in IEEE 802.11-
based wireless local area networks (WLANs), more precisely
when multiple users simultaneously transmit to an access point
(AP) (see Fig. 1). Recent advances in MPR [1], [2] and in CR
[3], [4] allow now the recovery of data packets from collision
signals. These techniques usually start with the estimation
of the CM K, i.e., the number of nodes involved in the
collision. CM estimation techniques (CMETs) are all based
on model order selection (MOS) methods [5]. They all rely
on eigenvalue statistics [3], [4], [6].

Fig. 1. Collision Scenario with K = 3 colliding users.

The use of current CMETs in the context of IEEE 802.11
networks raises two main issues. The first issue deals with the
distribution of signal samples. Current CMETs assume that
signal samples are uniformly distributed over a finite alphabet,
i.e., signal samples are modulation symbols [1], [2], [6].
However, the IEEE 802.11 standard implements orthogonal
frequency division multiplexing (OFDM) transmission so that
signal samples are Gaussian distributed. Thus, current CMETs
may not perform well in IEEE 802.11 networks. Note that the
MPR protocols in [1], [2] have been specially designed for
IEEE 802.11 networks but they implement a blind separation
of the colliding users that relies on a uniform distribution of
signal samples [6]. The second issue deals with the number
of observations (”snapshots”) T that is needed to perform the
CM estimation. In current CMETs, T is not much greater than
the number of colliding users K. In [3] (resp. [4]), T is not
greater than K + 1 (resp. K + 2). In [1], [2], T is limited
by the number of receive antennas at the AP, i.e., T ≤ 4 in
typical implementations of IEEE 802.11 WLANs [7]. These
settings are not in accordance with the settings that are used
in typical source separation algorithms where T � K [8]–
[10]. The issue here is to decide whether current CMETs can
still operate with a small number of snapshots in IEEE 802.11
networks, or not.
The purpose of this paper is twofold: (a) to show that current
CMETs do not perform well in the context of IEEE 802.11
networks, and (b) to propose new CMETs for this context. The
work presented in this paper leverages recent advances in both
information criterion design and random matrix theory (RMT)
to tackle these issues. We propose two new criteria for CM
estimation: the EEF criterion and the Tracy-Widom inference
test (TWIT).
The rest of the paper is organized as follows. The system
model is presented in Section II and the proposed CMETs are
described in Section III. Simulation results are presented in
Section IV and a conclusion is drawn in the last section.

II. SYSTEM MODEL

We consider the scenario in which K users simultaneously
transmit to an AP. Each user is equipped with a single antenna.
The AP receives T snapshots. These snapshots are obtained
through two possibly complementary ways. The AP can be
equipped with more than one antenna [1], [2] and several
retransmissions from the colliding users can be triggered by a
feedback frame from the AP [3], [4]. The scenario is similar



to a source separation problem when K signals are impinging
on a T sensor array. We do not consider here the case of
multiple transmit antennas at each user. We assume that the
K users are coarsely synchronized in time. Each user transmits
OFDM signals that are Gaussian distributed and that have a
white power spectral density. More precisely, each snapshot
y(n) is a T × 1 vector

y(n) = As(n) + w(n), n = 0, 1, . . . , N

where N denotes the number of samples per snapshot,
s(n) ∼ N (0,Rs) is a K × 1 complex Gaussian vec-
tor of OFDM samples with covariance matrix Rs and
w(n) ∼ N (0,Σ) is a T × 1 complex Gaussian noise vector
with noise covariance matrix Σ. In the white noise case, the
covariance Σ is σ2IT where IT is the T × T identity matrix.
The channel matrix A is a T ×K unknown matrix with circu-
larly symmetric Gaussian elements with power unity (Rayleigh
fading). A block-fading wireless channel is considered here so
the coefficients in A have constant values during an OFDM
block of N samples, and then change randomly from one
block to another. When the noise covariance matrix Σ is
known a priori and is nonsingular, the snapshots y(n) can
be ”whitened” by the following transformation

y†(n) = Σ−1/2y(n)

where Σ−1/2 is the Hermitian nonnegative definite square root
of Σ. This transformation simply reduces to a normalization
step in the case of a white Gaussian noise.
The signal and noise vectors being independent, the covariance
matrix Ry of the snapshots is given by

