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Abstract. The author has recently introduced the sequential composition of propositional logic pro-
grams. This paper studies composition in the Krom fragment from an algebraic point of view.

1. Introduction

The sequential composition of propositional logic programs has been recently introduced by Antić
(2023b) and extended to answer set programming by Antić (2023a).

The purpose of this paper is to study the sequential composition operation in the Krom fragment
(Krom, 1967) consisting only of facts, and rules of the simple form a ← b.1 Although the class of
Krom programs is very restricted, the algebraic theory of composition turns out to be still non-trivial
in that setting. This is due to the fact that we can identify every such program with a graph where each
rule a ← b corresponds to an edge from b to a which shows that propositional Krom logic programs
are, despite their simplicity, non-trivial objects.

A characteristic feature of the Krom fragment is that sequential composition distributes over union,
which simplifies matters considerably; this is not the case for arbitrary programs (cf. Antić, 2023b,
Example 8). Moreover, the proper rules operator selecting the non-facts of a program is a homomor-
phism with respect to composition in the Krom fragment which again makes things easier.

2. Propositional Krom logic programs

This section recalls the syntax and semantics of propostional Krom logic programs.
Let A be a finite alphabet of propositional atoms. A (propositional Krom logic) program over A is

a finite set of rules of two forms:
• facts of the form a ∈ A,
• proper rules of the form a← b, for a, b ∈ A.

We denote the set of all Krom programs over A by KA or simply by K in case A is understood from
the context.

It will be convenient to define the head and body of a rule, respectively, by

h(a) := {a} and h(a← b) := {a}, b(a) := ∅ and b(a← b) := {b},

extended to programs by

h(K) :=
⋃
r∈K

h(r) and b(K) :=
⋃
r∈K

b(K).

1This class of programs is often called “binary” in the literature.
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We define the dual of K by

d(K) := f (K) ∪ {b← a | a← b ∈ K}.

An interpretation is any subset of A. We define the entailment relation, for every interpretation I,
inductively as follows:

• for an atom a, I |= a iff a ∈ I;
• for a proper rule, I |= a← b iff I |= b implies I |= a;
• for a propositional Krom program K, I |= K iff I |= r holds for each rule r ∈ K.

In case I |= K, we call I a model of K. The set of all models of K has a least element with respect to
set inclusion called the least model of K and denoted by LM(K).

3. Sequential composition

This section recalls the sequential composition of propositional Krom logic programs and adds
some new observations.

In the rest of the paper, K, L,M,N denote propositional Krom logic programs.
The (sequential) composition (Antić, 2023b) of K and L is given by

K ◦ L := f (K) ∪ {a ∈ A | a← b ∈ K, b ∈ L} ∪ {a← b | a← c ∈ K, c← b ∈ L}.

We simply write KL In case the composition operation is understood.
Define the unit program over A by

1A := {a← a | a ∈ A}.

As usual, we often omit A and write 1.
We have

h(K) = KA and b(K) = d(p(K))A.

Moreover, we have

IK = I, for every interpretation I,(1)

that is, every interpretation is a left zero in K.
Every permutation π : A→ A corresponds to the permutation program

π := {π(a)← a | a ∈ A}.

The space of all permutation programs forms a subgroup of K, where every π has the inverse d(π),
that is,

πd(π) = d(π)π = 1.
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We have the following identities (the identities (3)–(6) were shown in Antić (2023b, Theorem 12)):

K = f (K) ∪ p(K)(2)
K(LM) = (KL)M(3)

K1 = 1K = K(4)
K(L ∪ M) = KL ∪ KM(5)
(L ∪ M)K = LK ∪ MK(6)

∅K = ∅(7)
K∅ = f (K)(8)

p(K ∪ L) = p(K) ∪ p(L)(9)
p(KL) = p(K)p(L)(10)

p(1) = 1(11)
p(∅) = ∅(12)

f (K ∪ L) = f (K) ∪ f (L)(13)
f (KL) = f (K) ∪ p(K) f (L)(14)

f (1) = ∅(15)
f (∅) = ∅.(16)

Equations (3)–(8) show that the set of all proper programs together with the operations ∪ and ◦ and
constants ∅ and 1 forms a semiring, and K∅ , ∅ is the only reason why the space of all programs
(possibly containing facts) fails to be a semiring. Moreover, equations (3)–(12) show that the space
of all programs together with ∪, ◦, p and constants ∅, 1 forms a quemiring (Elgot, 1976). Finally,
equations (9)–(12) show that the proper rule operator p is a homomorphism which is essential in the
rest of the paper.2

The next result provides a concise formula for the computation of the facts of a sequence of program
compositions which will be often used below.

