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Abstract—Estimating the collision multiplicity (CM), i.e. the
number of users involved in a collision, is a key task in multi-
packet reception (MPR) approaches and in collision resolution
(CR) techniques. A new technique is proposed for IEEE 802.11
networks. The technique is based on recent advances in random
matrix theory and rely on eigenvalue statistics. Provided that the
eigenvalues of the covariance matrix of the observations are above
a given threshold, signal eigenvalues can be separated from noise
eigenvalues since their respective probability density functions are
converging toward two different laws: a Gaussian law for the
signal eigenvalues and a Tracy-Widom law for the noise eigen-
values. The proposed technique outperforms current estimation
techniques in terms of underestimation rate. Moreover, this paper
reveals that, contrary to what is generally assumed in current
MPR techniques, a single observation of the colliding signals is
far from being sufficient to perform a reliable CM estimation.

Index Terms—multi-packet reception; collision multiplicity;
model order selection; IEEE 802.11-based networks

I. INTRODUCTION

The throughput of IEEE 802.11-based networks highly
depends on the number of collisions. When the number of col-
lisions increases, the throughput is degraded. Recent advances
in multi-user detection (MUD) now allow the processing of
collision signals, so data packets from collided user terminals
can be successfully decoded at the access point even when a
collision occurs. One [1], [2] or several [3], [4] transmissions
from the colliding users are needed in order to achieve the
decoding of the packets. The first step that is performed
by these multi-packet reception (MPR) techniques consists
of estimating the number of users involved in the collision:
the collision multiplicity (CM). The estimation process im-
plements a well-established Model Order Selection Technique
(MOST) [5]. First, an eigenvalue decomposition is performed
on the sample covariance matrix (SCM) of the observations
(”snapshots”). Then, the well-known information criterion
MDL (Minimum Description Length) is applied in order to
perform the CM estimation. In the context of wireless local
areas networks (WLANs), current CM estimation techniques
(CMETs) are based on the following two assumptions: (i) the
signal samples are uniformly distributed, i.e., signal samples
are either PSK or QAM modulation symbols, and (ii) the num-
ber of snapshots is not much greater that the CM [1], [2], [6].
These two assumptions are rather questionable when applied to
IEEE 802.11-based networks. First, the IEEE 802.11 standard

relies on orthogonal frequency division multiplex (ODFM)
transmissions so signal samples are not uniformly distributed
but rather distributed according to a Gaussian law. Second, the
assumption of a low number of observations (compared to the
CM value) contradicts typical assumptions in MOSTs [7], [8].

In this paper, we propose a new CMET, denoted as TWIT
(Tracy-Widom Inference Test). Simulation results show that
the TWIT outperforms the classical MDL in the context of
IEEE 802.11-based WLANs. Moreover, we show that the
number of observations that are needed to perform the CM
estimation is far much grater than the one that is used in
CMETs.

Fig. 1. Collision Scenario with K = 3 colliding users.

The rest of the paper is organized as follows. The sys-
tem model is introduced in Section II and some results on
eigenvalue statistics are stated in Section III. The CMETs are
described in Section IV. Simulation results are presented in
Section V and a conclusion is drawn in the last section.

II. SYSTEM MODEL

In the proposed scenario, K users are simultaneously trans-
mitting OFDM frames toward an AP. Each OFDM frame
contains m symbols. The OFDM signal samples are Gaussian
distributed and have a white power spectral density. For sake



of simplicity, the AP and the user terminals are assumed to be
equipped with a single antenna. The AP can trigger retrans-
missions from the colliding users by transmitting a feedback
frame. The signaling frame serves also as a synchronization
flag for user transmissions. When T snapshots are available at
the AP, the T × 1 observation vector yi is written as