Ry = ARsA
H + Σ

with H denoting the complex conjugate. We assume that the
matrix A is full rank and that the signal covariance matrix
Rs is nonsingular. Hence the rank of ARsA

H is min(K,T ),
i.e., ARsA

H has exactly T non-zero eigenvalues when T ≤
K and K non-zero eigenvalues when T > K. One would
expect that T is strictly higher than K in such a way that
min(K,T ) = K but, in [3] and [4], the algorithms start with
T = 1 and T is then incremented. Hence, min(K,T ) = T
for the first iterations. When the whitening transformation is
applied, the covariance matrix R†y of the whitened snapshots
is defined as

R†y = Σ−1/2RyΣ1/2 = Σ−1/2ARsA
HΣ1/2 + IT

Let λ1 ≥ λ2 ≥ ... ≥ λT and λ†1 ≥ λ†2 ≥ ... ≥ λ†T denote the
eigenvalues of Ry and R†y respectively. We have that

λi > σ2 and λ†i > 1 for 1 ≤ i ≤ min(K,T ) (1)

λi = σ2 and λ†i = 1 for min(K,T ) < i ≤ T (2)

When Ry and Σ are known, the CM estimation can be easily
performed either from the multiplicity of the λi equalling σ2

or from the multiplicity of the λ†i equalling one. When Ry and
Σ are unknown and have to be estimated, another approach

must be used. We defined the sample covariance matrix (SCM)
of y(n), denoted R̂y, by

R̂y =
1

N

N∑
n=1

y(n)yH(n)

The SCM of R†y, denoted R̂†y, is defined by

R̂†y = Σ̂−1/2R̂yΣ̂1/2

where Σ̂ denotes the noise SCM

Σ̂ =
1

N

N∑
n=1

w(n)wH(n)

The noise SCM can be computed because we have access
to noise-only samples1. This assumption is reasonable since
empty time slots can provide the N samples that are needed
to compute the SCM Σ̂.

III. COLLISION MULTIPLICITY ESTIMATION TECHNIQUES

There are two approaches to estimate K. The first approach
relies on the eigenvalue statistics. The second one is based on
information criteria. The two approaches are presented next.

A. CME based on eigenvalue statistics

According to (1) and (2), counting the number of eigenvalues
that are significantly higher than one or σ2 could serve as a
CMET. This approach is rather impractical since it relies on
subjective adjustments of thresholds [8]. The proposed TWIT
criterion uses the properties that have been highlighted recently
in [10], [11] and in the references therein:
• There is a detectability threshold below which it is not

possible to identify signal from noise. This threshold γ
depends on system parameters: γ = (1+

√
T/N)σ2 [11],

[12].
• In the signal-free case, the distribution of the largest noise

eigenvalue of the SCM R̂†y is approximated by a complex
Tracy-Widom distribution.

• In the non signal-free case, the distribution of the signal
eigenvalues that are below γ is also approximated by
a Tracy-Widom distribution and the signal eigenvalues
that are above γ are distributed according to a Gaussian
law [10]. Note that all approximations are performed
after appropriate centering and scaling of the eigenvalues.
Noise eigenvalues are still distributed according to a
Tracy-Widom distribution.

The noise samples are Gaussian distributed, so we have that
NΣ̂ ∼ CWT (N,Σ) where CWT (N,Σ) denotes the T -
variate complex Wishart law with N degrees of freedom, and
parameterized by the covariance matrix Σ. Similarly, we have
that NR̂y ∼ CWT (N,Ry). We investigate the distribution of
the largest eigenvalue λ̂†1 that satisfies

(NR̂y)v1 = λ̂†1(NΣ̂)v1 (3)

1We assume that the noise variance σ2 can be estimated by different other
means at the AP when σ2 is the only parameter that is needed.