Theorem 1. Given programs K1, . . . ,Kn ∈ K, n ≥ 1, we have

f (K1 . . .Kn) = f (K1) ∪
n−1⋃
i=1

(p(K1 . . .Ki) f (Ki+1)).(17)

2This is one of the distinguished features of the Krom fragment since for arbitrary propositional programs P,R we usually
have p(PR) , p(P)p(R) (cf. Antić, 2023b, §4.4).
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Proof. By induction on n. The induction base n = 1 holds trivially. For the induction step, we compute

f (K1 . . .Kn+1)
(14)
= f (K1) ∪ p(K1) f (K2 . . .Kn+1)

IH
= f (K1) ∪ p(K1)

 f (K2) ∪
n⋃

i=2

(p(K2 . . .Ki) f (Ki+1))


(5)
= f (K1) ∪ p(K1) f (K2) ∪

n⋃
i=2

(p(K1)p(K2 . . .Ki) f (Ki+1))

(10)
= f (K1) ∪ p(K1) f (K2) ∪

n⋃
i=2

(p(K1K2 . . .Ki) f (Ki+1))

= f (K1) ∪
n−1⋃
i=1

(p(K1 . . .Ki) f (Ki+1)).

□

We say that K and L commute iff KL = LK which can be characterized by

f (KL) = f (LK) ⇔ f (K) ∪ p(K) f (L) = f (L) ∪ p(L) f (K),
p(KL) = p(LK) ⇔ p(K)p(L) = p(L)p(K).

We call K idempotent iff KK = K, which is characterized by

f (K) = f (KK)
(14)
= f (K) ∪ p(K) f (K) and p(K) = p(KK)

(10)
= p(K)p(K),

where the first identity holds iff

p(K) f (K) ⊆ f (K).

We call L a quasi-inverse of K iff K = KLK, in which case we call K quasi-invertible.3 Notice that
in case L is a quasi-inverse of K, the product KL is idempotent, that is,

(KL)2 = KLKL = KL.

We can characterize quasi-invertible programs as follows. By (10) and (14), we have

K = KLK ⇔ f (K) = f (KLK) = f (K) ∪ p(K) f (L) ∪ p(K)p(L) f (K),
p(K) = p(KLK) = p(K)p(L)p(K).

The first line is equivalent to

p(K) f (L) ⊆ f (K) and p(K)p(L) f (K) ⊆ f (K).

4. Algebraic semantics

In this section, we study the semantics of propositional Krom logic programs from an algebraic
point of view analogous to Antić (2023b, §6).

Define the Kleene star and plus of K by

K∗ :=
⋃
n≥0

Kn and K+ := KK∗ = K∗K.

3In the semigroup literature, this property is usually called “regular” (cf. Howie, 2003).
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Finally, define the omega operation by

Kω := f (K+)
(8)
= K+∅.

We have by Antić’s (2023b, Theorem 40)

LM(K) = Kω.

We now wish to compute Kω. Notice that computing the omega of an idempotent program K
satisfying K2 = K is trivial since

Kω = f (K).(18)

In general, we compute

Kω = f (K+)

=

⋃
n≥1

Kn

 ∅
=
⋃
n≥1

(Kn∅)

=
⋃
n≥1

f (Kn)

(17)
=
⋃
n≥1

 f (K) ∪
n−1⋃
i=1

(p(Ki) f (K))


(10)
= f (K) ∪

⋃
n≥1

n−1⋃
i=1

(p(K)i f (K))

=
⋃
n≥1

n−1⋃
i=0

(p(K)i f (K)).