yi = Hsi + wi, i = 0, 1, . . . ,m

where m denotes the number of samples per snapshot,
si ∼ CNK(0,Rs) are K × 1 complex Gaussian vec-
tors of OFDM samples with covariance matrix Rs and
wi ∼ CNT (0,Σ) are T × 1 complex Gaussian noise vectors
with noise covariance matrix Σ. In the white noise case, the
covariance Σ is σ2IT where IT is the T × T identity matrix.
The channel matrix H is a T × K matrix with circularly
symmetric Gaussian elements with power unity (Rayleigh
fading). A block-fading wireless channel is considered here so
the coefficients in H have constant values during an OFDM
block of m samples, and then change randomly from one
block to another. So the channel matrix H is considered as
an unknown non-random matrix. When the noise covariance
matrix Σ is known a priori and is nonsingular, the snapshots
yi can be ”whitened” by the following transformation

y†i = Σ−1/2yi

where Σ−1/2 is the Hermitian nonnegative definite square root
of Σ. This transformation simply reduces to a normalization
step in the case of a white Gaussian noise.

The signal and noise vectors being independent, the covari-
ance matrix R of the snapshots yi is given by

R = HRsH
∗ + Σ

with ∗ denoting the complex conjugate. We assume that the
matrix H is full rank and that the signal covariance matrix Rs

is nonsingular. Hence the rank of HRsH
∗ is min(K,T ), i.e.,

HRsH
∗ has exactly T non-zero eigenvalues when T ≤ K and

K non-zero eigenvalues when T > K. When the whitening
transformation is applied, the covariance matrix R† of the
whitened snapshots is defined as

R† = Σ−1/2RΣ−1/2 = Σ−1/2HRsH
∗Σ−1/2 + IT

Let λ1 ≥ λ2 ≥ ... ≥ λT denote the population eigenvalues of
R†. We have that

λi > 1 for 1 ≤ i ≤ min(K,T ) (1)
λi = 1 for min(K,T ) < i ≤ T (2)

When R and Σ are known, and when the rank of
Σ−1/2HRsH

∗ is K, the CM estimation can be easily per-
formed from the multiplicity of the λi equalling one. When
R and Σ are unknown and have to be estimated, another
approach must be used. We define the sample covariance
matrix (SCM) of the snapshots yi, denoted R̂, by

R̂ =
1

m

m∑
i=1

yiy
∗
i

and the SCM Σ̂ of the noise by

Σ̂ =
1

N

N∑
j=1

wjw
∗
j

where the wj , 1 ≤ j ≤ N are independent noise-only samples.
We assume that the noise variance σ2 can be estimated by
different other means at the AP when σ2 is the only parameter
that is needed. Empty time slots can provide the N samples
that are needed to compute the SCM Σ̂. When the yi are
constituted of simultaneous transmissions from K users, we
aim at estimating K based on the eigenvalues of R̂†

R̂† = Σ̂−1/2R̂Σ̂−1/2

Let λ̂1 ≥ λ̂2 ≥ ... ≥ λ̂T denote the sample eigenvalues of R̂†.

III. SOME RESULTS ON EIGENVALUE STATISTICS

Eigenvalue-based MOSTs rely on hypothesis tests on eigen-
values or on the computation of information criteria. In this
paper, we concentrate on the population eigenvalues of R̂†.
According to (1) and (2), signal eigenvalues (λ̂i > 1) and
noise eigenvalues (λ̂i = 1) could be separated by counting the
number of eigenvalues strictly above one. Recent advances
in RMT have shown that it exists a threshold below, which
it is not possible to separate signal eigenvalues from noise
eigenvalues. More precisely, this threshold being strictly higher
than one, each signal eigenvalue between the threshold and one
will be considered as being a noise eigenvalue, thus misleading
typical eigenvalue-based MOSTs. Moreover, increasing the
number of observations will exacerbate the phenomenon since
the threshold increases with the number of observations. In this
section, we present several properties on the eigenvalues and
characterize the threshold issue.