TABLE I
TWIT ALGORITHM

Set K̂TWIT = 0 and Test=false
While (Test=false and K̂TWIT < T ) do

K̂TWIT = K̂TWIT + 1

Compute µ = µ(T − K̂TWIT, N,N)

Compute σ = σ(T − K̂TWIT, N,N)

Test={σ−1[log(λ̂†
K̂TWIT+1

)− µ] < τα}

If (Test=false) then do K̂TWIT = K̂TWIT + 1 else break End if
End while

where v1 is the eigenvector corresponding to the eigenvalue
λ̂†1. Let λ[DW]

1 be the largest eigenvalue that satisfies

(NR̂y)v
[DW]
1 = λ

[DW]
1 (NΣ̂ +NR̂y)v

[DW]
1 (4)

where v[DW]
1 is the eigenvector corresponding to the eigenvalue

λ
[DW]
1 . From Theorem 2 in [13], when N → ∞ as T → ∞

with N > T , we have that

P[
W (λ

[DW]
1 )− µ(T,N,N)

σ(T,N,N)
≤ x]→ TWC(x) (5)

where TWC(x) is the Tracy-Widom distribution function
for complex data and W (λ) = log[λ/(1− λ)]. The mean
µ(n,m,N) and the standard deviation σ(n,m,N) are defined
in Table II. From (4), we have that

(NΣ̂)−1(NR̂y)v
[DW]
1 =

(
λ
[DW]
1

1− λ[DW]
1

)
v
[DW]
1 (6)

So, from (3) and (6), and using(5), we have that

P{ log(λ̂
†
1)− µ(T,N,N)

σ(T,N,N)
≤ x} → TWC(x)

when N →∞ as T →∞. The algorithm presented in Table I
exploits these properties. Basically the estimate K̂TWIT is
initialized to zero and incremented by one for each iteration as
long as the eigenvalue λ̂†

K̂TWIT+1
is not considered as being an

eigenvalue of the noise subspace, i.e., as being Tracy-Widom
distributed [10]. The threshold τα is defined as TW−1C (1−α)
where TWC(x) denotes the Tracy-Widom distribution for
complex-valued data and α is some significance level. Note
that this criterion is designed for arbitrary (or colored) noise.

B. CME based on information criteria

Information criteria, such as the minimum description length
(MDL) or the Akaı̈ke’s information criterion (AIC)2, have
been originally designed in order to avoid subjective threshold
settings in MOS techniques [8]. The MDL has been widely
used over the past two decades and is still used in current
CMETs. However, this criterion has been shown to be incon-
sistent when the noise variance of the channel tends to zero
[14]. This means that, even in the high signal to noise ratio
(SNR) regime, the MDL still tends to overestimate the model

2We shall not refer to the AIC hereafter since the criterion has been proven
to be inconsistent in the N →∞ sense [8].

TABLE II
TWIT PARAMETERS µ(n,m,N) AND σ(n,m,N)

µ(n,m,N) = (
u
Ñ
τ
Ñ

+
u
Ñ−1

τ
Ñ−1

)( 1
τ
Ñ

+ 1
τ
Ñ−1

)−1

σ(n,m,N) = 2( 1
τ
Ñ

+ 1
τ
Ñ−1

)−1

Ñ = min(n,m)

sin2(γÑ/2) = (Ñ + 1/2)(2Ñ +N − n+ |m− n|+ 1)−1

sin2(φÑ/2) = (Ñ + |m− n|+ 1/2)