We can compute the omega of the composition of two programs by

(KL)ω =
⋃
n≥1

f ((KL)n)

(17)
=
⋃
n≥1

 f (KL) ∪
n−1⋃
i=1

(p(KL)i f (KL))


(14)
=
⋃
n≥1

 f (KL) ∪
n−1⋃
i=1

(
p((KL)i)( f (K) ∪ p(K) f (L))

)
(5)
=
⋃
n≥1

 f (KL) ∪
n−1⋃
i=1

(
p((KL)i) f (K) ∪ p((KL)iK) f (L)

)
=
⋃
n≥1

n−1⋃
i=0

(
p((KL)i) f (K) ∪ p((KL)iK) f (L)

)
,

where the last identity follows from

p((KL)0) f (K) ∪ p((KL)0K) f (L)
(10),(11),(14)
= f (KL).



6 SEQUENTIAL COMPOSITION OF PROPOSITIONAL KROM LOGIC PROGRAMS

Notice that in case L is a quasi-inverse of K, we have K = KLK and thus

(KL)ω
(18)
= f (KL)

(14)
= f (K) ∪ p(K) f (L).

5. Least model equivalence

Recall that two programs K, L are equivalent with respect to the least model semantics iff Kω = Lω.
We therefore wish to compute Kω. We have

Kω = f (K+) = K+∅ =

⋃
n≥1

Kn

 ∅ =⋃
n≥1

(Kn∅) =
⋃
n≥1

f (Kn).

Let us compute Kn. We have

K2 = ( f (K) ∪ p(K))( f (K) ∪ p(K))

= f (K)2 ∪ p(K) f (K) ∪ f (K)p(K) ∪ p(K)2

(1)
= f (K) ∪ p(K) f (K) ∪ p(K),

and

K3 = K2K = f (K) ∪ p(K) f (K) ∪ p(K)2K = f (K) ∪ p(K) f (K) ∪ p(K)2 f (K) ∪ p(K)3,

and

K4 = K3K

= f (K) ∪ p(K) f (K) ∪ p(K)2 f (K) ∪ p(K)3K

= f (K) ∪ p(K) f (K) ∪ p(K)2 f (K) ∪ p(K)3 f (K) ∪ p(K)4.

A simple proof by induction shows the general formula for arbitrary n ≥ 1 given by

Kn = f (K) ∪ p(K)n ∪

n−1⋃
i=1

(
p(K)i f (K)

)
.

This implies

Kω = f (K+)

= f

⋃
n≥1

Kn


=
⋃
n≥1

f

 f (K) ∪ p(K)n ∪

n−1⋃
i=1

p(K)i f (K)


=
⋃
n≥1

 f ( f (K)) ∪ f (p(K)n) ∪
n−1⋃
i=1

f (p(K)i f (K))


= f (K) ∪

⋃
n≥1

n−1⋃
i=1

p(K)i f (K)

=
⋃
n≥1

n−1⋃
i=0

p(K)i f (K),
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where the fifth identity follows from f ( f (K)) = f (K) and f (p(K)n) = ∅, and the last identity follows
from p(K)0 = 1.

Hence, we obtain an algebraic characterization of equivalence with respect to the least model se-
mantics given by

K ≡ L ⇔
⋃
n≥1

n−1⋃
i=0

p(K)i f (K) =
⋃
n≥1

n−1⋃
i=0

p(L)i f (L).

6. Subsumption equivalence

Recall that two Krom programs K, L are called subsumption equivalent (cf. Maher, 1988) — in
symbols, K ≡ss L — iff KI = LI holds for each interpretation I.4

Our first observation is that in case K and L are subsumption equivalent, we must have

K∅ = L∅

which by (8) is equivalent to

f (K) = f (L).

Now let a be an atom in the head of K which is not a fact of K, that is,

a ∈ h(K) and a < f (K).

Then there must be a rule a← b ∈ K, for some b ∈ A. Let I := {b}. Since

KI = LI and a ∈ KI implies a ∈ LI,

we must have a ← b ∈ L. This immediately implies K ⊆ L. An analogous argument shows L ⊆ K,
which leads to the trivial characterization of subsumption equivalence given by

K ≡ss L iff K = L.

7. Uniform equivalence

Recall that two Krom programs K, L are called uniformly equivalent (Maher, 1988; Sagiv, 1988;
Eiter & Fink, 2003) — in symbols, K ≡u L — iff K ∪ I ≡ L ∪ I holds for every interpretation I. The
condition K ∪ I ≡ L∪ I can be rephrased in terms of the omega operation as (K ∪ I)ω = (L∪ I)ω. This
means that in order to understand uniform equivalence, we need to understand (K ∪ I)ω.