Property 3.1: Let X be a T × m matrix constituted of
m samples. The samples are drawn from a T -dimensional
complex Gaussian law CNT (0,Σ). Let A = XXH . Let
CWT (m,Σ) denote the T -variate complex Wishart law with
m degrees of freedom. From [9], we have that

A ∼ CWT (m,Σ)

Property 3.2: Let A ∼ CWT (m,Σ) be independent of
B ∼ CWT (N,Σ) where m,N > T . In the case of a double
Wishart setting, we search for the eigenvalues θ that satisfy

Av = θ(A + B)v (3)

where v denotes the eigenvector corresponding to the eigen-
value θ. Let λ[(A+B)−1A]

1 be the largest eigenvalue satisfying
(3). When m,N → ∞ as T → ∞ with m,N > T , we have
that

P[
W (λ

[(A+B)−1A]
1 )− µ(T,N,m)

σ(T,N,m)
≤ x]→ TWC(x)

where TWC(x) is the Tracy-Widom distribution function for
complex data and W (θ) denotes the logit transformation of θ,



i.e., W (θ) = log[θ/(1− θ)] and

β = min(N,T )

γ = m− T
δ = |N − T |

µ(T,N,m) = (
uβ
τβ

+
uβ−1
τβ−1

)(
1

τβ
+

1

τβ−1
)−1

σ(T,N,m) = 2(
1

τβ
+

1

τβ−1
)−1

sin2(γβ/2) = (β + 1/2)

× (2β + γ + δ + 1)−1

sin2(φβ/2) = (β + δ + 1/2)

× (2β + γ + δ + 1)−1

τ3β = 16(2β + γ + δ + 1)−2

× sin−2(φβ + γβ)

× sin−1(φβ) sin−1(γβ)

uβ = 2 log[tan(
φβ + γβ

2
)]

Property 3.2 has been proved for Σ = IT but the property can
be applied to any Σ since the covariance matrix has no effect
on the distribution of the eigenvalues [10].

Rewriting (3) for θ = λ
[(A+B)−1A]
1 , we have that

AB−1v =
λ
[(A+B)−1A]
1

1− λ[(A+B)−1A]
1

v

Property 3.3: Let A ∼ CWT (m,Σ) be independent of
B ∼ CWT (N,Σ) where m > T . The largest eigenvalue of
AB−1, denoted λ(AB−1)

1 , satisfies

P{ log[λ
(AB−1)
1 ]− µ(T,N,m)

σ(T,N,m)
≤ x} → TWC(x)

when m,N →∞ as T →∞.

A. Signal-free Case
In the signal-free case, no user is transmitting, so K = 0.

As a consequence, R = Σ, R† = IT , and all the population
eigenvalues λi are equal to 1. Moreover, when the number
of observations T is fixed and when m,N → ∞, the
sample eigenvalues λ̂i are symmetrically centered around the
population eigenvalues λi for i = 1, . . . , T . In the T,m→∞
asymptotic regime, the spreading of the sample eigenvalues
can be characterized by the empirical distribution function
(edf) [9], [11]–[13].

Property 3.4: In the signal-free case, when all the popula-
tion eigenvalues λi are equal to 1, when T,m→∞ such that
T/m→ c ∈ (0,∞), the limiting edf of the sample eigenvalues
λ̂i is given by

1/T#{λ̂i : λ̂i ≤ x} → H(x)

where

dH(x) = max (0, (1− 1

c
))δ(x)

+
1

2πxc

√
(b− x)(x− a)1a,b(x)dx

with a = (1 −
√
c)2, b = (1 +

√
c)2, and 1a,b(x) = 1 when

a ≤ x ≤ b.
The probability density function (pdf) dH(x) is the Marc̆enko-
Pastur density. From this property, a first characterization of
the λ̂1 distribution can be inferred [9], [14].