× (2Ñ +N − n+ |m− n|+ 1)−1

τ3
Ñ

= 16(2Ñ +N − n+ |m− n|+ 1)−2

× sin−2(φÑ + γÑ ) sin−1(φÑ ) sin−1(γÑ )

uÑ = 2 log[tan(
φ
Ñ

+γ
Ñ

2
)]

order. In this context, the EEF criterion has been proposed
in [9]. This new criterion has been proven to overcome
the shortcomings of the MDL criterion, so it offers new
opportunities for CM estimation. We first describe the MDL
criterion and then present the EEF criterion.
1) MDL criterion: The MDL criterion is defined as

K̂MDL = argmin
k=1,...,T

{MDL(k)}

where

MDL(k) = −N(T − k) log[g(k)
a(k)

] +
1

2
k(2T − k) log(N)}

where g(k) =
∏T
i=k+1 λ̂

1
T−k

i and a(k) = 1
T−k

∑T
i=k+1 λ̂i

where the λ̂i denote the eigenvalues of R̂y with 1 ≤ i ≤ T .
This estimator is consistent in the N →∞ sense.
2) EEF criterion: The EEF criterion is defined as

K̂EEF = argmax
k=1,...,T

EEF(k)

where

EEF(k) = {LGk
(y)− nk[log(

LGk
(y)

nk
) + 1]}

× u[log(
LGk

(y)

nk
)− 1]

where u(.) is the step function defined as u(t) = 1 for t ≥ 0
and u(t) = 0 for t < 0. The number of free adjustable
parameters in the kth model, denoted nk, is defined as

nk = k(2T − k) + 1

The likelihood ratio LGk
(y) is given by

LGk
(y) = −2N{log(

k∏
i=1

λ̂i)− T log[
1

T
tr(R̂y)]

+ (T − k) log( 1

T − k

T∑
i=k+1

λ̂i)}

Note that the computational load of the EEF is similar to that
of the MDL.



IV. SIMULATION RESULTS

CMETs are compared in the context of Rayleigh fading
channels. User stations are transmitting OFDM signals that are
built according to the IEEE 802.11 standard [7]. The signals
are composed of 1024 sub-carriers and use BPSK modulation,
the guard interval is 1/4 of the total symbol period. There are
48 OFDM symbols per OFDM block, so the total number
of samples per snapshot is N = 61440. The performance of
CMETs have been evaluated over ten thousand Monte Carlo
trials. The simulation results are expressed in terms of UNDER
and OVER. The UNDER (resp. OVER) is the probability of
having K̂ strictly lower (resp. higher) than K.
Figures 2 and 3 show the comparison for five CMETs: the
method designed in [3], the method designed in [4], the MDL
criterion, the EEF criterion, and the TWIT. The first three
methods belong to the current CMETs. The results have been
obtained for 1 ≤ K ≤ 10, a fixed number of snapshots
(T = 15), and an SNR of 10 dB. The method designed
in [3] relies on a threshold test on the lowest eigenvalue
of the SCM R̂y, λT . According to (1) and (2), λT can be
considered as belonging to the noise subspace when λT < τ
where τ is a threshold that depends on the noise variance
σ2. Hence, the number of snapshots T is initialized to one
and incremented by one for each iteration as long as λT is
above the threshold τ . So, as soon as λT < τ , we have that
K̂ = T − 1. In [4] the threshold test is based on the two
lowest eigenvalues: λT + λT−1 < 2τ . Once the threshold test
is passed, an MDL criterion is applied in order to estimate
K. Note that these first two methods do not use T = 15
snapshots since the estimation is triggered by the threshold
test. The threshold is set to τ = σ2 +0.005 as in [4]. Finally,
the significance level α for the TWIT is set to 0.01 [10]. The
EEF criterion and the TWIT both outperform the first three
methods, i.e., the methods that belong to current CMETs, in
terms of UNDER. The EEF criterion and the TWIT exhibit
almost the same results in terms of UNDER. Note that the first
three methods exhibit good performance in terms of OVER but
this does not compensate for the poor UNDER performance3.
The performance of the two proposed CMETs, in terms of
UNDER, is poor when K gets closer to T . At this point,
three conclusions can be drawn. First, the proposed techniques
outperform current CMETs. Second, current CMETs do not
perform well in a IEEE 802.11 context. This is a major result
since several MPR protocols rely on these CMETs in order to
separate the colliding users. Third, T should be significantly
larger than K in order to achieve performance levels that
could allow a practical implementation in IEEE 802.11-based
WLANs. This also confirms that the setting of T is consistent
with the settings that are used in other domains. Figures 4
and 5 show the UNDER and the OVER of both the EEF
criterion and the TWIT, for a fixed number of colliding users
(K = 4), different numbers of snapshots 4 ≤ T ≤ 20, and
SNRs from 5 dB to 20 dB. Here also, these two techniques
give similar results in terms of UNDER, except for an SNR