First, we have

(K ∪ I)2 = (K ∪ I)(K ∪ I)
(6),(5)
= K2 ∪ KI ∪ IK ∪ I2 (1)

= K2 ∪ KI ∪ I

and

(K ∪ I)3 = (K2 ∪ KI ∪ I)(K ∪ I) = K3 ∪ KIK ∪ IK ∪ K2I ∪ KI2 ∪ I2 (1)
= K3 ∪ K2I ∪ KI ∪ I.

A straightforward induction proof shows that the general pattern for arbitrary n ≥ 1 is

(K ∪ I)n = Kn ∪ Kn−1I ∪ . . . ∪ KI ∪ I.

Hence, we have

(K ∪ I)+ =
⋃
n≥1

(K ∪ I)n =
⋃
n≥1

(Kn ∪ Kn−1I ∪ . . . ∪ KI ∪ I) = K+ ∪ K∗I,

4Subsumption equivalence is usually defined in terms of the van Emden Kowalski operator.
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and therefore

(K ∪ I)ω = f ((K ∪ I)+) = f (K+ ∪ K∗I) = f (K+) ∪ f (K∗I) = f (K+) ∪ K∗I = Kω ∪ K∗I.

That is, we can compute the least model of K ∪ I in terms of the least model of K. This implies the
characterization of uniform equivalence given by

K ≡u L ⇔ Kω ∪ K∗I = Lω ∪ L∗I.

This means that in order to understand uniform equivalence, we need to understand the omega and
star operators.

We wish to understand K∗I. We therefore compute

K∗I =

⋃
n≥0

Kn

 I

=
⋃
n≥0

(KnI)

=
⋃
n≥0

 f (K)I ∪ p(K)nI ∪
n−1⋃
i=1

p(K)i f (K)I


= f (K) ∪

⋃
n≥0

p(K)nI ∪
n−1⋃
i=1

p(K)i f (K)


= f (K) ∪

⋃
n≥0

p(K)nI ∪
⋃
n≥0

n−1⋃
i=1

p(K)i f (K)

= Kω ∪
⋃
n≥0

p(K)nI

= Kω ∪ p(K)∗I.

In total, we therefore have

(K ∪ I)ω = Kω ∪ K∗I = Kω ∪ p(K)∗I.

Hence, we have finally arrived at an algebraic characterization of uniform equivalence of proposi-
tional Krom logic programs given by

K ≡u L ⇔ Kω ∪ p(K)∗I = Lω ∪ p(L)∗I, for every interpretation I.

8. Future work

A major line of future research is to lift the results of this paper from the Krom fragment to all
propositional logic programs which is non-trivial given that the composition of the latter is not as-
sociative and does not distribute over union (cf. Antić, 2023b, Example 10); even more difficult is
the extension to the class of answer set programs (Gelfond & Lifschitz, 1991) containing negation
as failure in rule bodies since the composition of answer set programs is rather complicated (Antić,
2023a).

Since the space of all propositional Krom logic programs forms a monoid with respect to sequential
composition, and almost5 a semiring with respect to composition and union, we can ask all kinds of

5Recall that the only reason for the space of all propositional Krom programs to form a semiring is that in case K contains
facts, K∅ = f (K) , ∅.
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algebraic questions. A particularly interesting one seems to be: What are “prime” propositional Krom
logic programs?

9. Conclusion

This paper studied the sequential composition of propositional Krom logic programs. We showed
that the space of all such programs has nice algebraic properties. We provided algebraic characteri-
zations of least model and uniform equivalence of propositional Krom logic programs in terms of the
sequential composition of programs.

The major line for future research is to lift the results of this paper from Krom to arbitrary proposi-
tional, first-order, and answer set programs containing negation as failure (Clark, 1978). The former
is challenging since the sequential composition of arbitrary propositional programs is in general not
associative and does not distribute over union (cf. Antić, 2023b) which means that most of the results
of this paper are not directly transferable. The latter is difficult since the sequential composition of
answer set programs is rather complicated (cf. Antić, 2023a).
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