Property 3.5: In the signal-free case, the whitened snap-
shots y†i are NT (0, IT ) and the largest eigenvalue λ̂1 of the
SCM R̂† is Tracy-Widom distributed. When T,m→∞ such
that T/m→ c ∈ (0,∞),

P[
mλ̂1 − µT,m

σT,m
≤ x]→ TWC(x)

where

µT,m = (
√
T +
√
m)2

σT,m = (
√
T +
√
m)(

1√
T

+
1√
m

)1/3

When the snapshots y†i are NT (0, σ2IT ), the convergence
limit of mλ̂1 is σ2(

√
T +

√
m)2. This corresponds to the

non-normalized case. Note that the convergence rate to the
TWC(x) distribution function is O(T−1/3). When the pa-
rameters m and T are not so large, which is practically the
case when we want to reduce the number of observations,
the convergence rate to the Tracy-Widom distribution is rather
O(T−2/3) provided that the mean and standard deviation have
been modified appropriately [9], [10].

From Property 3.2, we have that NΣ̂ ∼ CWT (N,Σ) and
mR̂ ∼ CWT (m,R). We search for the largest eigenvalue λ̂1
that satisfies

R̂v = λ̂1Σ̂v

or, equivalently

(mR̂)v =
m

N
λ̂1(NΣ̂)v

So, using Property 3.3, we have that

P{
log(mN λ̂1)− µ(T,m,N)

σ(T,m,N)
≤ x} → TWC(x)

B. Signal Bearing Case

When there are K signals and when T → ∞, the limiting
edf of R̂† still converges to a Marc̆enko-Pastur distribution.
Moreover, the ith largest eigenvalue λ̂i converges to a limit
different from that in the signal-free case if and only if the
signal eigenvalue is above a certain threshold [12].

Property 3.6: In the signal bearing case, when T →∞,

λ̂i =

{
λi(1 + c

λi−1 ) if λi > (1 +
√
c)

(1 +
√
c)2 if λi ≤ (1 +

√
c)

When K � T , the signal eigenvalues strictly below the
threshold (1+

√
c) exhibit, on rescaling, fluctuations described

by the Tracy-Widom distributions, i.e., the signal eigenvalues
are closely approximated by the distributions obtained for the
signal-free case (K = 0). For signal eigenvalues above the



threshold [11], the fluctuations about the asymptotic limit are
Gaussian distributed

P[
λ̂i − µi
σi

≤ x]→ G(x)

where

µi = λi(1 +
c

λi − 1
)

σi =
λi√
T

√
1− c

(λi − 1)2

and

G(x) =

∫ x

−∞

1√
2π

exp (−y
2

2
)dy

In the T,m→∞ asymptotic regime with T/m→ c ∈ (0,∞),
if signal eigenvalues are below the threshold, then reliable
sample-eigenvalue-based detection is not possible. Note that
adding more observations does not solve the problem since
the threshold is increasing with T . Inversely, when signal
eigenvalues are above the threshold, then reliable detection
is possible. Note that these properties hold for large T and
relatively large m. For lower T and m, the eigenvalues are
more fluctuating, so the CM estimation is less reliable.

IV. COLLISION MULTIPLICITY ESTIMATION TECHNIQUES

We assume that the AP has collected T snapshots. First,
the SCM of the whitened snapshots is computed. Then, the
eigenvalue decomposition of the SCM is performed and the
eigenvalues are sorted. The eigenvalues are processed with two
CMETs: the first one is based on eigenvalue statistics and the
second one relies on information criteria.

A. CMET based on eigenvalue statistics

The proposed algorithm relies on the eigenvalue statistics
that have been stated in the previous section. Basically the
estimate K̂TWIT is initialized to zero and incremented by one
for each iteration as long as the eigenvalue λ̂K̂TWIT+1 is not
considered as being an eigenvalue of the noise subspace, i.e.,
as being Tracy-Widom distributed. The TWIT algorithm is
detailed in Algorithm 1. The mean µ(x, y, z) and the standard

