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Abstract. The author has recently introduced the sequential composition of propositional
logic programs. This paper studies composition in the Krom fragment from an algebraic
point of view. In a broader sense, this paper is a further step towards an algebraic theory of
logic programming.

1. Introduction

Rule-based reasoning is an essential part of human intelligence prominently formalized
in artificial intelligence research via logic programs which are formal constructs written in
a rule-like sublanguage of predicate logic (cf. Apt, 1990, 1997; Hodges, 1994; Lloyd, 1987;
Makowsky, 1987; Sterling & Shapiro, 1994).

The sequential composition of propositional logic programs has been recently introduced
by Antić (2021c) and extended to answer set programming by Antić (2021b).

In this paper, we study the sequential composition operation in the Krom fragment (Krom,
1967) consisting only of facts, and rules of the simple form a← b. Although the class of Krom
programs is very restricted, the algebraic theory of composition turns out to be still non-trivial
in that setting. This is due to the fact that we can identify every such program with a graph
where each rule a ← b corresponds to an edge from b to a which shows that propositional
Krom logic programs are, despite their simplicity, non-trivial objects.

A characteristic feature of the Krom fragment is that sequential composition distributes
over union, which simplifies matters considerably; this is not the case for arbitrary programs
(cf. Antić, 2021c, Example 8). Moreover, the proper rules operator selecting the non-facts
of a program is a homomorphism with respect to composition in the Krom fragment which
again makes things easier.

In a broader sense, this paper is a further step towards an algebraic theory of logic pro-
gramming (Antić, 2021c, 2021b, 2023b, 2021a, 2023a).

2. Propositional Krom logic programs

This section recalls propostional Krom logic programs by mainly following the lines of Antić
(2021c).

Let A be a finite alphabet of propositional atoms. A (propositional Krom logic) program
over A is a finite set of rules of two forms, facts of the form a ∈ A, and proper rules of the
form a ← b, for a, b ∈ A. We denote the set of all Krom programs over A by KA or simply
by K in case A is understood from the context.
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It will be convenient to define h(a← b) := {a} and h(a) := {a} (head), and b(a← b) := {b}
and b(a) := ∅ (body), extended to programs by h(K) :=

⋃
r∈K h(r) and b(K) :=

⋃
r∈K b(K).

Moreover, we define the dual of K by

Kd := f(K) ∪ {b← a | a← b ∈ K}.

An interpretation is any subset of A. We define the entailment relation, for every inter-
pretation I, inductively as follows: (i) for an atom a, I |= a iff a ∈ I; (ii) for a proper rule,
I |= a ← b iff I |= b implies I |= a; and, finally, (iii) for a propositional Krom program K,
I |= K iff I |= r holds for each rule r ∈ K. In case I |= K, we call I a model of K. The set
of all models of K has a least element with respect to set inclusion called the least model of
K and denoted by LM(K).

3. Sequential composition

This section recalls the sequential composition of propositional Krom logic programs and
adds some new observations.

In the rest of the paper, K,L,M,N denote propositional Krom logic programs. The
(sequential) composition (Antić, 2021c) of K and L is given by

K ◦ L := f(K) ∪ {a ∈ A | a← b ∈ K, b ∈ L} ∪ {a← b | a← c ∈ K, c← b ∈ L}.

We simply write KL In case the composition operation is understood.
Define the unit program over A by

1A := {a← a | a ∈ A}.

As usual, we often omit A and write 1.
We have

h(K) = KA and b(K) = p(K)dA.

Moreover, we have

IK = I, for every interpretation I,(1)

that is, every interpretation is a left zero in K.
Every permutation π : A→ A corresponds to the permutation program

π := {π(a)← a | a ∈ A}.

The space of all permutation programs Π forms a subgroup of K, where every π has the
inverse πd, that is,

ππd = πdπ = 1.
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We have the following identities (the identities (3)–(6) are shown in Antić (2021c, Theorem
12)):

K = f(K) ∪ p(K)(2)

K(LM) = (KL)M(3)

K1 = 1K = K(4)

K(L ∪M) = KL ∪KM(5)

(L ∪M)K = LK ∪MK(6)

∅K = ∅(7)

K∅ = f(K)(8)

p(K ∪ L) = p(K) ∪ p(L)(9)

p(KL) = p(K)p(L)(10)

p(1) = 1(11)

p(∅) = ∅(12)

f(K ∪ L) = f(K) ∪ f(L)(13)

f(KL) = f(K) ∪ p(K)f(L)(14)

f(1) = ∅(15)

f(∅) = ∅.(16)

Equations (3)–(8) show that the set of all proper programs together with the operations ∪
and ◦ and constants ∅ and 1 forms a semiring, and K∅ ≠ ∅ is the only reason why the space of
all programs (possibly containing facts) fails to be a semiring. Moreover, equations (3)–(12)
show that the space of all programs together with ∪, ◦, p and constants ∅, 1 form a quemiring
(Elgot, 1976). Finally, equations (9)–(12) show that the proper rule operator p is a semiring
homomorphism which is essential in the rest of the paper.1

The next result provides a concise formula for the computation of the facts of a sequence
of program compositions which will be often used below.