3The sum of the UNDER and OVER is dominated by the UNDER indicator.

Fig. 2. Underestimation rates of five CME techniques: the method designed
in [3] (λT < τ ), the method designed in [4] (λT + λT−1 < 2τ ), the MDL
criterion, the EEF criterion and the TWIT (SNR = 10 dB).

Fig. 3. Overestimation rates of five CME techniques: the method designed
in [3] (λT < τ ), the method designed in [4] (λT + λT−1 < 2τ ), the MDL
criterion, the EEF criterion and the TWIT (SNR = 10 dB).

of 5 dB. Note that, even for a high SNR (20 dB), at least
T = 6 snapshots are needed in order to get an UNDER lower
than 10%. The results are better in terms of OVER since
this indicator is always lower than 2% for any value of T .
These results further preclude the use of current CMETs in
the context of IEEE 802.11 networks since these techniques
rely on either small values of T [1], [2] or values of T close
to K [3], [4].
Figure 6 shows the minimum number of snapshots T that
is needed in order to achieve a 10% UNDER and a 10%
OVER for both the EEF criterion and the TWIT, for different
values of K and different values of SNR. Once again, the
most significant result is that the number of snapshots that is
needed to achieve a relevant performance level must be much
higher than the number of colliding users.

V. CONCLUSION

In this paper, two new CMETs have been proposed. They rely
on the EEF criterion and the TWIT. These two techniques
have been shown to outperform typical CMETs based on the
MDL criterion. Moreover, simulation results have shown that a
large number of snapshots T is needed in order to allow a good
estimation of K in terms of UNDER and OVER. Furthermore,



Fig. 4. Underestimation rates for the EEF criterion and the TWIT with
K = 4, K ≤ T ≤ 20, and SNR(dB)∈ {5, 10, 15, 20}.

Fig. 5. Overestimation rates for the EEF criterion and the TWIT with K = 4,
K ≤ T ≤ 20, and SNR(dB)∈ {5, 10, 15, 20}.

Fig. 6. Minimum number of snapshots to achieve a 10% UNDER and a
10% OVER for K ∈ {2, 3, 4} and SNR(dB)∈ {5, 10, 15, 20}.

the number of snapshots must be significantly higher than the
number of colliding users K (T � K). These settings are
similar to the settings that are used in MOS techniques for
signal array processing.
The impact of these results is twofold. First, some CR tech-
niques such as the network-assisted diversity multiple access
(NDMA) [3], [4] cannot be implemented in IEEE 802.11

networks notably because these CR techniques are based on
the assumption that T can be made as small as K+1 or K+2.
Second, the MPR protocols for IEEE 802.11 networks that use
the blind user separation in [6] appear to be rather questionable
[1], [2]. The blind detection algorithm assumes that K is
known or has been estimated. However, this assumption seems
to be impractical since it would imply that the CM estimation
has been possible with a single observation of collided request-
to-send (RTS) frames. Even if the AP is equipped with four
antennas (T = 4), our simulation results have shown that
the receiver at the AP needs many more snapshots in order
to provide a good estimation of K in terms of UNDER and
OVER.
Further investigations are now needed in order to fully char-
acterized the performance of the proposed CMETs in typical
operating conditions.
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