Algorithm 1 TWIT algorithm

Compute R̂†

Compute and sort the eigenvalues λ̂i, i = 1, . . . , T of R̂†

K̂TWIT ← 0 and Test← False
while Test = False and K̂TWIT < T do
µ← µ(T − K̂TWIT,m,N)
σ ← σ(T − K̂TWIT,m,N)
Test← {σ−1[log(mλ̂K̂TWIT+1/N)− µ] < τα}
if Test = False then
K̂TWIT ← K̂TWIT + 1

else
break

end if
end while

deviation σ(x, y, z) in the algorithm are defined in Property
3.2. Similar expressions can be found for the case of real-
valued data. The threshold τα is defined as TW−1C (1 − α)
where α is some significance level. Note that this criterion
has been originally designed for arbitrary (or colored) noise
[13]. That is the reason why the algorithm uses the eigenvalues
of R̂†.

B. CMET based on information criteria

Information criteria, such as the MDL or the Akaı̈ke’s
information criterion (AIC), have been originally designed in
order to avoid subjective threshold settings in MOSTs [7]. The
MDL has been widely used over the past two decades and is
still used in current CMETs. We shall not refer to the AIC
hereafter since the criterion has been proven to be inconsistent
in the m→∞ sense [7]. The MDL criterion is defined as

K̂MDL = argmin
k=1,...,T

{MDL(k)}

where

MDL(k) = −m(T − k) log[
g(k)

a(k)
] +

1

2
k(2T − k) log(m)

where

g(k) =
T∏

i=k+1

λ̂
1

T−k

i

a(k) =
1

T − k

T∑
i=k+1

λ̂i

where the λ̂i denote the eigenvalues of R̂† with 1 ≤ i ≤ T .
This estimator is consistent in the m→∞ sense. One of the
reason why the MDL criterion has been widely used over
the past two decades comes from its robustness to model
mismatch, in particular when the underlying assumptions of
snapshots and noise Gaussianity can be relaxed [15]–[17].

V. SIMULATION RESULTS

CMETs are compared in the context of Rayleigh fading
channels. User stations are transmitting OFDM signals that are
built according to the IEEE 802.11 standard [18]. The signals
are composed of 1024 sub-carriers (Nsub = 1024) and use
BPSK modulation, the guard interval is 1/4 of the total symbol
period (GI = 1/4). There are 48 OFDM symbols per OFDM
block (NOFDM = 48), so the total number of samples per
snapshot is m = 61440. For sake of simplicity, we have chosen
the same number for N , i.e., N = 61440. The performance of
CMETs have been evaluated over 10000 Monte Carlo trials.

Figures 2 and 3 show the simulations results for two
CMETs: the MDL criterion and the TWIT. The results have
been obtained for a fixed number of signals K = 4, a variable
number of snapshots 4 ≤ T ≤ 32, and two typical values of
the signal to noise ratio SNR: a low value (10 dB) and a
high value (30 dB). The significance level α for the TWIT is
set to 0.01 [13]. The first figure shows the estimated values
of K. The second figure shows the underestimation rate, i.e.,



P[K̂ < K]. The TWIT outperforms the MDL criterion since
it provides similar results with less observations, and so for
any value of SNR. Another important result is that T should
be significantly larger than K in order to achieve relevant
performance levels, i.e. underestimation rate much lower than
10 %.

Fig. 2. Estimates of K = 4 for a variable number of snapshots T ,
4 ≤ T ≤ 32.

Fig. 3. Underestimation rate for K = 4 and a variable number of snapshots
T , 4 ≤ T ≤ 32.

Figures 4 to 6 show the pdfs of the eigenvalues λ̂K and
λ̂K+1 for K = 4. These statistics have been obtained with
10000 draws. The pdf of λ̂K represents the pdf of the lowest
”signal” eigenvalue whereas the pdf of λ̂K+1 represents the
pdf of the largest ”noise” eigenvalue.