Theorem 1. Given programs K1, . . . ,Kn ∈ K, n ≥ 1, we have

f(K1 . . .Kn) = f(K1) ∪
n−1⋃
i=1

(p(K1 . . .Ki)f(Ki+1)).(17)

1This is one of the distinguished features of the Krom fragment since for arbitrary propositional programs
P,R we usually have p(PR) ̸= p(P )p(R) (cf. Antić, 2021c, §4.4).
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Proof. By induction on n. The induction base n = 1 holds trivially. For the induction step,
we compute

f(K1 . . .Kn+1)
(14)
= f(K1) ∪ p(K1)f(K2 . . .Kn+1)

IH
= f(K1) ∪ p(K1)

(
f(K2) ∪

n⋃
i=2

(p(K2 . . .Ki)f(Ki+1))

)
(5)
= f(K1) ∪ p(K1)f(K2) ∪

n⋃
i=2

(p(K1)p(K2 . . .Ki)f(Ki+1))

(10)
= f(K1) ∪ p(K1)f(K2) ∪

n⋃
i=2

(p(K1K2 . . .Ki)f(Ki+1))

= f(K1) ∪
n−1⋃
i=1

(p(K1 . . .Ki)f(Ki+1)).

□

We say that K and L commute iff KL = LK which can be characterized by

f(KL) = f(LK) iff f(K) ∪ p(K)f(L) = f(L) ∪ p(L)f(K),

p(KL) = p(LK) iff p(K)p(L) = p(L)p(K).

We call K idempotent iff KK = K, which is characterized by

f(K) = f(KK)
(14)
= f(K) ∪ p(K)f(K) and p(K) = p(KK)

(10)
= p(K)p(K),

where the first identity holds iff

p(K)f(K) ⊆ f(K).

We call L a quasi-inverse of K iff K = KLK, in which case we call K quasi-invertible.2

Notice that in case L is a quasi-inverse of K, the product KL is idempotent, that is,

(KL)2 = KLKL = KL.

We can characterize quasi-invertible programs as follows. By (10) and (14), we have

K = KLK iff f(K) = f(KLK) = f(K) ∪ p(K)f(L) ∪ p(K)p(L)f(K),

p(K) = p(KLK) = p(K)p(L)p(K).

The first line is equivalent to

p(K)f(L) ⊆ f(K) and p(K)p(L)f(K) ⊆ f(K).

4. Algebraic semantics

In this section, we study the semantics of propositional Krom logic programs from an
algebraic point of view analogous to Antić (2021c, §6).

Define the Kleene star and plus of K by

K∗ :=
⋃
n≥0

Kn and K+ := KK∗ = K∗K.

2In the semigroup literature, this property is usually called “regular” (cf. Howie, 2003).
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Finally, define the omega operation by

Kω := f(K+)
(8)
= K+∅.

We have by Antić’s (2021c, Theorem 40)

LM(K) = Kω.

We now wish to compute Kω. Notice that computing the omega of an idempotent program
K satisfying K2 = K is trivial since

Kω = f(K).(18)

In general, we compute

Kω = f(K+)

=

⋃
n≥1

Kn

 ∅
=
⋃
n≥1

(Kn∅)

=
⋃
n≥1

f(Kn)

(17)
=
⋃
n≥1

(
f(K) ∪

n−1⋃
i=1

(p(Ki)f(K))

)

(10)
= f(K) ∪

⋃
n≥1

n−1⋃
i=1

(p(K)if(K))

=
⋃
n≥1

n−1⋃
i=0

(p(K)if(K)).

The same formula has been derived in Antić (2023a) by other means.
We can compute the omega of the composition of two programs by

(KL)ω =
⋃
n≥1

f((KL)n)

(17)
=
⋃
n≥1

[
f(KL) ∪

n−1⋃
i=1

(p(KL)if(KL))

]

(14)
=
⋃
n≥1

[
f(KL) ∪

n−1⋃
i=1

(
p((KL)i)(f(K) ∪ p(K)f(L))

)]

(5)
=
⋃
n≥1

[
f(KL) ∪

n−1⋃
i=1

(
p((KL)i)f(K) ∪ p((KL)iK)f(L)

)]

=
⋃
n≥1

n−1⋃
i=0

(
p((KL)i)f(K) ∪ p((KL)iK)f(L)

)
,
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where the last identity follows from

p((KL)0)f(K) ∪ p((KL)0K)f(L)
(10),(11),(14)

= f(KL).

Notice that in case L is a quasi-inverse of K, we have K = KLK and thus

(KL)ω
(18)
= f(KL)

(14)
= f(K) ∪ p(K)f(L).

5. Future work

A major line of future research is to lift the results of this paper from the Krom fragment to
all propositional logic programs which is non-trivial given that the composition of the latter
is not associative and does not distribute over union (cf. Antić, 2021c, Example 10); even
more difficult is the extension to the class of answer set programs (Gelfond & Lifschitz, 1991)
containing negation as failure in rule bodies since the composition of answer set programs is
rather complicated (Antić, 2021b).

Since the space of all propositional Krom logic programs forms a monoid with respect to
sequential composition, and almost3 a semiring with respect to composition and union, we
can ask all kinds of algebraic questions. A particularly interesting one seems to be: What
are “prime” propositional Krom logic programs? Another one is how Green’s (1951) relations
L,R,J are characterized in the Krom fragment (cf. Antić, 2023b).

6. Conclusion

This paper studied the sequential composition of propositional Krom logic programs. We
showed that the space of all such programs has nice algebraic properties. In a broader sense,
this paper is a further step towards an algebraic theory of logic programming.
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