Figures 4 and 5 show the eigenvalue statistics for T = 10
and two values of the signal to noise ratio, 10 and 20 dB. On
these two figures, the lowest signal eigenvalue is always higher
than the detectability threshold so all the signal eigenvalues
are detectable. However, the pdfs of the signal and the noise
eigenvalues are overlapping for SNR = 10 dB. That explains
the degradation on the underestimation rate on Fig. 3.

Figures 4 and 6 show the eigenvalue statistics for
SNR = 10 dB and two values for T : 10 and 30. The spreading
of the pdfs depends on T . The higher is T , the shaper are the
density curves. Here again, the performance of the CMET is
improving when the number of observations is increasing.

Fig. 4. Estimated probability density functions of the eigenvalues λ̂K and
λ̂K+1 for K = 4, T = 10 and SNR = 10 dB, given that λ̂K ∼ Ĝ(λ) and
λ̂K+1 ∼ T̂W (λ). The vertical line depicts the position of the detectability
threshold 1 +

√
c.

Fig. 5. Estimated probability density functions of the eigenvalues λ̂K and
λ̂K+1 for K = 4, T = 10 and SNR = 20 dB, given that λ̂K ∼ Ĝ(λ) and
λ̂K+1 ∼ T̂W (λ). The vertical line depicts the position of the detectability
threshold 1 +

√
c.

A. Discussion

The simulation results suggest that the CMETs perform well
when the number of snapshots is much larger than the number
of signals. However, in many current CMETs, the number of
snapshots is set to a value close to K. In [3], [4], T is set to a
value not greater than K + 1 or K + 2. More surprisingly, in
[1], [2], a single transmission of the colliding users is required
to proceed to the user separation, using the blind separation
technique in [6]. Note that, in [6], the number of sources
(users) is assumed to be known or to have been estimated using
information criteria such as the MDL criterion. The simulation
results presented in this paper are in stark contrast with the
settings that are used in these papers. Note also that typical
MOSTs rely on similar settings, i.e., T � K (see [12] and
the reference therein).



Fig. 6. Estimated probability density functions of the eigenvalues λ̂K and
λ̂K+1 for K = 4, T = 30 and SNR = 10 dB, given that λ̂K ∼ Ĝ(λ) and
λ̂K+1 ∼ T̂W (λ). The vertical line depicts the position of the detectability
threshold 1 +

√
c.

VI. CONCLUSION

In this paper, a new CMET, denoted TWIT, has been
proposed. The method is based on eigenvalue statistics. Eigen-
values are tested in descending order, from the largest to
the lowest. The first eigenvalue λ̂q that is considered as
being Tracy-Widom distributed allows the CM estimation
by K̂ = q − 1. This CMET has been shown to outperform
the typical MDL criterion. Moreover, simulation results have
shown that a large number of snapshots T is needed in order
to allow a good estimation of K in terms of underestimation
rates. Furthermore, the number of snapshots must be signifi-
cantly higher than the number of colliding users K (T � K).
These settings are similar to the settings that are used in
MOSTs for signal array processing.

The impact of these results is twofold. First, some CR
techniques such as the network-assisted diversity multiple ac-
cess (NDMA) [3], [4] cannot be implemented in IEEE 802.11
networks notably because these CR techniques are based on
the assumption that T can be made as small as K + 1
or K + 2. Second, some MPR protocols for IEEE 802.11
networks that use the blind user separation in [6] appear
to be rather questionable since they assume that the CM
estimation can rely on a single observation of collided request-
to-send (RTS) frames. Even if the AP is equipped with four
antennas (T = 4), our simulation results have shown that
the receiver at the AP needs many more snapshots in order
to provide a good estimation of K. This paper has pointed
out a strong constraint in the design of MPR techniques. It
revealed that a single observation of the colliding signals is far
from providing enough information to estimated the number
of colliding nodes.

Further investigations are now needed in order to fully
characterized the performance of the proposed CMETs in
typical operating conditions. The obtained results will allow
the implementation of these CMETs in current or future
standards.
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